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ASYMPTOTIC ANALYSIS OF A DIFFERENTIAL EQUATION
OF TURRITTIN*

B. L. J. BRAAKSMA"

0. Introduction. In [6] Turrittin considered the differential equation

(0.1)
dx"

xy O,

where n and v are positive integers, n >__ 2. He gave a fundamental system of
solutions y(x),j 0, ..., n 1, in series ofpowers ofx and derived the asymptotic
expansions of these solutions as x --, . To find these expansions he expressed
y(x) as a linear combination of another fundamental system of solutions of (0.1)
which have a given simple asymptotic behavior as x- c on a certain fixed
sector S in the complex x-plane. The coefficients in this linear combination are
the so-called Stokes multipliers.

However, the latter solutions are not uniquely determined by their behavior
as x - in S, and so the Stokes multipliers are not uniquely determined. By
requiring the given simple asymptotic behavior of solutions of (0.1) in a sector
larger than S, a fundamental system of (0.1) can be determined uniquely. Turrittin
determines this system in [6]. The Stokes multipliers of the y(x) with respect to
this system are uniquely determined, but appear to be rather complicated.

In [4] Heading considered the same differential equation (0.1) where now v is
a rational number other than certain negative integers. He gives a fundamental
set of solutions and considers the leading terms of their asymptotic expansions.
In particular, the Stokes multipliers in the various sectors are investigated. He
used Barnes integrals and the method of steepest descent to obtain the leading
terms of the asymptotic expansions.

In [7] Turrittin considered (0.1) with v -1. Here a fundamental system
of solutions, which now may have a logarithmic singularity in x 0, is given
and their asymptotic behavior as x - is deduced.

In this paper we consider (0.1) for n 2 and arbitrary complex values of v.
In 1 we give a fundamental set of solutions y,(x) which are characterized by
their behavior near x 0. As in [4] we define them by Barnes integrals. In 2
we express these solutions as linear combinations of a special solution 7(x) of (0.1)
and solutions which arise from 7(x) by rotating the argument. The asymptotic
expansion of (x) has been given by Barnes [1] by means of a complicated method.
In 3 we give a new proof of this expansion using indirect Abelian asymptotics of
the Laplace transform (cf. [3, Chap. 2]). In 4 we derive the asymptotic expansions
for the Y,h(X) from those for 37(x). We may characterize 37(x) uniquely by its asymp-
totic behavior in a given sector or on a ray.. We obtain unique Stokes multipliers
for the Y.i,h(X) which are simpler than those in [6].
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The solutions defined by Barnes integrals mentioned above can be expressed
as G-functions. Their asymptotic behavior has been derived by Meijer [5] from the
result of Barnes mentioned above. However, these expansions do not hold uni-
formly in closed sectors covering the entire x-plane. Further, the explicit expres-
sions of the Stokes multipliers for the special G-functions considered here can be
derived directly in an easier way.

In 5 we consider the fundamental system of solutions of (0.1) for general v
which are uniquely characterized by their asymptotic behavior in the manner
given by Turrittin 6, 8]. Finally, we determine the Stokes multipliers with
respect to this system in Theorem 4. These are more complicated than those with
respect to the system of solutions 97.

1. The fundamental system of solutions. We write the differential equation
(0.1) in the form

(1 1) x
"d"y
-xn--Xmy=O.

If m 0, this is an Euler equation, which has elementary solutions. Therefore we
suppose that m 0.

We try to find solutions of (1.1) in the form

(1.2) y(x)

where C is a contour in the complex s-plane from s oo ia to s oo + ia
with some positive constant a, and where (p(s) is a meromorphic function with no
singularities either on C or to the left of C. A formal calculation shows that qg(s)
has to satisfy

(1.3) ms(ms 1)... (ms n + 1)q(s) q)(s 1).

The solutions of this equation can be written

(1.4) qg(s) F + s m-"Sq*(s),
k--0 rn

where q*(s) is a function with period 1. By a suitable choice of qg*(s) we obtain the
solutions

(1.5) q(s) F 1 + s sin rc s m e -i,
k=O rn

wherej 0, 1, ..., n 1, and

The function q(s) has poles of the first order or removable singularities at the
points s
k=0,...,n- 1, v=0,1,2,....

In (1.2) we now choose for C the contour from s o ia to s w- ia,
then to s w + ia and finally to s oe + ia, where a > (n 1)llm 1/ml and
w< Re(n- 1)/m,w<O.
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With the choices (1.5) and (1.6) for qg(s) in (1.2) it is easily verified that we
obtain solutions of (1.1). Put

yj(x) oj(s)x (X) O(S)X ds.

Here and in the following the powers X are defined by Xms-’- exp {ms(loglx]
+ arg x)}. They depend in general on the value of arg x. By means of the calculus
of residues we obtain

(1.8) yj(x) ----e-nij/mm-nj/mxJ I-" 1 + V + m-nvxmv.
TC v=0 k=O m

These series are convergent for all values of x O. If m 4: 0, +__ 1,..., +(n 1),
then the functions yo(x), "", y,-l(x) are linearly independent and form a funda-
mental system of solutions of (1.1). Equation (1.8) gives the behavior of these
solutions for x O.

Now suppose m +1, +2,..., _(n- 1). Then it is easy to see that the
solutions yo(x),’", y,-l(x) are linearly dependent. In order to obtain n linearly
independent solutions of (1.1) we select the following solutions of (1.3) (compare
(1.4))’

(1.9) q)j,h(S) F 1 + s sin c s m- e-ri(h + 1)s.
k=0

Thus qgj,o(S qgj(s). The integers j and h in (1.9) will be restricted as follows"

(1.10) 0<= hlml + j <= n 1, O _< h <= n- 1, O <=j <= [m[ 1.

Then we obtain n different functions qgj,h(s), whose only singularities are poles at
the points s v + j/m, where v 0, 1,2,.... The poles are of order h + 1 at
most.

We now define

(1.11) Yj,h(X) q)j,h(S)X ds.

Then y,o(X) yj(x). We show that the n solutions yj,h(X) of (1.1) with j and h
satisfying (1.10) form a fundamental system of solutions of (1.1). To this end we
calculate Yj,h(X) by means of the calculus of residues.

We use the formula

7h + e- ti(h + )s

(1.12)
(sin zts)h+

s-h-1 Bh+ I) (2zis)

=o k!

valid for 0 < Is] < 1, where the Bh+ 1) are the Bernoulli numbers of order h + 1.
Hence the residue of qgj,h(s)x at the point s v + j/m, v 0, 1, ..., is

h

(1.13) xJ+m al,v(j, h){log (m-nxm)}h-l,
/=0
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where

(1.14)

with

al,,,(j h)
(h 1)!

rc " m ,,jim e-Jh+

(2rci)uZ B(.h+’)f-u)(v)
--0 !(l )!

(1.15) j(s)--fnIZI
k=0

Therefore,

Fl+s+
-1

(1.16) Yj,h(X) {log (m-"xm)}h-l a,,(j, h)xm+i.
/=0 v=0

The series converges for x O, and we see that the n solutions yj,h(x) with (1.10)
are linearly independent, and therefore form a fundamental system.

The behavior of the solutions of the fundamental system for x ---, may
be derived from the behavior of 37(x) as x - oo. The last function is a special case
of a function whose asymptotic behavior has been derived by Barnes [1]. In the
terminology of Meijer’s G-function (cf. [5]) we have

17) .(x) G; m-" e-"’ixm O,
n

(1.
m m

The functions yj,h(x) are also G-functions"

(1.18) yj(x) 1,o( -rci.m J n-

rc
G’n rrt e --, O, *

m m m

where the star denotes that in the sequence O, l/m,..., (n- 1)/m the term jim
is to be omitted, and

Yj,h(X) (-- 1)<h +l)(h/2 +1 -h-1

m m m m tn

where the two stars denote that in the sequence 0, l/m,..., (n l)/m the terlns

j/m,j/m 1,...,j/m h are to be omitted. The upper sign corresponds to
m > 0, the lower sign to m < 0.

2. Reduction of the analysis to the asymptotic analysis of 37(x). We show
first that it suffices to find the asymptotic expansion for x" --, oo of the solutions
of the fundamental system in the sector

(2.1) 0 < arg (m-"x’) .<= 27z.

Next we show how the asymptotic expansions of yj,h(x) in this sector can be
derived from those of .(x) in the sector

(2.2) 0 =< arg (m-"x’) < 2nrc.
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These results are consequences of the fact that if y(x) is a solution of (1.1), then
also y(xe2p’i/m) satisfies (1.1) for arbitrary choice of the integer p.

If m - 0, + 1, ..., +(n 1), then we have by (1.8),

(2.3) y.i(x)-- e2pJti/myj(xe-2Pi/m), p 0, + 1, 2,

Hence the asymptotic behavior of yj(x) as X O0 in

(2.4) 2prt =< arg (m-"x’) <= 2(p + 1)rt

follows from the behavior of yj(x) as x oo on (2.1). Now suppose that m 1,
+2, ..., +(n 1). Then from the binomial expansion we have

(2.5)

where go(s) is an analytic function of s. Moreover, go(s) is bounded on C and also
on the right of C. From this equation, (1.9) and (1.11) we deduce

(2.6)

Therefore the behavior of the functions yj,h(x) as X OO on (2.4) can be deduced
from this behavior on (2.1).

In order to express the functions yj,h(x) in terms of the functions .(x e2pri/rn)
(p an integer) we first express rpj,h(s in terms of qS(s) (cf. (1.6) and (1.9))’

(2.7)
qb,h(S) Co(s)rc- e’-- 1)nis H sin rt

k=0

f(S)n- n(__ 1)(h + 1}(h/2 + 1} e{,- h- 1}rcis sin rt s
,.k-- 0

where the prime here means that the factors with k--j, k =j + [m[, ...,
k j + hlml in the product are omitted. Next we expand this product in powers
of ercis"

(2.8)

sa that

qga,h(S) Cp(S)(2rci)-n(_ 2i)h+ e{,, 1)/2-j(h+ 1)}rti/m

n-1

FI’
k=O

(2.9)
n-h-1

(DJ,h(S) E Ck(j, h)e2kris)(S),
k=O
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where the constants Ck(j, h) follow from (2.8). Thus the Ck(j, h) are defined by
n-h-1 n-1

(2.10) ck(j,h)xk= co(j,h) H’ (1 xe-2kni/m),
k=O k=O

Co(j, h) (2i)-"(-2i)h+ e,(,-1)/2-j(h+ 1)}rci/m

(2.11)
Cn-h- a(J, h) (-2zi)-"(2i)h+ e{J(h+ 1)-n(n- 1)/2}i/m.

From (2.9), (1.1 1) and (1.7) it follows that
n-h-1

(2.12) yj,h(X) Ck(j, h)ig(xe2ki/m).
k=O

Hence the behavior of Yj,h(X) on (2.1) can be deduced from the behavior of 37(x)
on (2.2).

3. The asymptotic expansion of 37(x). The derivation of the asymptotic
expansion of)7(x) is split into three lemmas. First we consider the product ofgamma
functions in (1.6).

LEMMA 1. There exist constants bo,bx,b2, such that for any positive
integer N,

where

=n b;F(1-ns-z-j)+pN(s)F(1-ns-z-N)
(.j=O

n + 1 n(n 1)
bo n 1/2 (2z)(,- 1)/2(3.2) z

2 2m

and pN(s) is an analyticfunction ofsfor s :/: v + k/m, v O, 1, k O, n 1,

with the property

(3.3) pu(s) O(1)

as s uniformly in

(3.4) [arg (- s)[ __<

Here e is an arbitrary constant with 0 <
Further,

(3.5) p(s) ru(s) / gu(s),

where rN(s) is analytic except for simple poles at

(3.6) s -( + N + v)/n, v O, 1,2,...,

and gu(s) is analytic for ]Im s] > (n 1)[Ira 1/m].
Finally,

(3.7) r(s) 0(1)

as s -, uniformly in [arg s[ <= n e, and there exists a constant K independent
of s such that

(3.8) IgN(s)[ -< K e- 2lmsl[sN[
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for largsl =< n e, lmsl >= a.

Proof The assertions up to (3.4) easily follow from Stirling’s formula (cf.
[2, 3.3]). From (3.1) we deduce

F(ns + + N) sin n(ns + oOpu(s) (- 1)u re"- n-,
F + s sin s

k=O m k=O
(3.9)

N-1

bj(-1)u-J(ns + + j)... (ns + + N- 1).
j=O

For the products ofgamma functions in (3.9) we again have from Stirling’s formula,

F(ns + + N)
n-1

k-O

n b(ns + z + j)...(ns + + N- 1)
j=O

+ (- 1)u (2n)1-" ru(s)},
where b, ..., b_ are constants and ru(s) satisfies the conditions of Lemma 1.

For the product of sines in (3.9) we find, by using Euler’s formula for the sine
function,

(3.11)
sin n(ns + )

2"- _. g*(S),

where g*(s) is analytic for Im sl > (n 1)llm 1/ml and has the property

(3.12) ]g*(s)] _< K e -2nllmsl,
for ]Im sl ->_ a > (n 1)IIm 1/ml. Here K is a constant independent of s. Com-
bining (3.9), (3.10) and (3.11), we obtain

pu(s) (- 1)un"- bf(ns + o + j) (ns + z + N 1)
[.j=O

(3.13) + (- 1)u (2n) ru(s)t {Sn-1 -1- g*(s)}

N-1

-(-1)u (-1)jbj(ns+a+j)...(ns+cz+N- 1).
j=0

By letting s iv we find that

(2n)"-’b’ (- 1)Jbj.
From this equation and (3.13) and (3.12) we deduce (3.5) and the properties ofgu(s)
stated in Lemma 1.

Using Lemma 1 we deduce the following integral representation for 37(x).
LEMMA 2. If

(3.14) arg
1 ,i xm/ne- < 1/2n,
m
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then

(3.15) (x)
1 N-Z1 -nnixm)(1-a-j)/n expbj(n"m e
F/ j=O

where

11
xm/n

(3.16) a(x) (n"m-" e-nnixm)(3-a-N)/n f(t) exp

with

+ (x),

xm/" dt

1 _(w+i PN(s) 2-ns-a-N ds(3.17) f(t)= --i.,w_io (2 ns N)(1 ns N)

for > O. Here w is a real number such that

(3.18) w<(1-Rea-N)/n.

Proof We consider (1.7) with qS(s) defined as in (1.6) and the contour C as
defined after (1.6). Substituting (3.1) in (1.6) and using the calculus of residues
we obtain (3.15) with

(3.19) aN(x)

Now

F(1 ns- N)pN(s)(n"m-" e-n=ixm) ds.

r(1 ns z N)= n{r(ns + z + N)sin n(ns + z + N)} -1

Applying Stirling’s formula to the right-hand side we deduce that there exists a
constant K2 such that for Re s __> w and IIm sl _-> a we have"

IF(1 ns z N)[ =< Kz{exp (-1/2nn[Xm s[)}. Is[-nw-Rea-N+ 1/2.

From this inequality and the relations (3.5), (3.7) and (3.8) we deduce that we may
replace the contour C in (3.19) by the straight line from s w
provided that (3.14) is satisfied. Then substituting the formula

ioF(3 ns- N)z z(--m/ ---Nexp(-z/t)dt, Re z/ > O,

in the new integral in (3.19) and changing the order of integration we obtain (3.15).
The function f(t) of Lemma 2 has the following remarkable properties.
LMga 3. If 0 <= <= 1, then f(t) O. The function f(t) defined on >= 1,

can be continued analytically to the domain D where [arg tl < 2n/n or Itl > 1,
[arg tl < n.

Further

(3.20) f(t) t2-"w-a-NO(1)
as , uniformly on D.

Proof In view of Lemma and (3.18) the integrand in (3.17) is analytic and
O(s -2) ass in Res=<wand0<t__< 1. Hencef(t)=0for0_<t=< 1. For
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>= 1 we write f(t)-- R(t) + G(t), where

1 fw+i (3.21) R(t)=-ii.,w_i (2- ns 7 N)(1- ns - N)
2 -ns-a-N ds,

fw+i gN(S)
(3.22) G(t)= -i.w_i (2 ns N)(1 ns N)

2 N ds.

This is justified by (3.17), (3.5), (3.7) and (3.8). For __> 1 the integrand in (3.21)
is O(s-2) as s in Re s _>_ w, in view of (3.7). Therefore if __> 1, then R(t) is
equal to minus the sum of the residues of this integrand in the poles to the right of
Re s w. In view of Lemma these poles are given by s (2 N v)/n,
for a finite number of nonnegative integers v. Hence R(t) is a polynomial for >_ 1,
and therefore by analytic continuation for all t. Further we easily deduce (3.20)
with f(t) replaced by R(t) for _>_ and hence again for all t.

From (3.8) it follows that the integral in (3.22) exists and represents an analytic
function of for larg tl < 27z/n. Further, using the properties of gN(s) mentioned
in Lemma we see that for > we may replace the path of integration in (3.22)
by C. The new integral converges and represents an analytic function of for Itl > 1.
Finally we see that this integral is O(1) 2-nw--N as - uniformly in It[ > 1,
[arg tl < n. Combining these properties of R(t) and G(t) we obtain the result
stated in Lemma 3.

Next we prove the following theorem.
THEOREM 1. Let E(x) be defined formally by the series

nrcixm)(n )( 1/m In)

n-t/(2rc)(-/ + dx-’/
=1

the constants d d2 being chosen so that E(x) satisfies (1.1). Then

(3.24) (x) E(x)

as x" uniformly in

(3.25) -rc + , __< arg (m-"x’) <= (2n + 1)rt e,

where is an arbitrary constant satisfying 0 <
Proof Lemmas 2 and 3 imply

tYN(X) (nnm e-mtixm)(3--N)/n exp (-
(3.26)

xm/n

f(t + 1) exp )(,m/nt dt,

provided that (3.14) holds. According to Lemma 3 the functionf(t + 1) is analytic
for larg t[ < n(1/2 + 1/n), and satisfies (3.20) as uniformly in this sector.
Moreover, f(1) 0, sof(t + 1) tO(l) as 0. Now it is easy to see by rotating
the path of integration in (3.26) that the integral in (3.26) can be continued
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analytically from the sector (3.14) to the sector (3.25) and that it is x-2m/no(1) as
x" uniformly in (3.25), (cf. 3, p. 49]). Combining this result with (3.26),
(3.15) and (3.2) we obtain (3.24) as x oe uniformly in (3.25). The constants dv
are multiples of the by of Lemma 1. A recurrence formula for them may be found
by substituting (3.24) and (3.23) in (1.1).

Remark. The method used above also may be used to obtain asymptotic
expansions of

fc "(-I1F(mjs a)zS ds,
j=O

where mo,
stants.

m,_ are positive constants and ao, "", a,_ are complex con-

4. The asymptotic expansions for the fundamental system. From Theorem
and the formulas (2.12) and (2.6) we easily obtain the asymptotic expansions of the
solutions Yj,h(X) defined in 1. We use the notation of 1. If m 4= 0, + 1,...,
+__(n- 1), then h=0 and j=0,...,n- 1; if m= +1, +_2,..., +__(n- 1),
then j and h are integers satisfying (1.10). Further we use E(x) defined by (3.23).
Then we derive the following result.

THEOREM 2. Define
(4.1) c rc-"(2i) exp {1/2n(n 1)ri/m}.
Let be a constant such that 0 < < ft. Then the following asymptotic expansions
hold uniformly as x in the indicated sectors"

(4.2) Yj.h(X) C(_2i)h e-j(h+ 1)ri/m E(x) + c(2i)h ej(h+ 1)ri/m E(xe-Z(h+ 1)i/m)
in

(4.3) -rc + e =< arg (m-nxm) (2h + 3)rt e,

except in the case rn +_1 and j O, h n 1;

(4.4) yj,h(x) c( 2i) e- j(h + 1)i/m E(x)
in

(4.5) -7z + e =< arg (rn-nxm) (h + 1)r e;

relation (4.4) also holds in (4.3) in the case m +__ 1, j 0, h n 1

Yj.h(X) c(2i)h ej(h+ 1)ri/m E(xe-2(h+ 1)rci/m)(4.6)
in

(4.7)

(4.8)

ill

(4.9)

(h + 1)r + e __< arg(m-"xm) < (2h + 3)re e;

YJ’h(X) c(2i)h ej(2p-h- 1)rci/ml P -h
1

E(xe_2pri/m

+ 1
(2p 1)re + e < arg (rll-nxm) -< (2p + 3)re e
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for all integers p with p <= -1 or p >- h + 1;

(4.10) YJ,h(x) c(2i)h(p 1
eJ(2p_h_ l)ni/mE(xe_2pni/m)

h
in

(4.11) (2p 1)7 + e =< arg (m-"x") _< (2p + 1)re e

for all integers p with p < 0 or p > h + 1.
Proof Suppose (4.3) holds. Then we apply Theorem 1 to the functions on

the right-hand side of (2.12) and determine the dominant terms. For k 1, ---,
n-h-2wehave

(4.12)
since

E(xe2ti/m) o(1)E(x) or o(1)E(xe2"- h- 1)rci/m)

-rt + e _<_ arg (m-nxm) < arg (m-nx e2ki) 2rt,

arg (m-nx e2kni) if- 2rt _<_ arg(m-"x e2(n-h- 1)i) (2n + 1)rt e.

From this result and (2.12) and (3.24) we deduce

(4.13) Yj,h(X) Co(j, h)E(x) + c,_ h_ l(J, h)E(xe2("-h- 1)i/m)
in (4.3) except in the case m + 1, j 0, h n 1. Now (3.23) implies

(4.14) E(xe2,i/m) (_ 1)n- en(n 1)i/mE(x)"

From (4.13), (4.14), (2.11) and (4.1) we deduce (4.2) on (4.3) except in the case
m +__ 1, h-- n- 1, j 0. In the exceptional case the right-hand side of (2.12)
consists only of Co(0, n 1)E(x). Hence (4.4) holds in (4.3) in the case m _+ 1,
j=O,h=n-1.

Now we exclude the case m= +l,j=0, h=n- 1. Then 0=<h=<n-2
by (1.10). Consider the sector (4.5). There we have

(h + 1)t + e _< -arg (m-"x" e-2+ 1)i) =< 2nrc- arg (m-"x’)- 2rt =< (2n 1)ft.

Hence by (3.23) the second term in the right-hand side of (4.2) may be discarded in
(4.5), that is, (4.4) holds in (4.5).

In (4.7) we have
n + e =< arg (m-"x e- 2(h +

(h + 1)re- e =< 2e + arg (m-"x’)

=< 2nrc + arg (m-"x" e-2(h+ 1)ti)_ 2(re- e).

From this we deduce that the first term in the right-hand side of (4.2) may be dis-
carded in (4.7), that is, (4.6) is valid in (4.7).

Now suppose (4.9) holds and p >= h + 1 or p =< -1. Then we use (2.6) and
expand the terms yj,(xe-2prci/m) by means of (4.4) if k => 2, and by means of (4.2)
if k 0 or 1. This gives

Yj,h(X) c(2i)h e(2p-h- 1)ji/m- P 1
E(xe- 2pri/m)

h
(4.15)

+ e2i/E(xe-+/’) +
h 1

e4Ji/mE(xe 2p+ 2)ti/m)l
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except in the case h 0 and in the case n 2, m _+1, h 1,.j 0. In these
cases we omit the last term in (4.15), that is, (4.8) holds. In (4.9) we have
[arg (m-"x" e-ZPi)[ _<_ r or ]arg (m-"x e -2(p+ 1),a)[ =< r. If n >= 3, then in (4.9),

n + e =< larg (m-nx e -2tp+ 2)i)1 =< 5n e < (2n 1)n- e.

Hence the last term in (4.15) may be omitted in (4.9) if n > 3, that is, (4.8) holds.
If n 2, rn g: _+ 1, then h 0 according to (1.10) and so (4.8) holds again.

It is easy to see that in (4.11) we may discard the last term in (4.8), that is, (4.10)
holds.

Remark. Theorem 2 gives the asymptotic expansions of yj,h(x) in overlapping
sectors with vertex x 0. The expansions of any other solution of (1.1) can be
found by expressing this solution as a linear combination of y(x e-2jVm), j O,
1,’’’, n 1, and then applying Theorem 1.

The constants ck(j, h) in (2.12), defined by (2.10), are the Stokes multipliers
for the yj,h(x) with respect to the fundamental system y(x e- 2ji/m),j 0,.’., n 1.
The last system is uniquely determined by the condition that the jth solution is
asymptotically equal to E(x e-2j/m) as x oo in

--z + e =< arg (m-nx e-2jti) (2n + 1)r e

or in particular for arg (m-nxm) (n + 2j)r. This easily follows from Theorem 1.
Thus the Stokes multipliers for this system are uniquely determined.

Ifa solution of(1.1)is expressed as a linear combination of the solutions yj,h(x),
then its asymptotic expansion may be obtained by applying (2.6), (2.12) and
Theorem 1.

5. Another fundamental system defined by asymptotic properties. In [6]
Turrittin gave a fundamental system of solutions A(x),/, =-[(n- 1)/2],

[(n 1)/2] + 1,..., In/2], of (1.1) such that

(5.1) Au(x) E(xe2uni/m)

as X ( uniformly in

-(In/2] + 1)r =< arg (m-"xm) < ([(n 1)/2] + 1/2)re.

Here [q] denotes, as usual, the largest integer which does not exceed the given real
number q. Further n and m n are assumed to be positive integers in [6].

Turrittin used this system to obtain unique Stokes multipliers for the y(x).
However, these multipliers appear to be more complicated than the unique
multipliers ck(j,h), defined in (2.10), for the yj(x) with respect to the system
ff(Xe- 2jri/m).

Here we first determine these functions Au(x) in the more general case of
arbitrary m, other than m n or 0.

THEOREM 3. Let the constants 2o, 2 "’", 2, be defined by

2jri/m)(5.2) I-I (1 x e 7.ix2, 7o 1,
j=o j=o

7, (- 1)" e -"<"- 1)ri/m
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and definefor integral values ofla"

(5.5) Au(x 7j)7(xez(" + j)i/,,) if <= tt <=
j=0

Then (5.1) holds as x uniformly in

.[or any constant with 0 < rc/2.
The functions Au(x), -[(n 1)/2] =</ < [n/2], are the only solutions of(1.1)

satisfying (5.1) in (5.6).
Proof First suppose that n/4] + _</ =< In/2]. Consider values of x with

arg (m-"x’) (n 2/)7r, because the right-hand side of (5.1) is then as small as
possible. These values of x satisfy (5.6) since

0=<n-2/=<n-2n/4]-2=<(n- 1)/2].

We may write any solution Au(x of(1.1) in the form
[(n 1)/2]

Au(x jy(xeZu + j)=i/m).
j= In/21

If arg (m-"xm) (n 2/)r, then we may apply Theorem to each term on the
right-hand side, since 0 < n 2[n/2] =< n + 2[(n 1)/2] _< 2n. We deduce from
this theorem that (5.1) holds if, and only if, all .i’s vanish except 0 1. This gives
(5.3), and Au(z satisfies (5.1) in (5.6) by Theorem 1. Next suppose that 0 =</ =< [n/4].
We write a solution Au(x of (1.1) in the form

u [(n ])/4]

Au(x jy(xeZu +

U [(n )/41

For arg(m-"x")= [(n- 1)/217t we may apply Theorem to each term on the
right-hand side, because

0 =< ([(n- 1)/2] 2[(n 1)/43r < arg (m-"x" ez(u+j)i)

=< (2n 2[(n 1)/4] 2 + [(n 1)/2])rc =< 2nrc.

We then deduce that (5.1) holds for these values of x if, and only if, eo 1, ej 0
for j < 0 and j > [n/2 2/ because for these values ofj either

or

0 =< arg (m-nx e2(u+ j)i) arg (m-"x e2"i) 2rt

2nr => arg (m-"x" e2u+j)Ei) 2mr arg (m-"x" e2Ui).
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Hence
In/21- 2

(5.7) Au(x) 2 j(X e2(U+J)ri/m), O0 1.
j=O

Further we deduce from Theorem 1 that (5.1) holds in

(5.8) -2p7 __< arg (m-"x") =< ([(n 1)/2] + 1)re

since in this sector

arg (m-"x e2([n/2]-u)ri) 2nrc arg (m-"x" e2"i) 2e.

From (5.2) we have

j=O j=0

Using this equation and (1.7) and (1.6) we find that

?j.(xe2j’i/’’) (2i)"-
j=O

(5.9)

fctnI F(1 + s-- )} m-nsxmSds O.
kj=O

This result is substituted in (5.7), using /o 1. We find

[n/2]- 2
(5.10) Au(x Z (oj- "j);(xe2(u+j)ri/m) j;(Xe2("+J)ri/m).

j= j=[n/2]- 2tt +

To the last term in this formula we apply Theorem 1 with the definition (5.2) and
(4.14). Then

(5.11) yn(Xe2(u + ")i/m) E(xeZui/m)

on the part of (5.6)complementary to (5.8).
Now we consider (5.10) in

(5.12) arg(m-"xm) -(2p + k)rc

for k 1, -.., [n/2] 2/1. In this event

arg (m-"xm) + 2(p + k) krc, arg (m-nxm) + 2( + n)rc (2n k)7.

In the case k 1 we see from Theorem 1 and (5.11) that (5.1) holds in (5.12) if
and only if el 71. Then (5.1) is valid in

(5.13)

By applying the same reasoning for k 2, ..., In/2] 2p successively we find
that (5.1) holds on (5.12) and consequently in (5.13) if and only if ek 7k. The
result is that Au(x) has to satisfy (5.5) and that then (5.1) holds in (5.6).

For [(n !)/4] =</ < 0 the proof is similar. We consider
+ [n/4]

Au(x
[n/4] +
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The condition (5.1) for arg (m-nxm) [n/2]rt is satisfied according to Theorem
1 if and only if fir 0 for j > n and j <= n/2] 2it, ft, 7,- In the same way as
above using (5.9) we deduce the relation (5.5). Relation (5.4) follows in the same
way as (5.3).

COROLLARY. From (5.5) and (5.9) we deduce that

(5.14) Au(x)=- 7j(xe2(u+j)ri/m) if
In/2] 2u +

Using Theorem 3 and (2.11) we may express the solutions of the fundamental
system Yj,h(X) of 1 in terms of the solutions A,(x). The result is contained in the
following theorem.

THEOREM 4. Let Co(j, h) and 70, "", 7, be defined by (2.11) and (5.2). Then

In/2]

(5.15) Y,h(x) co(j, h) o,(j, h)Au(x),
U [(n- )/21

where

(5.16) u(J,h) =0 if -h <= It <-_ -1;

(5.17) eu(j, h) -1"" (It+n-r+h)7r exp{-2j(n + It- r)rci/m}
7, r=o h

/f [(n 1)/2] N p N min {-- [(n 1)/2] + h, h 1

(5.18) au(j,h) ’ {+n-r+h)7 exp {-2j(n + - r)i/m}n 2 + 2n-In h

-[(n- 1)/2] +h+ N# -[(n- 1)/4]- 1;

(5.19) eu(J, h)=
# + hih

exp (- 2j#i/m),

/f-[(n 1)/4] =< It __< -h 1 and/f0 __< It =< In/4];
2,-t,/21-1

(5.20) ,(j, h) 2 7 exp { 2j(It r)rci/m},

if In/4] + 1 <__ It <__ [n/2].

Proof. From (2.10) and (5.2) we deduce
n-h-1

(5.21) Z
k=O

Ck(j’ h)xk c(j’h)t"-II Xe-2kni/m)} (1 xe-2jri/m)-h-1

0(h+r) 2J’i/mx.CO(j, h) 7gx e-
g=o h

Hence

(5.22) Ck(j, h) co(j, h) 7
r=0

ifO<_k<_n-h-1.

h +k-rk- r) e-2j(k-r)ri/m
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By expanding the last factor in the second term of (5.21) in a series of descend-
ing powers of x we obtain, in the same way,

(5.23) Ck(j, h) -Co(j, h)
r=h+l+k

h + k- r) -2j(k-r)ni/mY
h

e

when 0 N k __< n h 1. Equations (5.22) and (5.23) remain valid for
k>n-h- lifweputck(j,h)=0fork>n-h- 1.

Next we consider the expression

(5.24)
co(j,h)

-h-1

u [(n-
+ e

,=0/ h

According to Theorems 2 and 3 the parts of (5.24) on each side of the first minus
sign have the same asymptotic behavior in 2[n/417r < arg(m-"x’) =< 2[(n 1)/4]rr.
Therefore we may expect that the difference can be written as a combination of
A,’s with / > In/4] and # < -[(n- 1)/4]. Using (5.1.4) and (5.4) we see that
(5.24) equals

co(j,h) #= -[(n- 1)/4] k=[n/2]-#+ #=0 k=#

#+h
h

e- 2ljni/mTk_ (xe2ki/m).

Changing the order of summation in these sums, and performing elementary
calculations, using (2.12), (5.22) and (5.23), we obtain the result formulated in
Theorem 4.
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ON THE APPROXIMATION OF SOLUTIONS OF
ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

IN TWO AND THREE DIMENSIONS*

ROBERT P. GILBERT? AND CHI YEUNG LOS

1. Introduction. In this paper we shall develop a constructive approach to
solving boundary value problems for elliptic partial differential equations in two
and three variables with analytic coefficients. We shall consider only bounded
regions D which are Lyapunov and starlike with respect to the origin. Such regions
we shall refer to as being appropriate.

For the case of two variables we consider, in particular, the equation

u
(1.1) E(u) Au + a(x, y)CxU + b(x, y)y + c(x, y)u O,

whose coefficients are real, analytic in D + cD and in addition we take c(x, y) <__ O.
Furthermore, we assume that these coefficients may be holomorphically continued
to (D + cD) x (D* + D*) in t2, which permits us to transform (1.1) to an associa-
ted complex-valued hyperbolic equation,

(1.2)
Uzz, + AUz + BUz, + CU O, B A,

Z+Z* Z
U(Z, Z*) =_ u

2 -i
where Z =_ x + iy, Z* =_ x iy, (Z, Z*)e (D + cD) x (D* + D*). See also the
monograph by one of the authors [3, Chap. III]. (Note. Z and Z* are conjugate if
and only if x and y are real.) The function theoretic methods of Bergman [1] and
Vekua [11] show how to represent a general solution of(1.2). In the next section we
shall show how these representations can be used for a constructive approach for
solving the Dirichlet problem for (1.1) with data

(1.3) u- (t) f(t) with t cD,

and wheref is a continuous (real) function of the point t on OD.
For the case of three variables, we consider differential equations of the form

(1.4) Au + F(x, y, z)u O, F(x, y, z) < O,

where F(x, y, z) is real for real x, y, z and in addition is an entire function of three
complex variables. These conditions may be relaxed to F being holomorphic in a
suitably large polycylinder as will be clear from our development. The solutions of
(1.4) have a representation in an integral form, which resembles the Whittaker-
Bergman operator for harmonic functions of three variables. This operator was
first discovered by Tjong in her dissertation [10]. For the purposes of solving
boundary value problems it is necessary to show that this operator is invertible

* Received by the editors March 3, 1970. This research was supported in part by the United States
Air Force Office of Scientific Research under Grant AFOSR 1206-67.

" Department of Mathematics, Indiana University, Bloomington, Indiana 47401., Department of Mathematics, Michigan State University, East Lansing, Michigan 48823.
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however, this was not done in 10], since that work was primarily devoted to study-
ing the analytic structure of solutions to (1.4). We are able to show in 3, that
Tjong’s operator is invertible. By this we mean if D is an appropriate domain there
exists a unique harmonic function H(X) in D (see (3.10)) (and hence a unique
B3-associate of H(X) given by (3.13)), which corresponds to a regular solution of
(1.4) in D. This is accomplished by using a new inversion of the Whittaker-Bergman
operator [1] to obtain a Fredholm integral equation for the harmonic (3.40).
Having shown that there exists a unique harmonic function for each solution of
(1.4) in an appropriate domain, we are strongly motivated to use the Tjong opera-
tor to obtain a complete system of solutions of (1.4) with respect to uniform con-
vergence.

Remark. If a solution of u(x) is of class c2(D -+- 3D), then it may be shown that
the inversion is possible on D + c3D.

2. Two-dimensional boundary value problems. Both Bergman [1, pp. 10-17]
and Vekua [11, pp. 54-58] give integral representations for (1.2) and hence for (1.1).
Bergman’s representation for solutions of (1.2) is of the form

U(Z, Z*) exp A(Z, S)dS g(Z) + . 1)
(2.1) z z

"fO fO "’’fo g(Zn’dZn’"dZl1’
where g(Z) is taken to be analytic in D + t3D. The functions Qt")(Z, Z*) are defined
by

(2.2) Q(")(Z, Z*) -"j’o* P(z")(Z, S) dS,

where the P2")(Z, Z*) are defined recursively by the system

(2.3) p2)= -2F -2(Az- AS + C)

and

(2n + 1)P(2n+ 2) 2 P(z2n) + , p(2n)

(2.4)
+ F P(" dZ* n >= 1.

Here (I)= (I)(Z) is an arbitrary analytic function of one complex variable in
D + t3D.

For the situation where g(0) 0, Bergman shows in [1, pp. 15-17] that (2.1)
may be rewritten as

(2.5)
u(z,z*)

z, Q(")(Z, Z*) z d-]exp [--fo A(Z, {)dl [g,Z) + x 2": 1)fo ,Z-," Xg(’,
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It is not explicitly stated in [1] that when g(0) 4: 0, the representation (2.1)
is also a solution of the differential equation (1.2). However, several examples are
given there that imply this must be the case. In order to demonstrate that this is
true we need only consider the special case with g(Z) 1 and A(Z, Z*) =_ O. Here
we have

(2n)!
v(z, z*)= l+

and substituting this directly into (1.2) and using (2.2)-(2.4) yields the desired
result.

The function U(Z,Z*) defined by (2.1)-(2.4) converges uniformly in any
relatively compact subset of (D + c3D) (D* + c3D*).

It is not difficult to show that the representation (2.5) of Bergman is actually
identical to Vekua’s representation of solutions of (1.2), namely,

(2.6)
U(Z, Z*) R(Z, 0; Z, Z*)g(Z) + {-Rx(t, 0; Z, Z*)

+ B(t, O)R(t, 0; Z, Z*)}g(t) dr,

where R(, *; Z, Z*) is the complex Riemann function. For details of this fact see,
for example, [3, Chap. III]. Consequently, the Vekua approach of singular integral
equations must also work for the Bergman representation. In the next section we
establish this fact directly by estimating terms in (2.5); as a by-product of this
effort we arrive at a sequence of approximating singular integral equations for
Vekua’s integral equation. This approach, consequently, provides us with a
constructive method for solving boundary value problems when the Riemann
function is not known.

2.1. A singular integral equation for the Dirichlet problem. There exists
a unique real function #(t) of the point on OD, continuous in the H61der sense,
such that g(Z) may be expressed as

f tlt(t) ds
z(2.7) g(Z) ot-Z’

where ds is an element of arc length on c3D at (see, for example, [8, p. 192]). By
substituting the representation (2.7) into (2.5), and taking x and y real, we have

u(x’ y) Re (II(Z) fo tla(t)[ --Z + 11= Q(11)(Z’Z) ff (Z
+ 1) t-

(2.8)

where/o(Z) --exp A(Z, a)dr
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Now, let Z x + iy to OD. Then, because of the limit properties of
Cauchy integrals [8, p. 42], we have

f(to) Re /o(to) io#(to)’o + t#(t)
t- to

(2.9)
F Q")(t, to) o (to )"-

d( ds

where t’(s) dt/ds. Introducing the functions

A(to) Re [itoo(to)],
B(to) i Re too(to)],

we see that (2.9) can be written as

f(to) A(to)U(to)+
tr ),Dt o

(2.10)

where

(2.11)

and

tflo(to). r(to)
Fl(to, t)= Re (-_-)- iz(t- to)

{ L ffI(t)Q(")(t’)fl(t-)"-I }(2.12) F2(to,t)= Re B 1) t-
d

n=l

Equation (2.10) is a singular integral equation. According to general theory
I8], a unique solution of (2.10) exists if we can show both F(to, t) and Fz(to, t)
have the form

(t, to)
(2.1.3) F,(t, to) I, 2,

It- tol"
where 0 =< i < 1 and i(t, to) is a function, continuous in the H61der sense, of the
two points to, of the curve 8D. In this case the second and third integrals of (2.10)
correspond to compact integral operators 7, p. 32], and it is then easy to show
that the index of(2.10) is zero [11, p. 125]. It follows from Vekua’s theory that (2.10)
may be reduced to a Fredholm integral equation 11, p. 129]. To this end, we obtain
estimates for Fl(to, t) and Fz(to, t).

It is obvious from [11, p. 125] that F(t, to) has the form (2.13).
For F2(t, to), we recall the hypothesis that D is starlike and use the estimate

El, p. 14]

2"+l(n + A 1)(n + A 2).-. (1 + A)C
(2.14) [P2,(Z, Z*)I =< 1 ([Zl/r)]"r"- 1- 3... (2n 1-’
where A 2Cr(1 + r), and we assume the coefficients of (1.1) may be continued
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to a bicylinder {Izl r} x {Iz*l r}"
2,+ lrZ(n + A 1)(n + A 2).-. (1 + A)C

[Fz(t, to)l _<- I/o(to)l 22 n),,=1 "(r- [tol 1.3...(2n- 1)

(2.15)

(2n)!
(n- 1)!n!

lnl t-Ito]

<__ rZClfflo(to)l 2"ltol -l(n + A- 1)(n + A 2)... (1 + A)
n=l (r Itol)"(n 1)!

t-- toIn --------t-- o=- Q(to) In --where Q(to)converges uniformly for

2to <_0<1.

It follows that Fz(t, to) also has the form (2.13) for t, to e 3D, if the radius r of the
above bicylinder is sufficiently large.

2.2. Conclusion. An approximate singular integral equation for (2.10)
may be obtained by replacing Fz(to, t) in that equation by

{ }(2.16) FU)(to, t) Re
1) d

n=l

This leads to an equivalent Fredholm equation whose kernel Km(to, t) approxi-
mates the corresponding Fredholm kernel K(to, t) associated with (2.10) in the
following way"

There exists an , 0 < 1, such that, as N ,
I(to, t) (to, t) It tol 0,

uniformly on #D x #D. Indeed, by applying the Poincar6-Bertrand formula 8, p.
57] to the result, one obtains, by operating on the truncated version of (2.10) with
the operator (see [11, p. 129])

2. 7) A(to). {t) fo dt
t D o

the Fredholm equation

(2.18) IX(to) + f KN)(to, t)lz(t) ds F(to),
#D

where

(2.19) F(to) =-rcZltol2l(to)]2 (to)f(to) rci 0 t- to_]
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and where the truncated Fredholm kernel is given by

1 [A(to)KN)(to, t) 21tolZl/o(to)l 2 Re
ftI(t)) t’B(to)
( t- oj i(t- to)

nt .ID [.t-- r) Z-- o

B t_o f Fzm "r t) dr-]
t o r to _]

3. Three-dimensional boundary value problems. In I10, p. 548] Tjong
showed that it is possible to generate solutions of

(3. !) Aq9 + F(x y, z)q9 O,

where F(x, y, z) is an entire function in S3. In order to present her result we first
introduce the following notations:

Z= 1/2Iy + iz],

z* 1/2[-y + iz3,

w (1 t:)u,
3.2)

u X + Z + -IZ*,

1=X,

3 =X +2-Z*.

Then (3.1) may be written in the form

(3.3) 2
X2 + F(X, Z, Z*) O,

and there exist solutions of (3.3) of the form

flf dtd
E(X, Z, Z* , t)f(w, )w/1 2 ,(3.4) (X, Z, Z*) Tf

1 =1

where 7 is a rectifiable curve joining 1 to + 1, provided/(1, 2, 3, , t)
E(X, Z, Z*, , t) satisfies the partial differential equation

2 2 2 2 2 2

(3.)
0.+ (1 t2)

It is assumed that f(u, ) is holomorphic in a product space {lul a} x {1 =< I1 + },
0<e,< I.
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She goes on to show that/ has a series representation of the form [9]

(3.6) /2(1, 2, 3, , /) 1 -" Z t’2nunp(n)(l’ 2, 3, ),
n>_l

where the pC,) are defined by

(3.7) p(1,,+ 1) 1 .fn(n) n(n) ,(n)
U22 F332n + 1 ’ell

+ + + 2p2) + 2p]"3) 2p)3 +/p(")}

and

p(n+ 1)(0 2, 3, ) O.

It is also shown [10, p. 549] that (3.4) has the alternate representation

O=rf

(3.8) -- 1 f12il=lg(u’)
d+ 2 2, 3, ) (U S) lg(s ) d

where

dt
(3.9) g(u, ) f(w, ) /1 2

The expression (3.8) is reminiscent of the series solution (2.5) which occurs in the
two-dimensional case.

Let us proceed to rewrite (3.8) by replacing the integral of g(u, if) by the
harmonic function it represents, i.e.,

fl g(u, ’)c"H(X, Z, Z*) (B3g)(X Z, Z*)
.1 =1

(We remark that B3 is the Whittaker-Bergman operator [1], [3].) To do this we
wish to use an integral representation for B-1. Bergman [1] has given a repre-
sentation for B-1 as an integral over the characteristic space X2 ZZ* 0;
however, such an inversion formula is not of use to us in formulating a real bound-
ary value problem. In [3] Gilbert gives a representation for B3-1 as an integral
over a sphere for the case where the domain of B;-1 is restricted to harmonic
functions regular at infinity. It is of the form

(3.11) (B- 1J)(u ) dO’ dqg’R sin 0’
(u’ +u)j(X,),
(u’- u)

where g(u, ) (B- 1J)(u, ), J(X) J(X, Z, Z*), and the integration is taken over
a sphere IXI R, whose surface is entirely inside the domain of regularity of J(X).

If H(X) is a harmonic function, regular about the origin, we may modify the
representation (3.11) to handle this case also. If H(X) is regular about the origin,



24 ROBERT P. GILBERT AND CHI YEUNG LO

then J,(X)--aH(Xa2/r2)/r is by Kelvin’s transformation a harmonic function
regular at .2 Let H(X) be defined, for r > 0 sufficiently small, by the series

+
anmll(3.12) H(X)

(n + m)*
imr"e’(cs o)eim

n>_0

where the P(x) are associated Legendre functions. Then if h(u, ) is a holomorphic
function defined by

+n

(3.13) h(u, ) anmnm,
nO

and u is the auxiliary variable given by (3.2), we have [3, p. 49]

(3.14)
H(X) (B3h)(X).

Likewise, if j(u, )is defined by

(3.15) j,(u, )
(n- m)l(n + m)nO

then 3, p. 53]

J.(X) (B3j)(X)
(3.16)

+n

0 anm im ) -n-1

(n +) P(cos O)eim

The operator represented by (3.11) has J,(X) (as defined by (3.16)) in its domain;
and the image of J,(X) is the j,(u, ) given by (3.15). We may indicate this by

(3.17) j,(u, ) B 1-1H(Xa2/r2).
r

We wish to exploit (3.17) to obtain a representation of B for an H(X) given by
(3.12). To this end we note that

F(n- m+ 1)F(n+m+ 1)
n + F(n + l)

(3.18)
22"+ 1B(n- m + l, n + m + 1). B(n + , ),

where B(x, y) is the beta function. We conclude, using formal arguments and an
integral identity for the beta function, that

+" ,[)2anmSnm 1) f[h(s,() [ m n-m(1 )n+md
nOm=-n

(3.19) (_
+ 1). 22n+ n+ 1/2(1 fl)-1/2 d

0

1 f0i a )) d da
2s J 4fl(1 2 e)s’ (1 fl) e(1 -)"

We choose a > 0 sufficiently large so that the region D is contained in the sphere S, {IXI < a}.
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Consequently, if H(X) is given by (3.12), we may formally represent B operating
on H(X) by

fo foa dflx/ dq)’ sin 0’. H(X’a2/R2)(B-’H)(s, ’) da
V/l_ fi

(3.20)
Ix’l=R

lZsefl(1-oOfi+a]dO,},--where

--X’+ 1- Z’+-I 1- Z*’,

and {X’IIX’I =< 1/R} D. An alternate, and perhaps preferable, approach would
be to introduce the "beta-function operation" on H(X) first and then use B3 on
the reflection of this harmonic function through the unit sphere. However, since
(3.20) is suitable for our purposes, we shall refer to this as the representation for

B-1 when H(X) is of the form (3.12).
Returning to (3.8), we assume temporarily that this is a general representation

for solutions in an appropriate domain D, and we take ]XI =< R- as a solid sphere
entirely within D. Then we may rewrite this as

(3.21)

> ft {P(")(I’ 2’3’()(X) H(X)+
,,= 2rciB(n, 1/2) 1

(u s)"-’
-a dflx/ 2rt

dqg’ sin O’H(X’ae/R2)
22 da

1 fl Ix’I=R0 --Interchanging orders of integration by Fubini’s theorem yields

(X) (H)(X) =- H(X) + ,,
B(n, 1/2)

dq)’ dO’ sin O’

(3.22)

"{H(X’a2/R2)fII=, P(")({l’{i’’)D(u’a;n)%}
where the coefficients D(u, ;n) are independent of either H(X) or F(X) and are
defined as

(3.23)

with

(3.24)

D(u, gt n) =- (u S) 1A(s, t) 63s,

f]L fj dflw/-fi [12s fl l e gt + a ]A(s, ) d
w/1 ._- [4sefl(1 e 22
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We now turn to the Dirichlet problem associated with (3.1). It will be shown
in the corollary to Theorem 2 that if the Dirichlet data is sufficiently smooth then
there exists a unique harmonic function H(X), which is mapped by T onto the
unique solution of the Dirichlet problem for (3.1). Using this result we may give
several schemes by which solutions to the Dirichlet problem may be constructed
and approximated. One method depends on the construction of a complete system
ofsolutions for (3.1). This can be accomplished by using the corollary to Theorem 2,
and a recent result of du Plessis 9] which showed that the harmonic polynomials
are complete (with respect to the uniform norm) for simply connected domains in
0". Indeed, one obtains in this way the following theorem.

THEOREM 1. Let h,,m(X), m 0, _+1, -t-2, ..-, _+n; n 0, 1, 2,..., represent
the tesseral harmonics; then thefunctions

(3.25) n,m(X) (’hn,m)(X),
rn O, + 1,..., +_ n; n O, 1, 2,... ,form a complete system of solutions for (3.1)
with respect to unijbrm convergence in D.

Proof Let gf[D] and #ID] be the space of functions in Cd[D + cD] which
satisfy respectively Aq9 0, and AO + FO 0 for X D. Let O(X)e #[D] not lie
in the space spanned by the O,,,,(X) as given by (3.25). If Do is an arbitrary domain
such that o D, then it is well known that (X)e (d[Do]. Hence, if Do is also
appropriate, using the corollary to Theorem 2 we conclude that there exists a
unique/(X) e ([Do], such that (X) (T/)(X). Since Do is fixed/(X) may be
uniformly approximated in Do by harmonic polynomials. Hence (X) may be
uniformly approximated in Do by the functions O,,m(X), and since Do is arbitrary
we have a contradiction.

Given a complete system of solutions {Oj(X)} there are various procedures for
approximating solutions of the Dirichlet problem. One such method is to approxi-
mate the boundary data as a linear combination

N

(3.26) f(X) Z cj(pj(X), X c3D,
j=l

such that
N

(3.27) max If(X) cjhj(X)l < e
XfD

for e > 0 chosen sufficiently small. Then by the Hopf maximum principle the
approximate solution

N

)(x) y c(x)
j=l

is within an e-approximation of the actual solution in D + c?D.
An alternate procedure is to introduce the Dirichlet inner product for (3.1),

namely,

(3.28) (0, q0) EV(P. Vq) F(pqg] dX,
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and construct by the Gram-Schmidt process an orthonormal system {(I)j(X)}.
The data may then be approximated in terms of a truncated Fourier series

N

j=l

where the Fourier coefficients are given by3

XeSD,

(3.29)
aj (f, qj) ’fv de).

D

The approximate solutions

N

j=l

N= 1,2,.-.

may be seen to converge uniformly in DO D to the actual solution. An estimate
on the error is given in terms of the kernel function

K(X, V)
j=l

namely,

(3.30) ]O(X)- ON(X)I 2 < I]O ’NII 2" K(X,X).
We next turn to the problem of showing that Tjong’s operator is invertible.

Let O(X) be a solution of (3.1) of the class (D + 8D), where D is appropriate.
Then, for any Do D, O(X)e (g2(Do + 8Do). Let Do also be appropriate, and
let us consider the class of harmonic functions in (Do + 8Do). Such a harmonic
function H(X) may be represented as a single layer potential,

f p(y)(3.31) H(X)=
Do IX-YI"

If we substitute in the Whittaker representation for the fundamental solution,
namely,

1 a
(3.32) IX YI 2iJll= N. (X Y)

(where N(() is the isotropic vector introduced earlier in u N. X), we obtain the
following expression upon interchanging orders of integration:

1
P(Y)N.(x Y)

d(3.33) H(X)
=x Uo

The change of orders of integration follows by Fubini’s theorem. The representa-
tion (3.33) suggests that an alternate representation for B might be given as

(3.4) (l)(x)
o

The differentiation 8/8v is in the inner normal direction.
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Returning to (3.8)-(3.9) and using H(X) (B3g)(X) yields

O(X) (Tf)(X)

(3.35) H(X) + ,,,
2iB(n, I =1

where

(3.36} [(N. Y u)"- (N- Y)"- ’] log (u N. Y}

(N. Y)"-v--,

or upon interchanging orders of integration,

(3.37) O(X) H{X) + P(Y) 5 P(X, Y;) do)r,
Do l

where

(3.38) P(X, Y; () . T--P("}{{" ){I).(u" N )
-’\", Z!

(3.40)

q’he function O,(u; N. Y) is a universal function, whereas P(X, Y; () depends merely
on the coefficient F(X) of (3.1).

Let us consider the Neumann problem for (3.1), t3//#Vx =f(X) for X e (3Do.
If we define the kernel

P(X, Y ()-,(3.39) (X, Y)
{1=1

then it is tempting to reformulate this Neumann problem as the Fredholm integral
equation

p(y) K-- V dtyf(x) -,{x) +
.o

+ p{Y),(d(X,Y)dcoy,
Do

where wc have replaced H(X) by (3.31) and computed the residue as X --+ Do.

To verify this operation we must investigate the convergence properties of

P(X, Y ’) more closely. To this end wc recall that on page 549 of[10] Tjong gave the
following estimates for p(n)({ ), where

v=l V
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Since F(X) was entire, p may be taken arbitrarily large. Instead, we choose first
Ro and then take such that 0 < r < 1. With this choice of c we may majorize
P(X, ’) in terms of the function

(1 121)--3/2 )
The estimate (3.4) permits the following majorization

P(X, C) <<
(1 tiN. ( X)])3/

+
(1 tiN. 1)/

Log IN. (X Y)I

(3.42)

Since r > 0 can be made as close to zero as desired, the only term to be inspected
is log IN. (X g){, whose normal derivative is majorized by IN-(X g)l . For
each fixed value of ({ 1), this latter term has just simple, polar, point singu-
larities as X - (?Do. These singularities are integrable and do not contribute to the
residue.

We next check to see whether (3.40) is invertible as an operator equation
p(g). It is well known that the kernel in the first integral of (3.40) satisfies the
suciency criteria for compactness. From our mjorization of P(X, g;cT) as an
analytic function of X, Y and it is clear that the second integral’s kernel also
satisfies our compactness criteria. Indeed the kernel of the second integral has only
a weak singularity. To show that the Fredholm equation (3.40) has a unique
solution we consider the homogeneous transposed equation

This implies that the "double layer" solution

1
X

1
(Y)= fOo "():()d + foo (X),(X, Y)d(o

assumes the boundary value zero and consequently if we extend F(X) to D’ such
that F(X) < 0 and is of class, then the exterior problem has the unique solution
g(X) 0. Since X(X, Y)/av has a weak singularity, it may be easily shown
following the approach of [2, pp. 364-366] that the normal derivative a/av is
continuous across aDo. Hence for the interior problem, O(X) obeys the boundary
condition /v(X)= 0, X e aDo. Since F(X)< 0 in D, it follows immediately
from the identity

[VO. V4, t,/, 23 aX 7Do

that (X) 0 in D, and hence the onl solution to the transposed, homogeneous
equation is (X) 0. We conclude that the Neumann darer(X) of (3.40) is ortho-
onal to each solution of the homogeneous transposed equation, and hence (3.40)
has a unique solution.
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We terminate the above discussion with the following theorem,

THEOREM 2. Let /J(X) he a solution of(3. I) which is in g’(D + ?D) md let D be
appropriate. Then there exists a unique harmonic Junction in D such that /;(X) may
be represented in D as /;(X) (Tf)(X) with,

f(u, )
2re

g(u[1 t2], )_t.,.
where is a smooth curve Jkom -1 to + nol passing through the origin atut
g(u, ) (B]-’ H)(u, ).

I’ro[ The Dirichlet problem for (3.1) with F(X) < 0, X e D, and
+ 8D) is well-posed. This serves to define a Neumann problem for Do D with
Lyapunov boundary 8Do. From the above discussion there exists a unique
solution p(Y) to the integral equation (3.40) arising from such a Ncumann problem.
Hence there exists a unique harmonic function given by (3.31). This harmonic
function is related to g(u, ) by (3.10), and g(u, ) is related to f(u, ’) by (3.9). The
integral forf(u, if) given in the hypothesis is simply the inverse integral transform
for (3.9).

COROLLarY. Let F(X) < 0 in D, let 8D be appropriate, and suppose th.e Dirichlet
data q(X) g(X) is sufficiently smooth. Then there exists a unique harmonic.hnction
H(X) in D such that

-IT f (Blt)(u[1-t2] )17)
in D + 8D.

Remark. This is obviously the case when g(X) is the restriction to 8D of a
ct(D + 8D) solution of(3.1).
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RECURSIVE ALGORITHMS FOR THE SUMMATION
OF CERTAIN SERIES*

M. M. SAFFREN AND E. W. NG"

1. Introduction. In this note we study the computation of the series
Sn .u= o d.p. by regarding it as a solution of an inhomogeneous difference
equation. Here p. itself satisfies the homogeneous difference equation

(la)

or, equivalently,

a,,p,,+ + b,,p,, + c.p,,_ 0,

(lb) p,,+ + b,,p,, + .p._ 0,

where b. b,,/a,, and . c,,/a,,.
An algorithm to sum the series was first given by Clenshaw [1] and has been

more recently discussed by Smith [2], Hart et al. [3, p. 70], Elliott 4], Ng [5] and
Luke [6, pp. 325-329]. The algorithm consists of constructing a sequence {B.} or
{/.}, n N 1, ..., 1 by means of the recurrence

(2a)
or

(2b)

Cn+ 1Bn+a + bnBn + an-1Bn- --dn,

(:.+ B.+ + b.B. + B._ d.
with initial conditions Bn Bn + 0 or Bn Bn + 0. To see how this recur-
rence allows the evaluation of the series, multiply (2a) by p. and write out a "system
of equations," one for each n"

Bn- taM- Pn dNPN,

BN-2aN 2PN- -It- BN- lbN- lPN- dN- lPN- 1,

BN- 3aN 3PN- 2 -It- BN- 2bN 2PN- 2 + BN- 1CN- lPN- 2 dN- 2PN- 2,

B_ a_ Po + BoboPo + Bclpo doPo.
The result

N

(3a) d.p. a_B_po + Bo(aop + boPo)
n:0

is obtained by adding these equations and using (la). Similarly, we have, from
(1 b) and (2b), the result

(3b) dp,,

_
Po + o(Pl + oPo).

n=0
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As we point out below, (2a) and (2b) are only two of many possible forms of a
single difference equation. It is useful to have many forms since one form may be
computationally more efficient than another depending on the particular function
p,. For example, when p, is the Laguerre polynomial L,, use of (2a) requires N
divisions less than does (2b).

The fact that (1) possesses another solution (say, q,) is important. For values
of n for which Iq,I >> [p,I large cancellation error occurs in (3). Elliott [4] obtained
the last result by expressing B, in terms of p,, q, and d,. In the following section we
show that these results follow from the general solution of the inhomogeneous
form of (1 a)"

(4) a,,Ln+ + b,,L,, + cnLn-1 dn.
This approach avoids introducing a new difference equation (such as (2a) and
(2b)) and subsumes the well-known nested multiplication as a special case, as
shown in 3.

2. General solution of the inhomogeneous difference equation. We now
discuss the solution of (4) and show (2a) and (2b) to be two of its transforms. The
general solution of (4)can be written as

where M,, is a particular solution of (4), and and [] are constants. Assuming
d,, 0, n < 0, n > N, we can express the particular solution M, in terms of Green’s
functions, viz.,

N

(6) M,,= 2 G,,,,d,,

where a Green’s function Gk,, is a solution of

a,,Gl.,n+ + bnGk,n

(7) 6. =-(0, k

l, k=n.
Since any @,,, is a solution of the horno2!mcous equatio,s for k /: n, it is only
necessary to find the simplest linear combimti,:,rs of p. and . which satisfy (7).
We find, assuming a. :. O, % 0 tbr all n,

fork<n,kqkPn

(8) G,,
--q,,p, for k _>_._
Sk

where Sk is a normalization constant which satisfies

(9)

and therefore is just a Wronskian, and obeys the recurrence relation

Ck(1 O)
ak-
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Thus with Sk determined by (9) and (10) we obtain

(11.) L,, p,, + flq,, + Pn dkqk q- q,,
k=O Sk

Using (11), we find

(12)

and

1
2 --dkPk"

k=n+ Sk

as (PN + 1Lv PNLu + 1) [3
SN

av(qv+ 1Lu qNLv+ 1) + --dkqk,
SN 0 Sk

so that (11)can also be given the form

(14)

Similarly,

(15)

L. a_u(pu +ILN puLu + ,)% a(qN +1 LN qNLu + 1)P.
SN SN

1
--dkPk Pn Z --dkqk.

k=n+ Sk k=n+ Sk

N1
d

a
PoL p- Lo fi +

k :O ---S kP

{16)
a_

(qoL.__ q- Lo) o,
S-

which, combined with (12) and (13), give

N
aN(17) 2 l---dkPk a-l(L-,Po-- LoP-l)---(LNPN+ L+lPv),

k o Sk S_ SN
N a_

(18) :l--dkqk (L-lqo- Loq-,) au-(Luqz+, L2v+lq2v).
0 Sk S SN

If Ck ak for all k, then Sk is independent of k froln (10) and so (17) and (18)
take on a particularly simple form. We note that there is no loss in generality if we
assume the condition Ck ak--. For were it not true, we could still write (la) as

2k(akPk + "+- bgPk + CkPk-1) 0

and choose 2k to satisfy

(19) c’ :---- 2k6.’ 2k__ ak - ark 1.

With (la) .in this form, (17) becolnes

(17a)
N

dkPk (Co-I 1)Po Lo(coP--1) aIv(LvPN+ L+
k:.:. 0

where CoL :- --[aoL1 + boLo]. + do even when Co 0. Table 1 shows that
condition (19) is satisfied for nearly all the familiar special functions.
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TABLE

Functions

Trigonometric*
Chebyshev
Legendre
Laguerre
Hermite (2"n !)-
Bessel

The summation of trigonometric series
by is also known Goertzel’s
(or Watt’s) algorithm [7].

Assuming now that c, a,_ for all n we see that the algorithm described
in the previous section is equivalent to using (4) in the backward direction with
initial values LN LN+I 0, and evidently (2a) and (2b) are transformations of
(4). In fact, B, L, and B, a,,L,,. These, however, are only special cases of the
general transformation/, #,L,. For the general transformation we have

(20)

and

(21) d,pt, a_ 1B--1-po Bcop_
k=o /-1 o

It might also be noted that (17a), with L, B, or L, B,/a,,, reduces to (3a) and
(3b), respectively.

Finally, we give two examples showing possible choices of #,. First consider
the computation of

N

where the P,’s are the Legendre polynomials with a, n + 1, b, -(2n + 1)x,
c, n. The sum can be computed through any one of the following three recur-
rences

(22) B,_I =-nl 2n+ 1)xB,,-(n+ 1)B,+ + B,-Ln, n=N,..., 1,

(CoB- 1) xBo B1 + do;

[!:n +(23) B,-1
n+l n + 2Bn+I +

B. (n + I)L,, n=N,...,0’
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B,,

Similarly, the sum ,,u= o d,,l,,l,(x), where IL’s are the Legendre polynomials, alld
the l,,’s are the modified Bessel functions, may be computed through any one of the
following three recurrences"

B._.., {-l(2,, + l)xB,
11

B,,= L,, n N,..., 1,

(coB.__

1
B,, (n + 1)L,, n= N,...,0;

]’nB,, [(2n + l)x (17 q-- 1)/’n.Sn+ + dn,

(27) ,, L,/I,, n N,--.. I,

where r, I,, + /I,,.
For (25) and (26), any version of Miller’s algorithm may be used to generate

the sequence of l,,’s; for (27), Gautschi’s [87] formulation of Miller’s algorithm is
most convenient Rr it generates the r,,’s directly.

In this note we have mainly shown that a well-known algorithm can be under-
stood in a more general way. We have not, however, shown how this algorithm
may be significantly improved. It would be most useful to further investigate how
#, should be chosen to minimize errors and save arithmetic operations.

3. Computation of power series utilizing first order difference equations.
Power series are often computed using first order difference equations, and an
analysis similar to the one just presented can be made. We are now interested in
the equation

(28) L,+
-1

The solution of the homogeneous equation is given as
and Po 1. A particular solution of (28) is

(29) M,,= G,a, n> 1, Mo =0, M =a0,
k=0

"- bm is an analogue of the Green’s function described in 2.where G, [Im=+
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The general solution can then be written as

n--1

(30) L,, ep. +
k=O m=-k +-1

One immediate application of these results is the summation of power series
-s For by setting b. x, a,, cN--., Lo 0, forward recurrence yields the2n 0 6nX
result

N

(31)
n=0

We note here, as was similarly noted in 2, that the sum (31) can be evaluated using
different forms of the difference equal.ion (28). Multiplying by #. we obtain

(32) D,,+ bnDn #nan,
n--

where

Dn 14- Ln.
So. if for example we want to sum ,.u=0 c.x"/n!, then with b,, x/(N n + 1),
’, cu-,,, we obtain

N xn

which can al;o be obtained with a,,- cu_,/(N- n)! and b, x. The former is
more convenient since it saves N multiplications.

Aeknow|edgmen. We are indebted to the editor and the referee for helpful
comments.
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TAYLOR’S SERIES GENERALIZED FOR FRACTIONAL
DERIVATIVES AND APPLICATIONS*

THOMAS J. OSLER

Abstract. The familiar Taylor’s series expansion of the function f(z) has for its general term

D"f(zo)(Z-Zo)"/n!. A new generalization of Taylor’s series in which the general term is

D""+f(zo)(Z Zoy"+/F(an + + 1), where a > 0 and 7 is an arbitrary complex number, is examined.
This new series is extended further to a form which includes the familiar Lagrange’s expansion as a

special case. The derivatives appearing in this series are of order an + and are called "fractional
derivatives." Examples of the use of this new series for discovering generating functions are given.

1. Introduction. A fractional derivative D()f(z) is an extension of the
familiar nth derivative D:()f(z) dnf(z)/(dg(z)) of the function f(z) with respect
to g(z) to nonintegral values of n. The literature contains many examples of the
use of fractional derivatives in the solution of problems in ordinary differential
equations 83, partial differential equations [43, [13] and integral equations

The study of the special functions of mathematical physics is also facilitated
by the introduction of fractional differential operators. Consider, for example,
the various representations of the Bessel function Jr(z) of order v. Power series
and definite integral representations are the most common; however, the less
familiar derivative representation

Jv(z) re- 1/2(2z)-D-1/2__
COS Z

warrants further attention. When -v 1/2 is a natural number, (1.1) reveals that
D;--1/2 is the usual elementary differential operator, and thus J(z) is an elemen-
tary function. When -v 1/2 is not a natural number, the operator D 1/2 still
behaves very much like the familiar differential operator from the elementary
calculus. The operation D"D D"+’, the Leibniz rule [9], [10], the chain rule [9],
11 and other generalizations of the manipulations so familiar from the elementary

calculus are valid for nonintegral values of a and b. These manipulations permit us
to find easily many relations for the special functions from representations similar
to (1.1) which would not otherwise seem obvious [7], [8], [9], [10, [113. Table 1
gives a short list of fractional derivative representations for the special functions.

In this paper the Taylor’s series is generalized to include fractional derivatives
and thus provides an additional tool which is particularly convenient for the
study of the special functions through their fractional derivative representations.
There are two equivalent forms of our general result:

(1.2)
. a- og-f(O (O(z)))
k6K

l)an +._ [f()O’(z)[(z Zo)/O(z)]"++ 1:o O(z)"+’

F(an + 7 + 1)
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and

O(z)a’+ i
zd) f()O’()d

(1.2a) a-lo-’f(O-(O(z)o’))
2hi 0()a"++"kK

There are several restrictions which must be imposed on the functions and param-
eters in (1.2)and (1.2a), all of which are listed in the hypothesis of Theorem 4.1.
For the moment, it suffices to notice the following:

(i) The order of the derivatives in (1.2) is an + 7, where n is the integral
index of summation, a > 0, and , is an arbitrary complex number.
(ii) b is a fixed point in the z-plane and {zllO(z)l 10(b)[} defines a simple
closed curve C on which the series (1.2) and (1.2a) converge. O(z) is an analytic
function inside and on C. O(z) has only one zero inside C, located at z Zo,
and that zero is simple.
(iii) o exp(2ni/a), and the finite set of integers K is defined by K
is integral, and arg O(b) < arg O(z) + 2nk/a < arg O(b) + 2n}.
While the general formulas (1.2) and (1.2a) are new, several special cases are

familiar from the literature.
Case 1. Ifa 1, 7 0and O(z) z Zo in (1.2), we have the familiar Taylor’s

series

f(z)= Dnf(zo)(Z Zo)"/n
n-----O

Case 2. We obtain Lagrange’s expansion 16, p. 132] from (1.2) (after an
integration by parts) by taking a 1, 7 0 and O(z) 01(z)(z Zo):

f(z) D 1{ f,(zo)/Ol(zo), O(z)"/n!
n--0

Case 3. If we take a and 7 0 in (1.2a), we obtain Teixeira’s extended
form of Burmann’s theorem 16, p. 131]

0(z) f()0’()
f(z)= E j

Case 4. We obtain the least familiar special case of (1.2) which can be found in
the literature by taking a 1, O(z) z Zo, and 7 arbitrary. It is called the Taylor-
Riemann series:

(1.3) f(z)
D’+bf(z)l=z(z- z)"+

1(n+7+ 1)

This series was first considered formally by Riemann [12] in 1847, in a manuscript
probably never intended for publication. Riemann did not prove (1.3), but used
its structure to suggest a definition of fractional differentiation. The special cases
of (1.3) in which f(z) is e and zp were studied by Heaviside I6, Chap. 7, 8] and
Watanabe [14]. The first critical discussion of (1.3) for arbitrary functions f(z)
was not given until 1945 when G. H. Hardy 5] considered (1.3) as an asymptotic
expansion off(z) and as a series summable Borel to f(z). The first analysis of the
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pointwise convergence of the series (1.3) to the function f(z) in the z-plane seems
to be 9, Chap. 3]. The nature of the pointwise convergence of (1.3) in the z-plane
is given as a special case of the more general formula (1.2) in Theorem 4.1 of this
paper.

If we restrict a to the interval 0 < a _< 1, the left-hand side of (1.2)contains
only the term in which k 0, and we obtain the particularly simple series

f(z)a-
D"--+[f(z)O’(z)[(z z)/O(z)]a"++ 1][z=zO(z)an+

F(an + 7 + 1)

To the best of the author’s knowledge, neither this series nor the more general
series (1.2) have appeared before in the literature.

Finally, a few examples of the generalized Taylor’s series are studied for
specific functions f(z). We find that (1.2) is particularly useful for obtaining
generating functions for the special functions of mathematical physics when these
special functions are represented by fractional derivatives.

2. Fractional derivatives and special functions. In this section we review the
definition of fractional differentiation and give examples of common special
functions of mathematical physics represented by fractional derivatives of ele-
mentary functions.

The most common definition for the fractional derivative off(z) of order
found in the literature is the ’Riemann-Liouville integral" [2, [3], [4, 5, [7, 8,
[9], [10], 11], I13]., [14]:

Df(z) F(-)- f(t)(z t)--1 dt

where Re(a) < 0. The concept of a fractional derivative D)f(z) with respect to
an arbitrary function g(z) was apparently introduced for the first time in the
author’s papers [9],[10], while the idea appeared earlier for certain specific
functions g(z) in [4]. The most convenient form of the definition for our purposes
is given through a generalization of Cauchy’s integral formula. A thorough
motivation for the following precise definition is found in [9], 10].

DEFINITION 2.1. Let f(z) be analytic in the simply connected region R. Let
g(z) be regular and univalent on R, and let g- (0) be an interior or boundary point

of R. Assume also that ,f(z)dz- 0 for any simple closed contour C in

RU{g- 1(0)} through g- 1(0). Then if is not a negative integer and z is in R, we
define the fractional derivative oforder off(z) with respect to g(z) to be

(2.1) Dz)f(z)
F(z + 1)fgi+)f()g’()d2i 1o) (g() g(z))+1"

For nonintegral , the integrand has a branch line which begins at z and passes
through g-1(0). The notation on this integral implies that the contour of
integration starts at g-1(0), encloses z once in the positive sense, and returns to
g-1(0) without cutting the branch line or leaving RU{g-1(0)}. (See Fig. 1.)
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Im(")

g -1 (o)

Branch line for

((.C)- (z) -a’-I

FIG. 1. Branch line and contour of integration for the Definition 2.1 offractional differentiation

(2.2)

It is particularly interesting to set g(z) z a, for we find that

r( + )t(=+

D_.f(z)
2rci J f()( z) d.

While ordinary derivatives with respect to z and z a are equal, (2.2) shows that
this is not the case for fractional derivatives, since the value of the contour integral
depends on the point a at which the contour crosses the branch line.

The equivalence of the two forms of the generalized Taylor’s series (1.2) and
(1.2a) is seen at once from (2.2).

Contour integrals of the type (2.1) occur often in the representations of special
functions. Table 1 gives a brief list of fractional derivative representations for a
few selected functions. These are particularly convenient for use with the general-
ized Taylor’s series (1.2). Fractional derivative representations of special functions
are also found in [8] and can be easily constructed from the tables in [2].

3. Motivation for the generalized Taylor’s theorem. The generalized Taylor’s
theorem features a "finite sum over k" on the left-hand side of (1.2). Why? An
intuitive answer to this question is provided in this section through a formal
examination of (1.2) in the special case in which a and ? are integers and O(z) z.
The relationship between the generalized Taylor’s series and the Fourier series
is then suggested by the consideration of a second formal example in which
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TABLE

Special functions expressed as fractional derivatives

Name Derivative Representation

Hypergeometric
function

Confluent
hypergeometric
function

Bessel function

Modified Bessel
function

Struve function

Modified Struve
function

Legendre function
of the first kind

Associated Legendre
function of the
first kind

F(a, b" c" z)

1Fl(a’c’z)

C(c)z ’-c b_,.zbDz 1(1 z)-

r(c)z
F(a)

D" ezz"

Jr(z) 7z- 1/2(2z)-VD2 1/2

I(z) n- 1/2(2z)-D’- 1/2

cos z

z

coshz

Hv(z) n-1/2(2z)-"D[2 1/2

Lv(z) n--1/2(2z)--D[2 1/2

sin z

z

sinhz

Pv(z) D_z(1 zZ)/(F(v + 1)2)

P(z) (1 z2)"/2D z(1 z2)"/(F(v + 1)2)

F(a+v + 1)z-"
Laguerre function L}y)(z) D-,,-v- ez---,-

r(v + )r(- v)

Incomplete gamma
function

7(a, z) F(a)e-D2"e

0 < a _<_ 1. Together, these two examples provide intuitive insight into the structure
of the generalized Taylor’s series and give preliminary assurance of its validity.
The complete proof is postponed until the next section.

Case 1. Let O(z) z and a and 7 be integers in (1.2). We then obtain

a--1

Z a E fo.+,z"+’,
k=O n=0

where we have written f,,+ for Dan+f(O)/(an + 7)!, and o9 exp (2hi The
examination of the special case in which a 3 and 3’ 1 is sufficient to suggest
the manner in which the general case proceeds"

f(z) font- .fiZ -t- AZ2
nt- f3Z3 -t- f4z4 nI-

60-y(ZOO) (D-l/0 -1-.fiZ "l- (Df2Z2 -1
t- (D2J;z3 -- AZ4 @"

09- 2f(z092) (D- 2f0 + AZ + 602f2z2 "1-" fO%Z3
nt- AZ4 -+"

3 f3 +1Z3n+lSumming these columns we see at once that the right-hand side is n= 0
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as (3.1) predicts. Equation (3.1) is true for arbitrary integral a and 7 by an equivalent
calculation. This example shows that the finite sum over k in the generalized
Taylor’s theorem is natural and to be expected. (If we think of the way in which
cosh (z) is related to ez, we see at once that this is the special case of (3.1) in which
a 2, 7 0, andf(z) e.)

Case 2. Let 0 < a __< in (1.2a). We then have

a f( f()O’()d(3.2) O(z)-f(z) Z 3 -_ O(z)"".

Let 0() ]0(b)] exp (ibo), O(z) 10(b)] exp (ib), and O(z)-f(z) F(b) in (3.2) and
we obtain

a ffarg0(b) + 2re

F(bo) exp (-ian Po) ddpo exp (ian ).(3.3) F(4) --- ,arg0(b)

The right-hand side of (3.3) is the Fourier series expansion of the function

F(b)
Fo()

0

for arg O(b) < q5 < arg O(b) + 2re,

otherwise

over the interval [b arg O(b) 7zl < n/a. Since we are only interested in q5 such
that arg O(b) < 4) < arg O(b) + 2re, formula (3.3) is valid. This example reveals
that the generalized Taylor’s theorem for arbitrary nonintegral a is nothing more
than the Fourier series of a new function constructed from the function f(z).

A rigorous proof of the generalized Taylor’s theorem for arbitrary positive a
could be constructed from the Fourier series analysis just given. However, a
simpler method employing contour integration (not unlike the usual proof of
Laurent’s theorem) is given in the next section.

4. Proof of the generalized Taylor’s series. Having examined examples
which give motivation for the structure of the generalized Taylor’s series (1.2) and
(1.2a), we proceed to a rigorous derivation.

THEOREM 4.1. Let a be real and positive, and let o9 exp (2rci/a). Let O(z) be a
givenfunction such that (i)the curves C(r) {z[ 10(z)l r} are simple and closedfor
each r such that 0 < r <_ p, (ii) O(z) is analytic inside and on C(p), and (iii) O(z) has
only one zero inside C(p) and that zero is a simple one located at z zo Let b :/: zo
be a fixed point inside C(p). Let O(z)q exp (q In O(z)) denote that branch of the

function which is continuous and single-valued on the region inside C(p) cut by the
branch line z zo + (b zo)r, 0 =< r, such that In O(z) is real where O(z) > O. Let
f(z) satisfy the conditions of Definition 2.1 for the existence of D_bf(z) for
inside C(p); but z :/: b + r exp (i arg (b Zo)), 0 <= r}. Let K {klk integral, and
arg O(b) < arg O(z) + 2tk/a < arg O(b) + 2re}. Then for arbitrary , and z on

{zlz on the curve C(lO(b)l), but O(z)" :/: O(b)a}, the generalized Taylor’s series (1.2)
and (1.2a) are valid.

Proof The maximum modulus theorem insures that the set of simple closed
curves C(r), 0 < r =< p, are such that C(s) is contained inside C(t) for s < t. Let Cx
denote the contour consisting of a straight line segment from b to

b + x(b Zo), the curve C(lO(b / x(b Zo))l) traversed once in the positive
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C c (I @(b)l

z

Branch line

for @({)-

-Plane
FIG. 2. Contours of integration used in the proof of Theorem 4.1

sense, and a straight line segment from b + x(b Zo) back to b. The contours C
and C_ are shown in Figure 2.

Consider the integral

(4.1) I
O(z) 0()a-- lO’()f()d
2rci Jc-c_ 0() O(z)

The integrand in (4.1) contains poles at the points where 0()" O(z). This means
that 0()= 0(z)exp (2rtki/a) for k K. (The set of integers K is defined in the
hypothesis.) Thus there are poles at 0-l(O(z)ook), k K, while the integrand
of (4.1) is analytic for all other values of inside the closed contour C C_.
Each of these poles is simple because the number of roots of the equation 0() c,
Icl < p, is given by the argument principle as

(2ri)- fc 0’() d. 0() c
(2rci)-Xcn 0’()0()-n- d.

0 (p)

All terms in this last sum vanish but the first, which equals since Zo is a
simple root of 0. The residue at 0- (O(z)o9k) is given by

+0-1im,<0<z),k) { ( O- (O(z)ogk))O(?’)a-+- O’()f()}Z -O-(s



44 THOMAS J. OSLER

and using l’Hospital’s rule this becomes

O()"--lf()
aO()"- :0-’<0<z)(

f(O- l(O(z)ogk))
ao’O(z)

Thus we see from the residue theorem that

(4.2) I a- 10)- 7kf(O- I(O(z)o)k)).
keK

Returning to (4.1) we see that

2rci 1 [O(z)/O()]"
0()"-’-O’()f()d+ o-ii [oo/Oz)]"]3

Expanding the denominators of both integrals in powers of [O(z)/O(O] we obtain

I 0()-""-’- 0’()f(0 dO(zy"
n=0

(4.I + O(O--’-
n=-I

+ R(N)+ R_(N)},
where

(0()-- [O(z)/O()]"u +"O’()f()dR(N)
O(z)/O(O]

and

R o(N)
0()"--- x[O()/O(z)]"uO’()f()d

.:_ -[o(o/O(z)]

We note that the regularity of 0 andfpermits us to deform the contours of integra-
tion C, and C_a in (4.3) provided the contours start and end at b and do not
cross the branch line for 0()"- (see Fig. 2). Comparison of (4.3) with the definition
of fractional derivative

yields at once

an+Dz-b F(z)

(4.4)

Z--Zo

F(an + 7 + 1)[’()
2rci

N +yD_ [f(z)O (z)((z- Zo)/O(z))"’+’+ 131=.o O(z)""+

r(an + 7 + 1)

O(z)yR(N) + R_o(N)+
27ri
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R(N) is the sum of three integrals, two over short line segments of length e and
one over the contour C(lO(b / e(b Zo))l). Since the integrand contains the term
[O(z)/O()]" (which has modulus less than 1 if z is on C(lO(b)l)) to the power N + 1,
it is easy to see that for sufficiently small e and large N, R(N) can be made arbi-
trarily small. A similar argument holds for R_ 6(N). Comparing (4.2), (4.3) and (4.4)
we see that the theorem is proved.

If a is a natural number, the generalized Taylor’s series sometimes converges
in a region larger than that described in Theorem 4.1. This special case is examined
in the following corollary.

COROLLARY 4.1. Assume a is a natural number in the hypothesis of the previous
theorem and that f(z) (z b)+ Ng(z), where g(z) is analytic for z inside C(p) and
N is an integer. Then the generalized Tailor’s series (1.2) converges not only for z
on C([O(b)[), O(z) :/: O(b)a, but also for all z in the ring-shaped region between C(p)
and C([O(b)[).

Proof The integrand of I in (4.1) is

0()o-- 1( b)+g()
F()

o() O(z)
Since F() is analytic for in the ring-shaped region between C(p) and C([O(b)[),
the two straight line segments of the contour C cancel each other. Thus C can
be replaced by any contour C(r) between C(]O(b)[) and C(p). Since z need no longer
be on C(]O(b)]) for R(N) to tend to zero in the proof of the previous theorem, the
corollary is proved.

The generalized Taylor’s series (1.2) involves a sum from n - to .
Certain special cases of the sum over n 0 to have appeared before [1, vol. 3,
pp. 206-224]. In the following corollary we give a contour integral representation
of this general sum.

COROLLARY 4.2. With the hypothesis of Theorem 4.1, the formula

(4.5)

O(z) (0()a-r- 10’()f() d
2rci .c 0()- O(z)

Dz-b [f(z)O (z)((z Zo)/O(z))"’+r+’]]z=zo O(z)""+

,=o F(an + 7 + 1)

is validfor all z inside the closed curve C(lO(b)l). The contour of integration C starts
at b, encloses the curve C(lO(z)l) in the positive sense, and returns to b.

Proof The corollary follows at once from the observation that the series
(4.5) is generated by the integral (4.1) over the contour C in the proof of Theorem
4.1.

We have seen that the contour integral definition of fractional differentiation
(Definition 2.1) provides a convenient tool from which a proof of the generalized
Taylor’s series is constructed. In the next section this series is applied to the study
of generating functions and other series expansions.

5. The discovery of generating functions and other examples. In this section
we examine several examples of series which can be obtained from the generalized
Taylor’s series (1.2) by choosing specific functions for f(z) and O(z). A novel form
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of the binomial theorem is obtained as well as several generating functions for
the special functions of mathematical physics. In fact, these examples reveal that
the generalized Taylor’s series is a very powerful tool for the discovery ofgenerating
functions when combined with the fractional derivative representations of the
special functions such as those listed in Table 1.

In the examples which follow, co and K are defined in the statement ofTheorem
4.1, and the fractional derivatives encountered are computed with the aid of Table
1 and the extensive table in [2, vol. 2, pp. 185-200.

Examplel. Let f(z)-zp, O(z)=z-zo, and b=0 in the generalized
Taylor’s series (1.2). We then obtain

(5.1) [a-l(1 + t)p for 0 < a 1,

a- o9-(1 +to))p forl =<a
kK

for Itl 1, after making the substitution (z Zo)/Zo. The special case in which
a 1 and 7 0 is the familiar binomial expansion of (1 + t)p. The case in which
a 1 and is arbitrary is an unusual form of the binomial theorem first stated by
Riemann 12] and mentioned later by Heaviside [6, Chap. 7, 8], Watanabe 14]
and Hardy [5]. The general case in which 0 < a =< 1. and 7 is arbitrary appears to
be new.

Example 2. Let f(z) sin x//, O(z) z Zo, and b 0 in (1.2). We then
obtain the generating function

F(an + 7 + 1)

(5.2) a-1sin w/x2 + 2xt for 0 < a =< 1,

a-w/2/(tx) 2 c-k sin + 2xto9
kK

for 1 < a.

We have set o- x and (z- Zo)/(2o t. The series (5.2) converges for
2]tl Ix]. The special case of (5.2) in which a 1 is well known [1, vol. 2, p. 100],
while the general form for which 0 < a appears to be new.

Example 3. Let f(z)= z(2-26+ 1)/4j1/2_6+7(%//), O(z)= z- Zo, and b 0
in (1.2). We then have

F(an+7+ 1)

a-X(1 + 2t/x)(2-2+ )/4j x/z(w/X2 + 2tx) for 0 < a < 1-5+

a -1 co-’(1 + 2te)/x)(2’-2+ 1)/4J,_o+ x/z(w/x2 + 2txo)
keK

for 1 < a.
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This series converges for 21tl Ixl, We have set (z Zo)/(2o), ando x.
Equation (5.2) of the previous example is the special case of (5.3) in which 6 7.
The special case of (5.3) in which a 1 and 7 0 is known as Lommel’s formula
15, p. 140]. The general formula in which 0 < a appears to be new.

Example 4. In this example we take O(z) (z 1)ez, so that we are using the
Lagrange’s expansion form of the generalized Taylor’s series (1.2). Let
f(z) eCZzp- and b 0. We then obtain

a-leCZz’- P Fx(p + 1;p-an-7+ 1; c-7-an)
art+

((z 1)eZ)an+

for 0 < a _<_ 1 and I(z 1)eZ[-- 1.
Example 5 (The discovery of generating functions). Examples 2, 3 and 4 above

show that generating functions for the special functions of mathematical physics
can readily be obtained from the generalized Taylor’s series by a simple substitution
of the fractional derivative representations for these special functions. Using this
method, the author, who is not familiar with the clever manipulations of series
so often encountered in this subject, was able to derive every generating function
for the Bessel functions listed in the standard reference [1, vol. 3, Chap. 19]. These
were obtained in a few hours from the fractional derivative representations of the
Bessel functions.

Further examples of the use of the generalized Taylor’s series in finding
generating functions are given in [9].

6. Acknowledgment. The author wishes to express his appreciation to Profes-
sor S. N. Karp of the Courant Institute of Mathematical Sciences at New York
University for many hours of helpful discussion.
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A NOTE ON THE SPECTRAL MAPPING THEOREM*

TETSURO YAMAMOTO"

Summary. Let A be a linear operator on a complex normed linear space (into itself). We denote
by N(A) and R(A) the null-space and the range of A, respectively. The purpose of this paper is to show
that

/.N (A -aiI)"’ N((A -aiI)"’) (direct sum)
i=1

and

R (A oil_) N R((A
i=1 i=1

where the e are different complex numbers and I is the identity operator, and to note that some theorems
in spectral theory follow directly from these formulas.

1. Results. Let A be a linear operator mapping a complex normed linear
space into itself. We denote by Ax the operator A- 21, where 2 is a complex
number and I is the identity operator. N(A) and R(A) stand for the null-space and
the range of A, respectively. We shall prove the following theorem.

THEOREM. For s different complex numbers i and positive integers ni, <= <= s,
we have

N(A A) N(A) N(A) (direct sum)
and

R(A A:) R(A]) R(A:).
’) N(AProof It is sufficient to prove that N(A A) N(A,

A)= R(A,’) R(A... A). For convenience we putand R(A
A =A Az A...A" and Ng= N(Ag) i= 1 2. We first show thats
N(AA2) N + N2. Since the part is clear, we have only to prove the
part. Let x GN(A1A2) and consider two polynomials f(z)= (z- ) and
A(z) :2 (z i)". Then Ax f(A)x N2 and A2x f2(A)x S. On the
other hand,fa (z) andf2(z) are relatively prime and hence there exist two polynomials
hi(z), 1, 2, such that hx(z)fx(z) + h(z)f2(z) 1. Thus we have

x h(A)A(A)x + h2(A)fz(A)x N2 + N1.
At the same time the above argument shows that N N2 {0} since, if

xN Nz,wehave fi(A)x fz(A)x O. ThisimpliesthatN(AiA2) N
To prove the second assertion, let x R(A) R(A2) and x AtXl AzX2

for some x, 1, 2. Then we have

x ha(A)AlX + hz(A)Azx

ha(A)Al(Azx2) + hz(A)Az(AlXl)

AIA2(h(A)x2 + h2(A)x) R(AIA2)
Received by the editors February 12, 1970.
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since hx(A), h2(A), A and A2 commute. Hence we obtain R(AxA2) R(A1)
f-] R(A2). Since the part is obvious, the proof is complete.

Remark. The first assertion of the theorem is stated in Zaanen’s book [3,
Chap. 11, 6, Theorem 2] under the assumption that Ap is compact for some p.
However, our proof is direct and contains his theorem as a special case.

2. Corollaries. We shall show that some theorems in spectral theory follow
directly from the above results. Before doing this, some preliminaries are necessary.
In the following we assume that A is bounded. The algebraic multiplicity of
2 Pa(A) (the point spectrum of A) is defined as the dimension of the space
[A,%1 N(A,), while the geometric multiplicity of 2 is defined as the dimension
ofN(A) Ifthere exists a positive integer m such that N(A"- 1) N(A") N(A" + 1),
m is called the index of 2 for A. We define the index of Pa(A) for A to be zero.
It is well known that, if A is compact, each nonzero eigenvalue of A has a finite
index and finite algebraic multiplicity. Now we have the following corollary.

COgOLLAgY 1 (The (point) spectral mapping theorem). Let f(z) be any poly-
nomial with complex coefficients. Then:

(i) Pa(f(A)) f(Pa(A)).
(ii) The algebraic multiplicity of/u Pa(f(A)) is equal to the sum ofthe algebraic

multiplicities of the 2i such that 2i Pa(A) andf(2i) =/U. Here we admit an equality

(iii) If Ap is compact for some positive integer p, the algebraic multiplicity of
any 2(:0)6Pa(A) is finite. Hence, in this case, the algebraic multiplicity of
#(-Of(0)) Pa(f(A)) is finite.

(iv) IrAp is compactfor some p, the geometric multiplicity ofCf(0))Pa(f(A))
is equal to the sum of the geometric multiplicities of the 2 such that Pa(A) and
f(2i) =/u ifand only if, for each i, 2i has index onefor A or 2i is a simple root of the
equation f(z)

Proof Let /u Pa(f(A)) and f(z) -/u I-[= (z i)"’. Then the assertions
are immediate consequences of the theorem in 1. For example,

/u Pa(f(A)) , 1 =< dim N(f(A) -/uI) dim N((A iI)n)
i=1

dim N((A aiI)n’) >= for some- dim N(A aft) __> 1 for some

a Pa(A) for some i.

This proves (i). The remaining parts can be proved along similar lines.
Remark. An elegant proof for (i) may be found in 1]. It is not clear, however,

whether this proof works in the case of eigenvalues of (algebraic or geometric)
multiplicity >= 2. Our results clarify this point. Theorem 1 in [3, Chap. 11, 3] and
Theorem 3 in [3, Chap. 11, 6] are now special cases of Corollary 1.

COROLLARY 2 [3, Chap. 11, 6, Theorem 1]. Let Ap be compact for some p.
If (Z1, (Zk are different complex numbers, all :/:0, with indices m, mk for
A, then, putting A Am,’, we have that the whole space X is the direct sum ofN(A

N(Ak) and VIk g(Ai)i=1
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Proof If m mk 0, the assertion is clear. Thus we may assume
that m maxx<_i<_kmi > 0. Then there exists a (unique) polynomial f(z) such
that f(0) 0 and f(A) #I AA2 Ak for some complex number # - 0.
Then, f(A)p is compact and # has index one for f(A). Hence, by the theorem, we
have

X N(f(A) I) R(f(A) #I) [3, Chap. 11, 3, Theorem 8]

N(A Ak) ( R(Ax Ak)
k

N(A) N(A,) VI R(A).
i=1
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A GENERALIZED WEIERSTRASS TRANSFORMATION FOR
THE CASE OF SEVERAL INDEPENDENT VARIABLES*

W. C. QUEEN"
Abstract. The ordinary Weierstrass transformation is extended to a class of generalized functions

of n independent variables as follows. A testing function space r/, is constructed, which is a countably
normed space and contains as a member the Weierstrass kernel, K(x z, 1), considered as a function
of z. Then, the generalized Weierstrass transform F(s) of an3’ member of the dual space r/’, is obtained
by applying f to the kernel function: F(s) (f(z), K(x z, 1)). Next, a theorem is given concerning
the convergence behavior of the one-dimensional inversion formulas of P. G. Rooney for the ordinary
transformation. On the basis of this result we are able to extend these inversion formulas to the one-
dimensional generalized transformation and then construct an inversion formula for the n-dimensional
case. Finally, an application to the heat equation for an n-dimensional medium is given.

1. Introduction. The Weierstrass transformation F(x) of a suitably restricted
function f(z)is given by

(1) F(x)
x/

f(z) exp [-(x )2/4 dt

[4, Chap. VIII]. Recently, the transformation (1) was extended by Zemanian to a
certain class of generalized functions [3] and an inversion theory presented
based on the Hirschman-Widder formula [4. In this paper we extend the trans-
formation to a class of generalized functions which is smaller than that studied
in [3, but for which we shall be able to prove additional results. In particular, we
extend the transformation to generalized functions of n independent variables
and develop an inversion theory based on the series representation due to Rooney
[], [2]:

1) H,,(z/2)FtP)(x(2) f(x)
(- " + z),

p:0

where z is any fixed real number, F(’)(x) dPF/dxp, and Hp is the Hermite poly-
nomial of degree p.

The theory of the Weierstrass transformation is closely related to the solution
of the heat equation. Generally, these problems involve several independent
variables and require a multidimensional analysis. The Weierstrass transform,
however, has been studied extensively for the case of one independent variable, but
little has been done regarding higher dimensions. In this paper we develop a
transformation theory for generalized functions of several variables and construct
a corresponding inversion formula based on the Abel sums of (2), which is valid
when convergence is taken in the sense of weak convergence in Schwartz’s space
’. Furthermore, it is shown that in the case of one independent variable, the
ordinary sum of (2) also inverts our generalized transform, convergence again
being taken in ’. Finally, an application to the heat equation for an n-dimensional
medium is given.

As in 3], our procedure for extending (1) to generalized functions is to con-
struct a testing function space rh,, which is a countably normed space and contains

* Received by the editors December 30, 1969 and in revised form May 4, 1970.
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as a member the kernel

(, 4/)"
exp [-Ix "/2[ 2/4]

considered as a function of r. Then the Weierstrass transform F(x) of any memberf
of the dual space r/’u is obtained by applyingf to the kernel function"

F(x)
(, 4f=),(./(r), exp -Ix v]2/4]).

We shall make use of the following notation. R" and C" are respectively the
real and complex n-dimensional Euclidean spaces, m will always denote a non-
negative integer in R" while ]ml is used to signify the sum m + m2 q -k- m
and should not be confused with the standard "magnitude symbol" which will be
applied to elements of R" and C". Also, D"g(x) g(m)(x) ((lml/3Xqnl cx"")g(x)
while D,,’ is just c’@xi. In the following, all symbols should be interpreted in
their n-dimensional sense, except where indicated otherwise.

2. The testing function space r/,. Let # be a fixed positive number in R
We define q, as the linear space of all smooth functions 4 (i.e., having continuous
derivatives of all orders everywhere) from R" into C which are such that for each
fixed rn,

ym((-/))--n,m,!u(4))-= sup exp|-Ixl2- -| DT,’b(x)l

We assign to r/u the topology generated by the set of seminorms
It is easily verified that t/u is sequentially complete and that differentiation is a
continuous linear mapping of r/u into itself, r/u denotes the dual of r/u. It is a linear
space under the customary definitions of addition and multiplication by a complex
number. By a standard result from the theory of topological spaces [6, pp. 12-13],
r/u is also sequentially complete. Forf flu and b e r/u, we denote the number thatf
assigns to b by (f, qS). The generalized derivative D"J off is defined by (D"f, 4))

(f (- 1)"D"qS). It now follows that differentiation is a continuous linear map-
ping of r/u into itself.

We now list some other readily established properties of r/u and r/u.
(I) Let denote Schwartz’s space of all smooth functions having compact

support and let 9’ be its dual [5]. Then c r/u and the topology of is stronger
than that induced on it by r/u. Consequently, the restriction off e r/’u to @ is in 9’.

,,,(II) Set k(Xi ri, t) (4rc)- 1/2 exp [-(xi "ci)2/4t] and K(x r, t)
[li=lk(xi- ri, t). Then for every fixed xeR" and eRa, where 0 < <_ 1,

K(x , t) considered as a function of z is in r/u
(III) A locally Lebesgue-integrable function f(r) which is such that .f(r)

exp [- v2/(8 +/z)] is absolutely integrable on R", generates a member of r/’, through
the usual definition

<f, qS) f. f()b()din,

(IV) Let f e r/u and u(x, t) (f(r), K(x r, t)), 0 < =< 1. Then D"ju(x, t)
<f(r), D’K(x r,, t)>.
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(V) Let f r/u and (x) be a smooth function over the finite region R".
Also, let 0(, x) be a smooth function for x ), R", such that for each m,

lim exp 8

uniformly for x e . Then

(x)(f(z), 0(, x) dx= (f(z), (x)O(z, x)dx.

Notes (IV) and (V) can be justified using arguments similar to those found in
[3, Theorem 3.1, Lemma 2.1]. For brevity we omit the details here.

3. An inversion formula for the case of one independent variable. Before
we can turn to the development ofan analogue expression to (2) for the generalized
transformation, it is necessary to establish the following convergence property
of the series (2). In this section x, and z are one-dimensional variables only.

LEMMA 3.1. Letf(z) be a locally Lebesgue-integrablefunction which is such that
f(:)/exp [z2/(8 +/t)] is absolutely integrable on - < z < . Also, let F(x) be
defined as in (1). Then, for each fixed real number z and for N - ,

N (_ 1)PHp(z/2).F(P)(x + z)
p=o

and

fx+6 sin [w/N/2(x v)]f(r)d(4)

are uniformly equiconvergent on every compact subset of the real line

Rooney has shown that (3) and (4) are equiconvergent or each x and z. In the
above lemma we extend this result to uniorm equiconvergence on finite intervals
in x.

Proo According to [2, pp. 48],

(- 1)PH(z/2)F(P)(x + z)
(5)

=0

1; [-(x+z-z)2]Ku[(x+z_z)/2 z/2]f(z)dz
2

exp
4

where

Hp(x)Hp(y)
/(x, ;) y

p=0 2p!x/
the kernel for the Hermite series.

Let us replace f(x) by a polynomial p(x) in the theorem. Then (4) converges
uniformly to p(x) as N on every compact set ) 7, pp. 127-130]. Furthermore
(3) is identically equal to p(x) if N exceeds the degree of p(x). Indeed, if we set
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f(r) r in (5), where e is a nonnegative integer, make the change in variable
r x + z- 2v, and employ the binomial expansion for (x + z- 2v), (5) be-
comes

(x + z)-q (-2v)qe-v2Ks(v, z/2) dv.
q--O q

By expanding (-2v)q into a Hermite series and invoking [8, pp. 193, (7)], we find
the last expression to be identically equal to x for all N > e.

Now the integral

dr(6) If()- P(r)l exp
8 +

can be made arbitrarily small by a proper choice of p(r) [9, Theorem 5.7.2. It is
therefore sucient to show that the difference between (3) and (4) is bounded for
each ed z by

d,M If()l exp
8

where M is a constant independent of all N and x e . For, if we let I(f) denote
the difference between (3) and (4) and choose p(z) so that (6) is less than e/2 for
any given e > 0, we may then choose N so large that IIa(p)l < e/2 and therefore

IIx(f)l < II(f- P)I + IIx(p)l < e

uniformly for all x e f.
Let us set

1 [-(xI2(f) 5exp
.x-6

+ z-

4 Ks

sin [w/N/2(x f(r)dr

and

I3(/) +
+

exp 4 Ks 2 , f(r)dr.

Then Ii(f) I2(f) + I3(f). Now, for each fixed z, x f, and r restricted to a
finite interval, there exists a constant C independent of x, r and N such that
[9, 9.5.24]

I-(x+z-r)]exp 4 Ks
x + z- ’) rcl sin [w/N/2(x- r)

r
< C"

Therefore,

(7) If(r)l dz < Q If(r)l exp
x- 8+
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where

Q c sup { sup
x x-6<<x+6

According to [9, Theorem 8.91.3], for any fixed real number a > 0 and

Ixl >_- a,

(8) Ix-’HN(x)] < B(2NN[)’/2N 1/4eX2/2,

where B is a constant independent of x and N. Applying (8) to the Christoffel-
Darboux formula [10, vol. 11, 10.13 (11)], we obtain

2BZlxyl (X2 + y2)
(9) IKu(x, Y)I < exp

x/-lx Yl 2

for Ixl >_- a, lyl >_- a, a > 0 and N >= 1.
On the other hand, let us consider the case where y 0. Since H2u + ,(0) 0

and H2u(0) (- 1)U(2N)!/N! [10, vol. II, 10.13 (15)], it follows that

(--1)NH2N+I(X)
K2N(X O) K2N+ I(X, 0)

X,/22 + N !x

Therefore, by (8) and Legendre’s duplication formula [10, vol. I, 1.2 (11)] we have
that

IK2u(x, 0)1 IK2+ x(x, 0)1

B F(N+ 3/2) ]’/2L,--N --I-- /2 X2/2, Il a.

According to Stirling’s formula, F(N + 3/2)/N O(N) as N , and the
right-hand side of the last inequality is therefore bounded by a constant multiple
of ex/2 for all N. By this result and also (9), we conclude that for each fixed y and
asN ,
(10) K(x, y) O(Ixlex/2)
uniformly for all x such that Ix Yl a, a > 0.

Ifz is fixed andA denotes the maximum value of Ix + zl, x e , then as N ,
exp

4 K 2 ’ 8

JAr 2] =Oexp-)O exp 4 8 +
uniformly for all x e and e(-,x 6] U Ix + 6, ), where 6 is chosen
greater than the length of some fixed interval containing . Hence, there exists a
constant E independent of x e such that

[I3(f)l N E + If(z)l exp d.
+ 8 +
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Setting M max (Q, E), we conclude that

IIl(f)l-<_ lI2(f)l + lI3(f)l =< M If(,c)l exp d,c

for all x f.
We shall need the following result which makes use of Lemma 3.1.
LEMMA 3.2. Let dp and (x) (dp(x),k(x ,c, 1)). Then for each fixed z,

1)PHP(Z/2)(P)(x + z)= ok(x),
p=o P!

where the series converges in flu.
Proof Using (IV) and integrating by parts m times, we have

O+Pflk(X) ((D(m)(,c), DPk(x "c, 1))

Hence the lemma will be proved if we show that for each fixed m and z, and for
any e > 0, there exist numbers T and N such that

exp
8 +

(m)(x)
(11) u (_ 1)PHp(z/2) f+P! d-

dP(’)(’c)Dexk(x + z- "c, 1)d,c < e

uniformly in x on each of the intervals T < Ixl < and Ixl -<_ T, for all N > N.
Consider T < Ixl < . We are free to choose T so large that Ix ,el => a > 0

for all ,c supp 05. Then, qb(m)(x) =_ 0 on T < Ixl < . Using (5), we may rewrite
(11) as

exp
8 +/

(D(m)(,C) exp
4

(2)
Ku((x + z- )/2, z/2)&

According to (1 0), for each fixed z,

KN((X + Z- ,C)/2, Z/2)-- O(IX exp
(x + 2- "17) 2

as N --, uniformly for all ,c e supp b and Ixl e ITs, oe]. Hence for each m and z,
(12) is uniformly bounded for all Ixl e ffr, 3 by

(13) 0 Ixl exp 8 +/)
+

where A denotes the maximum value of I,c z[, ,c e supp b. The expression (13)
tends to zero as Ixl o; therefore we may choose T so large that (13), and
consequently (12), will be uniformly bounded by e for all [xl e[T, oe; and all N.

Next consider Ixl _-< T. If we replacef by ()(m) in the hypothesis of Lemma
3.1, then by a well-known result [7, pp. 127-130] the Fourier integral (4)converges
uniformly to 1)(m) for each m and all x e f. Therefore we may choose N so large
that (12) can be made arbitrarily small for all N > N,. This completes the proof
of Lemma 3.2.
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We now are prepared to establish an inversion formula for the one-dimen-
sional generalized transform.

THEOREM 3.1. Let f rlu and F(x)= (f(z),k(x- z, 1)); then for any real
number z,

)Ogp(z/2)Ftp)(x(- 1
+ z) f(x),

p=O P!
where the serfes converges fn he sense of weak convergence n ’Proof Let ; then

(-1)H(z/2) FP)(x + z)

f(z), k(x , 1)),
P

(The notation (., ) indicates that x is the independent variable for the quantities
in the inner product.) Choose the real numbers A and B such that the support of
O(x z) is contained in A < x < B. Then, the inner product on x in (14) can be
rewritten as an integral on A x B. Furthermore, OP)(x- z) is smooth on
Ax B, and for every m, exp[x2/(8 +)]Dk(x-r, 1)0 as [x,
uniformly for A x B. In view of note (V) we may interchange the order of
inner products on x and in (14) to obtain

f()(z/2)p, ()(x- z), k(x- , 1))x)
Consequently, we may write that

= P

+(), (-1)PHP(-Z/2)P)( z))p= P
which by Lemma 3.2 converges to (f(), O(z)) as N .

4. An inversion formula for the ease of n independent variables. In this section
we construct an inversion formula for multidimensional transformation by taking
the Abel sum of (2). First we prove the following lemma.

LEMMA 4.1. For each fixed x, z, aM t, 0 < < 1, the series

(16) 2 exp
-(x + z- r)a Ho((x + z- r)/2)H(z/2)t/

o=o 4 2p
considered as afunction ofr, converges in .(R) to

(17) k(xi-i,1- t)= [4(1- t)]- /exp 4(1- J"
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Proof It is a well-known result [10, vol. II, 10.13 (22)] that the series (16)
converges pointwise, in the usual sense, to (17). Hence we need merely show that
the partial sums of (16) form a convergent sequence in r/u(R1). If we differentiate
term by term the Nth partial sum of the series (16), and multiply the result by
exp [z/2/(8 + #)], we obtain

I z#l o I-(Yi-Zi)2] Hp"((yi-zi)/2)Hp(zi/2)tp/2exp +
+

(18) exp . + p= 4 2 mp!
where we have set Yi xi + zx/ for simplicity. Since [Hp(x)[ < B2"/2x//p!eX2/2,
where B is a constant [7, p. 324], expression (18) is no greater than

exp
8 + # 8 X/2m/2 o=

[(p + m)(p + rn- 1)

(19)
(p + 1)]i/2tP/2,

the exponential can be bounded by a constant C which is independent of ,
-oe < i < oe. Expression (19) is therefore uniformly bounded as N oe by

B2C

0 protp/2
N/2m/2

p=

which converges for each fixed t, 0 < < 1, and the result follows directly.
LEMRA 4.2. Let

Pi Pi
i=1

be a set of n convergent sequences in T,(R), and {si}’= denote their respective
limits. Ifwe set

i=1

and

’-t’(r) 11
i=1

where Ni denotes the ith integer component of the integer N R", then N(z) -> (z)
in flu(R") as N --+ oo. Here N -+ oo means N a, ..., N, all tend to infinitely indepen-
dently.

Proof Briefly, this result can be established by expressing the difference

(z) N(z) as

I’() %()= [0()- ’()]{i 0,()} {: 0()}
and verifying that

’))m{tI-/(T)- t-I-/N(T)}

mj{V(Tj)- VNj(Tj)} mi{lYiINi(Ti) lI mk{V(Tk)
j=l k=j+l

where Ymj denotes the seminorms for r/u(R ). The result then follows immediately.
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In the following,fand b are functions of n independent variables i.e., x, z and
z e R". Moreover m and N will represent nonnegative integers in R" while p is
an integer in R1. We define the following differential operator of infinite order"

h tt’/2(-1)t’Hp(zi/2)
(20) Mxzt lim D,

N-oo i=1 p=0 /9!

THEOREM 4.1. Let f rl’u and F(x) (f(z), K(x "c, 1)) thenjbr eachfixed z,

f(x) lim Mx,,tF(x + zx/
t--*

in the sense of weak convergence in ’.
Proof Let uMx,z,t denote the Nth partial sums of the operator (20); that is,

Mx,,tF(x limv._. Mx,z,tF(x). Now
M., ,tF(x + zvft)= (f(z), Mux,..,tK(x + zx/t- z, 1)>

i=1 p=o P!
The summation in (21) is equivalent to the Ni-th partial sum of (16) and therefore
by Lemma 4.1 converges in G(R1) to k(xi- zi, 1 t) for each i= 1, 2, ..-, n.

According to Lemma 4.2, the product in (21) must converge in r/u(R") to

h k(xi- i, t).
i=1

Therefore,

(22) lim MNx,z,tF(x nt- zx/t (f(z), K(x- z, t)).
N-oo

To complete the proof of Theorem 4.1, we must show that the right-hand
side of (22) converges weakly in @’ tof(x) as -, that is,

(23) lim ((f(z), K(x , t)), qS(x)) (f(x),
t--*

for every b e @. Noting that exp [1"C12/(8 + lu)]D’K(x- , l- t) tends to zero
uniformly on x e f = supp b as Izl oe, we may again use note (V) in 2 to
interchange the order of inner products in (23) to obtain

(f(z), (4(x), K(x z, 1 t))x).

As the last step, we must prove that, as 1-, (qb(x), K(x- , t))
b(z) in r/,. The following argument is similar to one given in [3].
Set x z + 2y(1 t) /2, where z and are fixed. Then

(24) [(4n(1 t)-] -"/2 t cR exp
i=1

1/2 e dy 1.

Therefore, we can set

(25) exp K(x- , t)) b(v)} 11 -k 12,
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where

[ IrA exp I [X-’cl2-]dx’4(tIrl e EC/)(m)(x) (/)(m)(g)] ii/Ii(z)= [4rc(l- t)] ,,/2exp
8 +kt

/- 1,2,
and

At {x:lx zl <-_ ,6eRl:0 < fi< 1},

A2 R" At (that is, the complement of A1).

Consider I1(17). In view of (24), we have
2 ] sup [(/)(m)(x) (/)(m)(17)1.IIl(r)l-<exp

8 +/t_]

Let co {r:lz[ < T} be a spherical domain in R" containing the support of
4(), and let co’ {r:lrl < T + 1 }. Thus the right-hand side of the last expression
is identically zero for r outside co’. Since 4 e @, q(m) is uniformly continuous on R".
Consequently, given an e, > 0, we can choose 3 so small that

sup ,Db(x)- Dmqs(z), < eexp [ -IT+ 1121xa, 8 +/

for all r, in which case IIl(Z)l for all r. Fix 6 this way.
Next, consider

(26)
12(-c) {4(1- t)}-"/Zexp I8 Irl2 ]f/ exp

L4(t_ 1)_J

{4re(1 t)}-"/2 exp
8 +/_] a,

exp
L4(t 1L

dx.

It is readily shown that the second term on the right-hand side of (26) tends
uniformly to zero as 1- on z e R". Let J() denote the first term on the right-
hand side of (26); then

J(r) {4re(1 t)} -"/2 exp
,-,,,

exp
L4(t 1)J

d/)(m)(x)dx.

Here co A1 denotes the set of those points in co that are not in A1.
For z e co’ and for x e co- A, we have I1 < T + and Ix- 1 > 6. Con-

sequently,

IJl(r)l =< {4re(1 l;)}-n/2glexp
4(t- 1)

where E1 is a constant independent of r e co’. Thus as ---, 1-, IJl()[ converges
uniformly to zero on z e co’.

For z e R" co’, we have co A1 co and

IJ,(’)l {4g(1 t)} -"/2 s2 p exp k4( -
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Since r o9, we may write

(27) exp
+ t ]J 8 + ([ J"

The right-hand side of (27) achieves its maximum value along the surface defined
by

T(8 + )
4(t+ )+"

Therefore there exists a value such that this surface lies within the region
T < ]z[ < T + 1 for all values of e (t,, 1). Restricting z e R ’ then allows us
to replace by T + 1 in (27), thereby bounding the left-hand side by

+exp
8 + 4(t- 1

Consequently,

[11IJl()l {4(1 t)} "/2E2 exp 4(t- 1)

where E2 is a constant independent of : e R" o)’. Thus we have demonstrated
that IJl()l converges uniformly to zero on : e R" as Therefore by (25) this
proves that for each nonnegative integer m e R",

lim sup m((l/)(X), K(X , t)) ()()) .
t-*l

Since e, is arbitrary, the proof of Theorem 4.1 is complete.

5. An application to the heat equation for an n-dimensional medium. In this
section we give an application of the preceding theory. Owing to the form of the
kernel function, the Weierstrass transformation arises naturally in problems in-
volving the heat equation.

Consider the finite interval of time 0 < _< T. If we normalize so that
0 < =< 1, then the generalized Weierstrass transform F(x), x s R", can be inter-
preted as the temperature at time in an infinite, uniform medium whose
initial temperature is a generalized function of rather rapid growth. Moreover,
if we set u(x, t)= (f(), K(x z, t)), then u(x, t) gives the temperature at any
time t, 0 < =< 1, and as --, 0 +, u(x, ) converges weakly in @’ to f. To see this
we note that u(x, t) satisfies the heat equation Vu(x, t) Dtu(x t) over the interval
0 < =< 1 (see note (IV); a similar result holds true for Dtu(x, t)) and since
and K(x r, t) satisfy the hypothesis of note (V), we may write

(u(x, t), dp(x)) (f(’c), (dp(x), K(x "c, t))x).

We have already demonstrated in the last part of the proof of Theorem 4.1 (see
(23)) that, as - 0+, {(x), K(x r, t)) --, b(:) in r/u. This verifies that u(x, t) is
indeed the solution of the Cauchy problem for the heat equation.
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Another representation ofthe fundamental solution u(x, t) of the heat equation
is possible as a consequence of Theorem 4.1. That is, in light of (22) we may set

(28) u(x, t) M:,,z,1 -tF(x + zw/1 t),

where z is an arbitrary fixed point in R". Therefore if at some instant in time, which
is denoted here in normalized form as 1, the local behavior of the temperature
function u(x, t) is known in the neighborhood of some point y e R" (that is,
u")(y, 1) F")(y) is known for each m e R"), then u(x, t) is completely determined
for all x e R" and e (0, 1). For if we set z (y x)/(1 t) in (28), we obtain

i=1 p=O /9! x=y

where the notation "]x--., indicates the derivatives are evaluated at the point
) y.
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A TWO-POINT BOUNDARY PROBLEM FOR
NONLINEAR SECOND ORDER DIFFERENTIAL SYSTEMS *

G. J. ETGEN AND S. C. TEFTELLER’

Abstract. This work is concerned with nonlinear second order differential systems involving a

parameter with boundary conditions specified at two points. The linear version of the two-point boun-
dary problem is non-self-adjoint. The objective is to establish the existence of eigenvalues for the boun-
dary problem and to determine the behavior of the associated solutions. The boundedness and oscil-
lation of solutions is of particular interest. The results obtained in this paper extend the work of W. M.
Whyburn in the sense that sign conditions on the coefficients involved in the system have been relaxed
and improved conditions for the existence of eigenvalues have been established.

1. Introduction. In a series of papers [2], [33, I4], [5], W. M. Whyburn studied
two-point boundary problems associated with nonlinear second order differential
systems of the form

y’ k(x, y, z; 2)z,
1)

z’ g(x, y, z; 2)y,

where k(x,y,z;2) and g(x,y,z;2) are positive real-valued functions on X"
a=<x=<b,L’2o-6<2<20 +6,0<6_-< , and where k and g satisfy con-
ditions which will insure that a solution exists when appropriate initial conditions
are specified. Whyburn establishes the existence of sets of characteristic numbers
(eigenvalues) for the boundary problems and determines the oscillatory behavior
of the associated solutions.

The purpose of this paper is to extend some of Whyburn’s work by relaxing
certain conditions imposed on the coefficients and by obtaining conditions
insuring the existence of sets of characteristic numbers which appear to be some-
what simpler than those previously obtained.

We shall be concerned with the nonlinear system (1) together with the two-
point boundary conditions

(2a) (2)y(a, 2) fl(2)z(a, 2) 0,

(2b) 7,(2)y(a, 2) (l(/)z(a, ) 72(A)y(b,/) c(2)z(b, 2),

where , fi, i, ti, 1, 2, are continuous, real-valued functions on L.
We shall assume that the coefficients involved in the two-point boundary

problem satisfy the following hypotheses:
(i) for each x e X, each of k(x, y, z; 2) and g(x, y, z; 2) is continuous in

(y, z, 2) for all real pairs y, z and all 2 on L;
(ii) for each fixed (y, z, 2), each of k(x, y, z 2) and g(x, y, z; 2) is measurable

in x on X;
(iii) there exists a Lebesgue integrable function M(x) on X such that

]k(x, y, z; 2)1 _-< M(x) and ]g(x, y, z; 2)] =< m(x) for all x X, 2 L and all real pairs
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(y, z);
(iv) k(x, y, z; 2) is positive on XL for all real pairs (y, z);
(v) 2(2) + fi2(2) > 0 and 7/2(2) + di(2) > 0, 1, 2, on L;
(vi) fl(2) 0, A(2) a(2)62(2) fl(2)72(2) = 0 on L.
We remark here that the linear version of the two-point problem (1), (2) is

non-self-adjoint. As indicated previously, Whyburn assumes that each of the func-
tions k and g in (1) is positive. We, on the other hand, are assuming only that k is
positive, making no restrictions as to sign on g. Thus, the work presented here may
be viewed as more closely paralleling the linear theory. Finally, we note that with
the assumptions on , fl, ’i, 6i in (v), we can, without loss of generality, have (v)
read:

(V) 0{2(/) -}- f12(/) 1 21(/ -}- (21(/), 22(/) -{- (5(/) > 0 on L.

2. Preliminary definitions and results. We seek to establish the existence of
values of 2 on L for which there corresponds a nontrivial solution of (1), (2).
Such values of 2 are called the eigenvalues for the system. By a nontrivial solution
of the system, we shall mean a solution pair {y(x, 2), z(x, 2)} of (1) satisfying (2)
with the property that y2(x, 2) + zZ(x, 2) > 0 on XL.

Our first theorem represents a slight extension of Whyburn’s results [5,
Theorems 1, 2.]

THEOREM 1. There exists a solution pair {y(x, 2), z(x, 2)} of(l) on XL such
that

(3) y(a, 2)-= fl(2), z(a, 2) --(2)

on L. Moreover, if {y(x, 2), z(x, 2)} is a solution pair of (1), (3) on L, then the pair
{y(x, 2), z(x, 2)} is nontrivial, y(a, 2) 4= 0 on L and y(x, 2) has only isolated zeros
on Xfor each fixed 2 on L.

Proof Hypotheses (i)-(iii) allow the application of a fundamental existence
theorem for differential systems (see, e.g., [1, Chap. 2]).

Let {y(x,2), z(x, 2)} be a solution of (1), (3). Applying the polar coordinate
transformation, we obtain

(4)
y(x, 2) r(x, 2). sin v(x, 2),

z(x, ,) r(x, ) cos v(x, ),

where r(x, 2) and v(x, 2) are solutions of

dv/dx k COS2 V -- g sin2 v,

dr/dx [(k g) sin v cos v]r,

r(a, 2) 1,
(6)

sin v(a, 2) fl(2), cos v(a, 2) (2), 0 < v(a, 2) < 2rc;

in fact, either 0 < v(a, 2) < re, or rc < v(a, 2) < 2t.
As established by Whyburn [5, Theorem 2], r(x, 2)> 0 on XL. Since

rZ(x, 2) yZ(x, 2) -Jr- zZ(x, 2) on XL, it follows that the pair {y, z} is nontrivial.
Clearly, y(a, 2) - 0 on L by hypothesis (vi).
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Finally, we note that, for fixed 2 on L, y(x, 2)= 0 if and only if
v(x, 2) 0 (mod re). Since dv/dx k(x, y(x, 2), z(x, 2); 2) > 0 when v(x, 2)
_= 0 (mod zr), it follows that y(x, 2) has only isolated zeros on x.

In the work that follows we shall let {y(x, 2), z(x, 2)} be a fixed solution pair of
(1), (3). Clearly, this pair satisfies the boundary condition (2a). By Theorem 1, {y, z}
is nontrivial and, consequently, the complex-valued function (z(x, 2) iy(x, 2)) is
nonzero on XL. We define O(x, 2) by

(7) O(x,2)--(z -+- iy)/(z- iy).

THF.OREM 2. The complex-valued function O(x, 2) has the following properties
on X for each fixed 2 on L:

(i) 10(x,))l 1.
(ii) 0 satisfies the first order equation dO/dx 2iOh(x, 2), where

(8) h(x, 2) (zy’ yz’)/r2 (kz2 -- gy2)/r2 k cos2 v -[- g sin2 v.

(iii) O(x, 2) 1 /f and only if y(x, 2) 0,
O(x, 2) -1 if and only if z(x, 2) 0.

(iv) Let co(x, 2) arg O(x, 2), where it is assumed that 0 < co(a, 2o) < 2n and
that co(x,/l) is continued as a continuous function on XL. Then

(9) O(x, 2) =- cos 2v(x, 2) + sin 2v(x, 2),

)2v(x, 2) /f fl(2) > 0 on L,
(10)

2v(x, 2) 2re /f fi(2) < 0 on L,

(11) 2 h(t, 2) dt co(x, 2) co(a, 2).

(v) O(x, 2) moves monotonically and positively on the unit circle at the point + 1.
Proof Properties (i)-(iii) are easily verified. Equation (9) follows upon using

the polar coordinate transformation (4). Equations (10) result from (9) and our
assumptions concerning the initial values of co and v. Similarly, (11) is a result of
solving the first order equation in 0 and applying the definition of co.

The complex-valued function O(y, z) provides a means for determining the
oscillatory behavior of the solution pair {y, z}. To develop the tools which will
enable us to establish the existence of eigenvalues for the boundary problems (1),
(2), we introduce the functions

(12)
s(x, 2) 72(2)y(x, 2) 62(2)z(x, 2),

t(X, 2) 72()Z(X, 2) -Jr" aZ(2)y(x, 2).

It is readily verified that s2 + 2 > 0 on XL and, consequently, the complex-valued
function qS(x, 2), defined by

(13) b(x, 2)= (t + is)/(t- is),
exists on XL. In addition, we have the following analogue of Theorem 2.

TIqFORFM 3. The complex-valuedfunction dp(s, t) has thefollowing properties on
X for each 2 on L:

(i) [(x, A)[-- 1.
(ii) b satisfies the first order equation d4J/dx 2iOj(x, 2), where
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(14) j(x, 2) --(tS’-- St’)/(S2 + 2) - h(x,)O.
(iii) b(x, 2) if and only if s(x, 2) 0,

(x, 2) 1 if and only if t(x, 2) 0.
(iv) Let o(x, 2) arg b(x, 2), where it is assumed that 0 o(a, o) < 2 a

that o(x, 2) is continued as a continuous function on XL. Then, for each fixed 2,

2 h(u, 2) du a(x, 2) a(a, 2) o(x, 2) o(a, 2).

Consider the boundary condition (2b). Using the polar coordinate trans-
formation and the definitions of the functions s and t, (2b) may be written in the
form

(15) sin (v(a, 2) Zl(2)) s(b, 2) r(b, 2)[(2) + (2)] 1/2 sin (v(b, 2)

where sin r1(2) 6(2), cos z(2)= 7(2), sin z2(2)= 62(2)/[7(2) + 6(2)] /2 and
COS r2( 2()/[()+ 6()] 1/2.

Our assumption (2) (2)62(2) fl(2)72(2) 0 on L implies that s(a, 2) 0
on L. As a result of our assumption (iv) on the initial condition of

arg (x, 2), it follows that 0 < a(a, 2) < 2 on L. Also, since (2) 0, we have
from (iv) ofTheorem 2, that 0 < (a, 2) < 2g. We can now conclude that the follow-
ing inequalities hold for each 2"

2 h(u, 2)du < (b, 2) < 2 h(u, 2)du +
(16)

2 h(u, 2) du < a(b, 2) < 2 h(u, 2) du + 2.

The following bound on the solutions of (1), (3) in terms of the Lebesgue
integrable function M(x) is easily obtained.

THeOReM 4. Let {y(x, 2), z(x, 2)} be a solution of (1), (3). Then the following
inequality holds on Xfor each fixed 2 on L"

(17) [y2(x) + z2(x)] N exp 2 M(u) d

We shall let F denote the collection of all pairs of functions {y(x, 2), z(x, 2)}
which are absolutely continuous in x for each fixed 2, continuous in 2 for each
fixed x and which satisfy the bound (17). Clearly, all solutions of (1), (3) belong
to F.

For each pair (x, 2) on XL, define the functions f(x, 2) and g(x, 2) by

f(x, 2) inf { k(x, y, z ;2), g(x, y, z ;2)},
(18)

y,zr

g(x, 2) sup {(x, y, z;), g(x, y, z; )}
y,zF

then each off(x, ) and g(x, 2) is integrable on X for each 2 on L, and using (8)
we have

(9) f(x, 2) h(x, ) g(x, ).
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3. Existence of eigenvalues. Using the results developed in the previous
section, we are in a position to specify conditions which will insure the existence
of eigenvalues for the system (1), (2).

TIqEOREM 5. Let {y(x, 2), z(x, 2)} be a solution of(l), (3), and define q(2) by

q(2) h(u, 2) du

(h(x, 2)defined by (8)). Then q(2) > -2re on L. Let rn > -1 be the least integer
such that g.l.b, q(2) < (2m + 1)re on L, and let n be an integer such that 1.u.b. q(2)
> (2n + 1)re on L. If n >= rn + and if any of the following cortditions holds on L"

(i) [k(x, y, z; 2) g(x, y, z; 2)1 sin 2v(x, 2) dx >= 0 and 7(2) + (2) __> 1,

(ii) [k(x, y, z; 2) g(x, y, z 2)] sin 2v(x, 2) dx >= In (722(2) + 6(2))

(v(x, 2) de.lined by (5)),

(iii) Ik(x, y, z 2) g(x, y, z 2)1 dx <__ In (),22(2) + 622(2));

then there exist at least p, p n m, nonempty sets ofeigenvalues To, T1, ..., Tp_
.,’",t the system (1), (2).

Proof Let {y(x, 2), z(x, 2)} be a solution of (1), (3). As noted previously, this
pair satisfies (2a). Let O(x, 2), s(x, 2), t(x, 2) and qS(x, 2) be as described in 2.

Using (11), we have q(2) 2 j’,b h(u, 2) du co(b, 2) co(a, 2). Since
0 < co(a, 2) < 2re on L and since O(x, 2) passes through + in the positive direction
only as x increases on X, it follows that co(b, 2)> 0 on L and, consequently,
q(2) > -2re on L.

Suppose that m and n are integers with the properties described in the hypo-
thesis. Then there exists a value of 2, say .*, such that q(2*) < (2m + 1)rt and a
value of 2, say Y, such that q(/) > (2n + 1)re. Clearly 2" so we shall assume
2* < ). Now, from (16),

q(2) < a(b, 2) < q(2) + 2re.

Thus a(b, 2*) < (2m + 3)rt and a(b, ,) > (2n + 1)ft. Since n m + p, p > 1, there
exist p values of 2,2o,21, .",/p- on the interval (2*,2)such that a(b, 2j)

[2(m + j)+ 3Ire. Moreover, since a(b, 2) is continuous in 2 we may assume

2o < ’1 < < )-p-1. Since a(b, 2)= arg qS(b, 2), it follows that b(b, 2j.)= -1
for j 0, 1, ..., p 1, and, consequently, t(b, 2j) 0 for each j. Using the polar
coordinate transformation, we have

t(b, 2) r(b, 2)[(2) + ((,)1/2 cos Iv(b, 2) 2(2),

s(b, 2) r(b, 2)[72(2) + 22(2)] 1/2 sin Iv(b, 2) :2(2)].

Thus, for each j, cos Iv(b, 2) "c2(/j) 0 which implies sin 2 Iv(b, 2) 2(}j)l 1.
Also, as 2 increases from 2 to 2+1, sin Iv(b, 2) -c2(2)] changes continuously in
value from to + or from + to 1.

Since Isin [v(a, 2)- z1(2)]1 _-< 1, it follows that there will exist at least one
value of 2 on [2, 2+ 1] with the property that (2b) is satisfied provided we can
show that r(b, 2)[7(2)+ 6(2)] 1/2 >= on [2j, 2j+ 1]"
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Consider condition (i). From (6),

r(b,2)=r(a,2)exp {f (k-g)sinvcosvdx}.
By our assumption, r(a, 2) on L, so

r(b, 2)= exp {f(k-g)sinvcosvdx}.
Now, the inequality (" (k g)sin 2v dx > 0

implies

fi’ (k g) sinv cos v dx >= 0

and, consequently, r(b, 2)> 1. If, moreover, (72 + 622) __> 1 on L, then, clearly,
r(b, 2)(722 + 622) ’/2 => 1 on L and we can conclude that there exists at least one
eigenvalue for the system on 2j, 2j+ 1], J 0, 1, ..., p 1. Let T be the set of all
eigenvalues on 2j,2j+,],j 0, 1,-.., p 1.

The inequality of condition (ii) implies

exp (k g) sin 2vdx >__

or r2(b, 2)(722 + 622) > 1. Thus r(b, 2)(722 + 622) ’/2 __> 1, and we proceed as above.
Finally, we consider condition (iii). Since

(k g) sin 2v dx <= Ik gl dx,

we have

Thus, if

then

(k g) sin 2v dx >= Ik gl dx.

lk gl dx <= In (22 + c522),

k- gl dx > ln

and, consequently, r2(b, 2)>= 1/(7 + 622) or r2(b, 2)(722 + 622) __> 1. Again, we
conclude that there exist at least p nonempty sets of eigenvalues To, T,, ..-, Tp_
for the system (1), (2). This completes the proof of the theorem.

COROLLARY 1. Under the hypotheses of Theorem 5, if the integer n can be
chosen arbitrarily large, then there exist infinitely many nonempty sets ofeigenvalues
To, T,, jbr the system (1), (2).

COROLLARY 2. Under the hypotheses of Theorem 5, there exist p nonempty
sets of eigenvalues Jo, J, "", Jp-, for the system (1), (2) such that if
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j O, 1,..., p 1, then a(b, P2) >= [2(m + j) + 3]r. Moreover, if.j >= 1, then the
corresponding .solution {y(x, P2), z(x, P2)} has the property that y(x, P2) has at least
j- zeros on X.

Proof Using the continuity of a(b, 2) together with the fact that a(b, 2) in-
creases from less than (2m + 3)re to more than (2n + 1)re, select 22 such that for
2 _>_ 22 a(b, 2) >= [2(m + j) + 3Ire, j 0, 1,..., p 1. Let J2 be the set of all
eigenvalues on [22, 22+ 1]. Using the proof of Theorem 5, we see that each J2 is
nonempty.

Now, consider co(b, 2)- co(a, 2). Clearly, if for fixed 2, co(b, 2)-
>__ (2q 1)re, q >__ 1, then co(x, 2) 0 (mod 2re) at least q times on X. Since
y(x, 2) 0 if and only if co(x, 2) - 0 (mod 2re), it follows that y(x, 2) has at least
q- zeros on X. Suppose that p2e J2, J >= 1; then a(b, p2)>--[2(m + j)+ 3Ire
_>_ (2j + 1)re. Now,

a(b, p) a(a, P2) co(b, P2) co(a, p).

Thus co(b, P2) co(a, P2) >= (2j + 1)r 2n (2j 1), and we conclude that
y(.:.. ,..,) has at least j 1 zeros on X.

Wc note the following possibilities concerning the eigenvalues of the system
(I), (2)" first, there may exist additional eigenvalues for the system lying outside
the interval [2o,2,_ 1] obtained in Theorem 5; second, the sets of eigenvalues
To,..., Tp_ may be finite, denumerable, nondenumerable or, in fact, contain an
interval; third, T_ and Tj may have an eigenvalue in common, namely 22.

We remark, also, that Theorem 5 has the disadvantage that the conditions
insuring the existence of eigenvalues depend upon the choice of a solution pair
{y(x, 2), z(x, 2)} of (1), (3). We consider now a refinement of Theorem 5 which
overcomes this disadvantage.

THEOREM 6. /fthere exist integers m and n such that

(i) 2 g(x, 2")dx < (2m + 1)re for some 2" on L,

(ii) 2 f(x, 2)dx > (2n + 1)re for some 2 on L,

(iii) 0<p=n- m,
and !f

(iv) M(x) dx <= In (7(2) + (2))/ on L, where M(x) is the Lebesgue in-

tegrable bound of the fimctions k(x, y, z 2) and g(x, y, z 2);
then there exist at least p nonempty sets of eigenvalues To, T,..., Tp_ fi)r the
system (1), (2).

Proof. Let {y(x, 2), z(x, X)} be any solution of (1), (3). Proceeding as in the
proof of Theorem 5, we have, from (19),

2 .f(x, 2)dx _<_ 2 h(x, 2)dx q(2) _< 2 g(x, 2)dx

for each 2 on L. Thus, for 2 2*, we have q(2*) < (2m + 1)r; and for 2 2, we
have q(,) > (2n + 1)re.
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We can now duplicate the proof of Theorem 5 provided we can show that the
inequality (iv) implies r(b, 2)(722 + 622) 1/2 >= 1.

To establish the required inequality, we have

(k- g)sin 2v dx <= Ik- gl dx <= 2 M(x) dx,

and, therefore,

(k g) sin 2v dx >__ 2 M(x) dx.

Thus, if M(x) dx <= In (72 + 22) 1/ on L, then

2 M(x) dx >__ In
7 + 622

and

r2(b,2)(722 +22)=(722 +22)exp 2 (k-g) sinvcosvdx >= 1.

The proof is now completed as in Theorem 5.
Again, we have two corollaries.
COROILARY 1. Under the hypotheses of Theorem 6, if the integer can be chosen

arbitrarily large, then there exist infinitely many nonempty sets of eigenvalues
To, T1, for the system(l), (2).

COROIIARY 2. Under the hypotheses of Theorem 6, there exist p nonempty sets

of eigenvalues Jo, J1, Jp- for the system (1), (2) such that if pj Jj, j O, 1,
.., p- 1, then a(b, p)>= [2(m + j)+ 3rc. Moreover, !f.j >= 1, then the corre-

sponding solution {y(x, pj), z(x, pj)} has the property that y(x, pj) has at least j 1
zeros on X.
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A CLASS OF MULTIPLE INTEGRALS*

B. D. SIVAZLIAN"

Abstract. The class of multiple integrals defined by

f f’"f f(tl+t2+...+t,_s)dpl(tl)q2(t2).’.q,(t,)dtl dt2""dt,,
tl +t2 +...+tn

where for >= O, f(t)e cg and bi(t)e #{, 1, 2, ..., n, is shown to be reducible to the single integral

f{f(u)[qb(u)* bz(U)* 4,-s(u)]} 4),-+(u)* qb,(u)du.*

1. Introduction. Integrals of the form

t +t+’"+n<=

where f(.) is a continuous function, __< s __< n 1, e > 0, r 1,2,..., n, and
the integration is extended over all positive values ofthe variables, have been shown
by the present author to be reducible to a single integral [6]. The so-called
Dirichlet’s integral corresponding in (1) to the case s 0 is also reducible to a
single integral [7, p. 258; this last result is sometimes known as Liouville’s ex-
tension of Dirichlet’s theorem [2, Chap. 251. Other variants of Dirichlet’s integral
have been investigated [2 and most of the results appear in [3.

In this paper we consider the more general class of multiple integrals defined
by

I,-s f f f f(tl + t2 + + t,-s)qbx(tx)
(2) tl+t2+...+tn<_l

2(/2)""" (/)n(tn)dtl dr2.., dtn,

where s 0, 1, 2, ..., n and the integration is extended over all positive values
of the variables. It is shown that if for => 0,f(t) e cg (i.e. continuous) and the func-
tions qbi(t) (i.e., with at most a finite number of points of discontinuity in every
finite interval and the integral f’olqbi(u)] du has a finite value for every > 0), 1,
2, ..., n [4, Chap. 7], then (2) is reducible to a single integral whose integrand,
involving convolution forms of the functionsf(.) and qi(" ), is a function of class J,(

the absolute convergence of the resultant single integral would thus be asserted.
The relevancy and importance of the results stem from several facts. First the
formal evaluation of a general class of multiple integrals given by (2) is reduced to
a set of simpler analytic computations since the convolution of a large class of
functions can be explicitly determined using the theory of operational calculus
1], 4]. Second, a necessary condition for the convergence of integrals of the form
(2) is provided. Finally, it is easily verified that the formulas established in [7, p. 258]
and [6] follow as a special case.
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2. A special case" s 0. Consider first the integral

(3) I.= f f... f f(tl + t2 + + tn)dPl(tx)dP2(t2).., dpn(tn)dtl dt2 dtn.
t +t2+...+tn <=

Let 2 3 + t4 + + tn then

(4) t3 -- t4 -- "q- t"

f f f(t + 2 + 2)01(t1)02(t2)dt dt2.., dr,,
t+t2l--2

To reduce

I ff
tl+t2_< 1--,

f(tl -+- t2 + 2)dP1(tl)z(tz)dt1 dr2,

let tl z co and 2 o; then

(5)

I-- f
-2

,,1 -2

f(r + 2) q51(r

f(z + 2)[l(z),02(z) dz,

where the symbol * denotes the usual operation of convolution. Using (5) in (4)
yields

ff...f )3(t3’ Dn(tn’ ;f -2

t3+ta+ ""+tn <-

f(z + 2)[0,(r) * (/)2(T) dr dr3 dtn

ff...f
z+t3+ ""+tn

f(r -- 3 -[-... -+- tn)[01(r)* O2(r)]b3(t3)... dpn(tn)drdt3 dtn.

Applying the previous reduction procedure successively to this last integral, we
obtain the final result

(6) In | f(r)[0 l(r) * (/)2(r) * * (/)n(r) dr.
d 0

Since the convolution of functions of class ,;( is also a function of class o [5], it
follows that if f(. )e c and Oi(" )e ,ff, i= 1, 2, .-., n, then the integrand in (6)
is a function of class , hence (6) exists and converges absolutely. In addition, the
results of Liouville’s extension of Dirichlet’s theorem are easily recovered from (6)
if we set di(ti) g’-1, i > O, 1, 2,..., n.

3. The case when s 1, 2,..., n- 1. We now consider the multiple
integral (2) and write it as

In-s= f...f bn-,+ l(tn-s+ 1) bn(tn)
(7) tn-s+l+’"+tn<=l

n-,(tn-,+ + + tn) dtn-,+ dtn,
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where for k 1, 2,..., n, we define

(8)

A(T) f(tl + t2 +’’" + tk)

dpl(tl)dp2(t2)’" Ck(tk) dtl dt2"" dtk.
In (8) let tr vr (1 T), r 1,2,..., k; we obtain

k(T) _]_]’"1 fE(l-T)(Vl+V2+...+vk)]
Vl +V2 +".+Vk <_

lEVl(1- T)]2[v2(1- T)] k[Vk(1- T)](1- T)Aav dr2 dVk.
From (6), this last relation can be expressed as the single integral

(T) (1 T) f[(1 T)]

{,[(1 T)z] * 2[(1 T)3 * * k[(1 T)3} dz.

Making the change in variable (1 T) u, we obtain

(9) (T) f(u)[4(u) * 4(u) * * 4(u) du.

Substitution of (9) in (7) yields

tn-s+ +"’+tn

( + +)

f(ul[4(u, (ul, 4_(u .u_+ d
o

.1

f(u)[b 1(/,/): (/)2(u), )n_s(bl)3
0

if)n-s+ l(tn-s+ 1)’’" d?,(t,)dt,_+ dt, du.

Noting that the inner multiple integral is similar to (8) with f(-) 1, we obtain
using (9)

-1

I._ j f(u)[cl(U) * b2(u)* * b._(u)]
0

(o)
,.1

j [(/)n-s* I(V) * * (/)n(V)] dv du.
o

Alternatively, using the expression form for (0) yields

(11) In- f(u)EdPl(U) * q2(U)* * On_s(u)]}*dn_s+ l(U) *’’" ,n(u) du.



A CLASS OF MULTIPLE INTEGRALS 75

Forf( cd and 4)i(. o, the integrand in (11) is clearly a function ofclass
hence the integral exists and converges absolutely. Expressions (10) and (11) are
both useful. Setting i(t) ’- 1, i > O, 1, 2,..., n, and using the form (10),
we can easily obtain the results in 6].

4. Example. Consider the integral

(12) f ff f(tl + t2)Jo(tl)Jo(t2)t l/2 dr1 dr2 dr3,
tl +tz +t3 <-

where d0(’) is the Bessel function of the first kind of order zero. Following
Mikusifiski [4], let {4(t)} denote the function 4(t) and s denote the differential
operator; then

{Jo(t)} 2 (1/x + 1)2 {sin t}.
Using the form (10), we can write (12) as

f(u) sin u t 1/2 dt3 du 2 f(u u sin u du.

Acknowledgment. The author wishes to thank Professor Jan Mikusifiski for
helpful discussions.
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ON THE METHOD OF STATIONARY PHASE FOR
MULTIPLE INTEGRALS*

F. DE KOK

Abstract. Asymptotic formulas are proved for double integrals of the type

ffGeiks’.v)t(x,y)dxdy fork--, 0,

in which G is a domain of the form Pl(Y) <= x <= P2(Y), dl __< y __< dE, where d,d2 are constants and
Pl(Y), P2(Y) are continuous. The functions s(x, y) and t(x, y) are real and continuously differentiable,
and G contains exactly one stationary point of the integrand, that is, a point at which (?sfi?x and s/?y
both vanish.

Several applications are made, including a vibrating potential of the form

ffG eikr
u(Q)--df

and a triple integral

fffn eikstx’Y’z)t(X, y, Z)dx dy dz.

Introduction. The method of stationary phase can be applied to double
integrals of the form

(A) ;fG eiks(x’Y)t(X’ y) dx dy.

A survey of the work in this field together with an extensive bibliography
was given by Chako [11. Almost at the same time the thesis of Boin [2] appeared
which covers the same field. However, some of the proofs in these publications
are incomplete, and in places incorrect results are given. In particular, this concerns
the contribution of the boundary of the domain G to the asymptotic behavior, and
the estimate of the remainder term. In the one-dimensional case van der Corput
[3] has shown that a boundary point gives a significant contribution; in this
paper we prove that this is also true for multiple integrals.

In 1 we first prove a theorem on the asymptotic behavior of the integral

11 eikxf(x)dx for

The asymptotic behavior of this integral is well known but we give an explicit
bound for the remainder, which appears to be new.

In the more general case,

12 ei’g(xf(x) dx
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with g(0) g’(0) 0, g"(x) > 0 for 0 =< x =< a; we can transform this integral into
the type 11 by introducing the new variable y x//-g(x). It is then necessary to
introduce the inverse function x k(y) of y x/ic, and Theorem 2 gives bounds
for the derivatives of this inverse function.

With the help of these theorems we can find an estimate for the remainder
by an asymptotic formula for an integral of the type I2, which is useful in dealing
with the asymptotic behavior of integrals of the type (A) when the domain G
contains a stationary point of s(x, y). We discuss this in four applications. Then
in Application 5 we deal with a vibrating potential and in Application 6 with a
three-dimensional integral.

1. Main theorems.
THEOREM 1. If J’(X) is N times continuously differentiable for 0 <_ x <= a,

N >= 2, a > O, thenfor k > O,

I(k) ff eXf(x) dx Av(k) + B(k) + R(k),

where

(1.2)

(1.3)

(1.4)

Au(k) . .F(-n + 1/2)e(n+ 1)ra/4f(n)(o)k-(n+ 11/2,

N-1

Bu(k) b,,+ k-t’+ 11,
n=O

b.+ (-i)"+eik" (-1)(2n v) (2a)_2.+_ft)(a)
=0 - v)

2- 3/2F(N/2 1/2)
IR(k)] mk-+ )/2

(N- )

u b". k-u-
(2N n) f(n)(a)l+ b -2N-1 .

,=0 (N n) n
M=maxlfm(x)] for O x a, b a

Proof Following a paper by A. Erd61yi 4] we consider the function

G,,+ 1(x)
(- 1)n+a fxn! (z x)neikz2 dz

n =0,1,2,..., x>0

the path of integration being the half-ray z x + sei/4, s > O. Then we have

(1.6) G,+1(0) (-1)"+1 -nF(n/2 + 1/2)e,+ 1)ra/4k-n+ 1)/2

(n+ 1)ni/4eika2 fO k(bs+s2)eikbs(1.7t G,+ l(a) (-- 11n+ a.e s"e- ds.

We denote the integral in (1.7) by In.
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Now we have
L /,eL+ 2L+2

,s v’ (- s2) + s

=Z0 I[ + (- 1)
(L + 1)!

for a suitable t, where -ks2 < < 0. Thus

(1.8)
I. sn+ 2le-kbs(1--i) ds + TL+

l=-O

(1.9)

1=0 -n-l- lb-n-2l-
n+2/+

kL+ fOX sn+ 2L + 2e- kbs ds
(L +
kL+

(L + )!

From (1.8), (1.9) we deduce that

--(n + 2L + 2)!(kb)-"- 2L- 3.

L

(1.10) I, c,,k -"--1 + 0
(n + 2L + 2)

/=0 (L + 1)!
"b-n-2L-3k-n-L-2 [01 < 1

with

(1.11) c,,, .(- 1)(n + 2/)!
1!

e(n+ 2/+ 1)rci/4(2a)-n-21-1"

In (1.10) we take L N-n- 1, n 0, 1,..., N- 1. Then it follows from
(1.7) that

n
e(n+ 1)ti/4eika2 Cn,lk

1=0
(1.12)

(2N n)! )
+ 0

(N n) b-2U+’-k-u-f"
Integration by parts gives

(1.13)

N-1 N-1

I(k) (- 1)"+ lf(n)(O)Gn+ 1(0) -[- 2 (-- 1)nf(n)(a)Gn+ 1(a)
n:0 n=0

+ (- 1) f(m(x)a(x) dx.

From (1.6) it follows that the first sum in (1.13) equals AN(k). From (1.12) we
deduce

N-1

CN(k) (- 1)"f(")(a)G.+ l(a)
n=O

e(n+ 1)ti/4 N-n(1.14) f(n)(a)eika2.., Cn,lk-n-l-
0 /=0

NI (2N- n)’ If(’)(a)l+ Ob- 2N-

,-o (N- n)! n!
_b k-N-1.
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The first sum on the right-hand side of (1.14) equals BN(k) because the coefficient
ofk-V-l,v=0,1,...,N- 1, in this sum is

e(n+ 1)rci/4

eika2c nf(n)(a).d + ,,
n=O

In combination with (1.11) this yields

dv+ eika2
(2v-

,=on!(v- n)!

For N > 2 we have

(- 1)-"+ xi+ (2a)-2+"- lf")(a) b+ .

fi fN)(x)G(x) dx

1
f(N)(x)eikx2 SN e- k(/Sxs + s2ikv/xs d dx

(S 1)

1
f(m(x)eiXe-XSeixs dx e-s- ds

(N- 1)

M (@-s-e-s s /F(/ /M_(+

(- (-

This completes the proof.
THEOREN 2. Assume" The real .[unction g(x) is N + 2 times continuously

differentiable for 0 x p, p > O, N 2;

g(O) g’(O) O, g(x) m for O x p, O < m 1.

Let x k(y), 0 y a g(p) be the inverse function 4Y x)a
Ig((x)lB forO x p, 1=2,3,...,N+2.

Then

Ik")(y)l _< A"- 1Pn(B3, Bn+ 2)m -5/2)"-2),
0<y<a n= 2,... N

where Pn(B3, Bn+ 2) is a polynomial in B3, Bn+ 2, with coefficients depend-
ing only on n and A max (1, p).

Proof For 0 =< x _<_ p we have

g(x) g’(t) dt gt2)(s) ds dt

Write

(x s)g(2)(s)ds x2 (1 u)g(2)(xu)du.

(1.15) W(x) (1 u)g(2)(xu) du
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Then

(1.16) {q(x)} 2 (1 u)g(2)(xu)du,

From (1.15) it follows that

xUe(x).

(1.17)

and from (1.16),

< q’(x) < X/2

2q(x)q’(x) u(1 u)g(3)(XU) du.

Thus 12q(x)q’(x)l =< n3

Combining this with (1.17) we see that

B3(1.18) Iq"(x)l =<

From (1.16) we deduce, for n 1, ..., N,

(1.19) wtk(x)Wt-k(x) (1 u)ungt+e(xu)du I,
k=O

B,
(1.20) II,I _-< B,+ 2 (1 u)u" du + 2

o (n + 1)(n + 2)"

Next we shall prove

(1.21) I(n)(X)l Qn(B3, B4, Bn+ 2)
m 1/2

O<=x<__p, 1 <n<=N,

where Q, is a polynomial in B3, ..., B,+ 2, with coefficients depending only on n.
For n 1, (1.21) is true on account of (1.18).
From (1.19) we deduce

(1.22)

Suppose that (1.21) holds for tP(*)(x), k 1, ..., n ;then it follows from (1.22),
(1.20) and (1.17) that

Bn+ 2 1 n-, )]q(n)(x)] =< 2(n + 1)( 2)(m/2) x/2 +

Q,(B3, B,+ z)Qn_,(B3, Bn_,+2)
m t/2

The validity of (1.21) then follows by induction.
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We now considerf(x) x/-), 0 <= x <_ p. Then

g’
f’(x)=2./(x) for 0<x=<p.

(We write g’(x)/2gx/)) =_ (g’/2V@ (x) .) Since 0 < (g’Z/g)(x) 2g(Z)(t) for a suitable
t, 0<t<x, wehave

(1.23) f’(0) =< f’(x) <_ for

From f(x) xtP(x) it follows that

fo’)(x) ntpt 1)(x + xtPt")(x),

On account of (1.21) we have for 2 __< n __< N,

if,)(x)l < n.Q,-l(B3, Bn+ 1)
mn-3/2 + P

<A
nQ,,_ +Q,
m 1/2

with A max (1, p). So

O<=x<=p.

O<=x<=p, n= 1,...,N.

Qn(B3, Bn+ 2)
m 1/2

(1.24) If")(x)l =< A Rn(B3, Bn+ 2)
m 1/2

O<=x<=p, 2<=n<=N,

where R, is a polynomial in B3, ..., B,+ 2, with coefficients depending only on n.
It is known that

(1.25) k")(y) X,,{ f’(x), f")(x)}
{f’(x)}2"-

n- 1,...,N,

where X, is a polynomial inf’(x), ..., f")(x). If

0<y<a

X,, a,,2,...,,{f’(x)}l{fZ)(x)}2... {f")(x)}",

then we have for each term of this polynomial,

(1.26) =n-1, v 2(n- 1).
v=l

We write (1.25) in the form

(1.27)
{ f(Z)(x)}2 { f(")(x)}"

{f’(x)} 2"-’-’,
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Combining this with (1.23) and (1.24), we see that

(1.28) ]k(")(y)] = An-1 Zn(B3, B,+ 2)
m3(, 1)/2 (m/2)’- 1/2’

because by virtue of (1.26),

ev__<n-1,
v=2

(v -1/2) __< -(n 1),
v--2

is a polynomial in B3, ..., B,+ 2 with coefficients depending only on n.
Theorem 2 now follows from (1.28).
Remark. We can find bounds for k’(y), k(Z)(y), k(3)(y) for 0 =< y < a by a straight-

forward calculation. We write k,. instead of k().
If y--X//-g(x), then dy/dx--(gl/2V)(x),

0 < y =< a. Since
SO k l(y) (2x//g 1)(x) for

gl 1
0 < (x) 22(t) __< - for 0 < x =< p, 0 < < x,

we have

lim (g/g)(x) 1/(2g2(0)).
x+0

Thus kl(0) 21/2{g2(0)}-1/2, 0 < k(y) =< 2/2m-/2 for 0 =< y =< a. Moreover,

2gg2 g
Y2 - g3/2 (x), Y2 2 2gg2

g
k2(y y31 g (x) for 0 < y =< a.

Next

2gg2 g _2__(t)g (x)
-glg2

Thus

lim
x$0

2gg2 g
g31 (x) 1/2g3(0){g2(0)} -2

2gg2 gZ1(x
g31 <=-B3m-2 for O < x <= p.

Hence,

k2(0 _g3(0){g2(0)}- 2, Ik2(Y)l =< -}B3m-2 for 0 _< y _< a.

Finally,

/2 3g2(2gg2 g) 2gglg3k3(Y) 4
gl

(x)
gl g for 0< ya.
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We have

A(x)
3gz(2gg2 g2) 2gglg3

(x)

3g3(2gg2 g) + 3gz2gg3 2gg 2ggzg 2gglg4(t
4g3g2

Hence,

This yields

5g3(2gg2 g2) g g4(t) 0 < < x.4g31g2
(t)

2 g21 g2

lim A(x) {g3(0)} 2 {g2(0)} -3 1/4g4(0){g2(0)}- 2,
x+0

IA(x)l -Bm--3 + 1/4B4m -2 for 0 < x =< p.

k3(0 _N/f{g3(0)} 2{g2(0) 7/2 1/2N//g4(0){g2(0)} 5/2,
5./2- 2 7/2 1/2N//gB41T1- 5/2Ik3(y)l -6v -B3m + 0 <= y <= a.

2. Application 1. We suppose that s(x, y) and t(x, y) are real functions defined
in a domain

H{p(y) =< x =< Pz(Y), el --Y< < 672}

where el < 0, e2 > 0, Pl(Y) < 0 and Pl(Y)is continuous for e <= y =< e2, P2(Y) > 0
and Pz(Y) is continuous for e =< Y =< e2 s(x, y) and t(x, y) have as many continuous
partial derivatives in the domain H as is necessary for the correctness of the proofs.
Furthermore, we suppose

(S 2S
(2.1) c3x(0,0)=0, :/=0 inH.

From (c3s/ax)(x,y)= 0 it follows x o(y), o(0)= 0 in a y-interval
el =< el < 0 < e2 _<- e2. So there exist numbers dl and d2, 1 dl < 0 < d2

such that

Pl(Y) < q(Y) < P2(Y) for d y =< d2.

We now determine the asymptotic behavior of

P2

(2.2) 1 l(k) eiks(x’r)t(x, y) dx,
"Pl

for k -+ oe. We have

y constant, d =< y _-< d2,

Ii(k) eiks"’v) ei(s(x’’)-("))t(x, y)dx + ei((x’’)- y)dx
o p

eilcs(q’y){I 11 + I12}
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We write

I1 eigtX)h(x) dx, g(x) s(x, y) s(rp, y), h(x) t(x, y).

Then with gv --- g(V), we have

g(cP) gl(cP) 0.

Suppose first that c:s/cx > 0 in H; then there exists a number m such that

c3es
(2.3) 3x:_>_m>0 inH.

Thus ge(x) => m for p __< x =< p:, d =< y __< d:.
Let x k(), 0 =< . =< a: x//p:) be the inverse function of . xfg(x),

in p =< x p. Then we have

2

111 ei’.:f(y) dy f() h(k(f))kl().

If we apply Theorem 1, with N 3, we find

(2.4)

(2.5)

1,1 A3(k + B3(k) + R3(k),

A3(k 1/2F(1/2)e.,/f(O)k- 1/2

__
1/2ifl(O)k-1 + 1/4i(_)e3,i/4f2(O)k- 3/2

with

f(O) h(k(O))k,(O) h(rp)k,(O) t(cp, y)21/2{g2(cp)}- 1/2

fc32s }-1/221/2t((p, y) x2(qg, Y)

Z(0) h l(k(0))k(0) + h(k(O))k2(O) hl()k(0) + h()k2(0)

Ot (2s)}-1 2 3S
2(,y)(, y t(O, y)(O, y)(O, y)

A(o) h:(e)(O)+ 3hi(e),(O):(O) + h()3(O)

2t t
x:(e, y)23/:{g:(e)} -3/: + 3(, y)2’/:{g:()} 1/:. _g3(e){g:()}-:

+ t(, y)[{g3()}:{g:(e)}- /: kg,(e){g:(e)}-
s

[: ff2S }-7/2 f3S }2+ t(, y)
(X2 (,

y)
[X3 (,

y)
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(2.6) B3(k blk -1 + b2k-2 q- b3k-3,
b -ieik"(2a2) if(a2) --ieikg(P2)2 {g(P2)}- i/2h(k(az))kl(a2)

ieik{s(p:,,)-(q,r)}2-{g(p2)}- /2h(p2)2{g2)} /2{gl(P2)}-

ieik{S(pE,y)- s(,y)}t(p2, Y P2, Y

(2.7) b eik{2(2a2) 3f(a2) (2a2)- 2f(a2)}

(2.8) ba ie’k"(lZ(Zaz)-f(a2)- b(Zaz)-f(a2) + (2az)-afz(a)}.
From a2 g(p)it follows that

a g(P2) Sz,y) s(, y)
2 x2

for a suitable t(= t(y)), where < < P2.
Since P2- > 0 for d y d2 it follows from (2.3) that S(P2, y)

S(, y) m2, d y d2. Thus

(2.9) a O(1) uniformly in y, d y d2.

Further, we have

f(a2) h(k(az))k(a2)= h(pz)k(az)= t(p2, y)k(a2),

L(a2) h(pz)k(a2) + h(pz)kz(a2) (P2, y)k(a2) + t(p2, y)kz(a2),

fz(a2) h2(pz)k(a2) + 3h(pz)ka(az)k2(a2) + h(pz)k3(a2)

2t Ot
0xz(P2, y)k(a2) + 3(p2, y)kx(az)kz(a2) + t(p2, y)k(az).

If A max (1, p) with p max {Pz(Y) (Y)}, d y d2,

ks
Bk=max (x,y) onH,

then it follows from Theorem 2 that

(2.10) f(a:) O(1), L(az)= O(1), fz(a:)= O(1) uniformly in y,

d <=y<=d2

It then follows from (2.7), (2.8), (2.9), (2.10) that

(2.11) b2 O(1), b3 O(1) uniformly in y, d _< y =< d2.

Next we consider the remainder R3(k). By Theorem 1 we have

with b a.x//, M max If(.)l, 0 __< __< a.
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We have

f3(f) h3(k(y))k(y) + 6h2(k())k2i(Y)k2() + 3hl(k())k2()
+ 4hl(k())kl()k3() + h(k())k4()

33t 2
cx(X, y)k(y) + 6x2(X, y)k(Y)k2@) + 3xx(X, y)kz()

cqt
+ 4xx(X, y)k,()k3() + t(x, y)k4(fO.

From this it follows by Theorem 2 that

f3(Y) 0(1) for 0 y < a2, uniformly in y, d < y < d2.

Thus

(2.13) M3 O(1) uniformly in y, d, y d2.

From (2.9), (2.12), (2.13) we deduce

(2.14) R3(k O(k -2) uniformly in y, d y d2, k >= 1.

So we have proved

(2.15)
11, 1/2C(1/2)ei/4f(O)k -1/2 + 1/2if(O)k- + 1/4r()e3i/4f2(O)k- 3/2

.+. bl k- _. O(k-2)

uniformly in y, d y =< d2, k > 1.
Now we deal with

112
q’

eik{s(x’v)-s(’Y)}t(x, y) dx eikg(x)h(x) dx.

Let x k(y), 0 =< y =< a N/@(Pl) be the inverse function of y , in
p, __< x < q. Then

1

112 eikY’2*f(y) dy, *f(y) h(k(y))k,(y).

In this case we have

kl(O _2,/2{g2(q)}-1/2, k2(O 32_g3(q)){g2(qg)}-2,

k3(O __x//{g3(qg)}2{g2(qg)}-7/2 + _x/g4(q){g2(cp)}-5/2
*f(O)=--f(0), *f,(O)=fl(O), *f2(O) --jz(O).

Application of the method which led to (2.15) yields

1,2 *A3(k)- *B3(k *R3(k),
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where

*A3(k) 1/2F(1/2)e’/*f(O)k- /2 + 1/2i,f(O)k- + 1/4F(23_),f2(0)k-3/2,

*B3(k *b k- 2 *+ ,bEk + b3k 3,

*bl ieika(2al) l’f(al) ieikg(Pl)2-X{g(P,)} 1/2h(k(al))kl(a,)
ieik{s(P’Y)-s(q"v)}h(P l) {g (P l)} -1

ieik{s(p,,.v)_s(e,y)}t(pl y) 8S(pl, y)

Thus,

(2.16)
1,2 1/2r(1/2)e’/f(O)k- ’/ 1/2if(O)k- + 1/4F()e3/f2(O)k- 3/2

+ *b,k-1 + O(k-2)

uniformly in y, d =< y =< d2, k > 1. From (2.15) and (2.16) it follows that

(2.17)

+ ieiks(p,,.v)t(p’’ y)
CS

(p 1, Y /- q._ O(/- 2)

uniformly in y, d y <_ d2, k > 1, with

f(0) 21/2t(q), y)
(ax2 (99, y)

f2(O) 23/2
632t 632S )/ -3/2

x(, y)(x (, y 23/23t {2S )1-5/233SUx(e, y) x(e, y .x3(e, y)

F5 f62S
+ Y) L ’/2 y

If 82S/8X2 < 0 in H, then we find by considering the complex conjugate of Ii(k)"

(2.18)

! l(k) r(1/2)e-’/f(O)e’(’r)k- / + 1/2F()e- 3i/4f2(O)eikS(’Y)k- 3/2

ieiks(p2,y)t(p2, y)
8s

(P2, Y k-1

+ ieiS(p,Ot(p,, y)
8s

(P,, Y k- + O(k- 2)
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uniformly in y, d _-< y _-< d2, k > 1, with

{ G2S )} -1/2

f(0) 21/2t(q, y) --xZ(p,y

f2(O)=2a/202t( {-t?2s ))-3/2(pY) (,Y

(,Y) - ,Y) tx3(,y)

3. Application 2. Our starting point is Application 1, but in addition we
suppose that

8s
(3.1) By(0, 0) 0,

(3.2) D2(x y) cx2 8y2 cxy (x, y) :/: O,

in the domain G{p(y) <= x <= Pz(Y), dl =< y -<_ d2}.
We shall determine the asymptotic behavior of

I(k) fro eiks(x’Y)t(X, y)dx dy for k .
If we write G(y) s(q, y) s(0, 0), then

8s do s Os
GI(Y) x(tP, Yly + -fy(q, Y) yy((P, Y),

82s dip I2S
G2(y) cxc3y

qo Y -y + -y2 q) Y)

((p’ y’J/cx----25(q)’ y) + cy----g-:G((P’ y) Dz c3x21
((p, y)

so that G(0) G 1(0) 0, G2(y) 0 for d =< y d2. By virtue of (2.2) we have

I(k) Ix(k)dy.

We distinguish four cases.
Case I. 82s/Sx2 > 0 in G, Dz(X y) > 0 in G. Then it follows from the fact that

(2.17) holds uniformly in y, d _<_ y < d2, that

(3.3) I(k) Hl(k + H2(k) + H3(k) + H,(k) + O(k-)
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with

(3.3.1)

(3.3.2)

(3.3.3)

(3.3.4)

We write

dy.k-*/2

(3.4)
LX2 h(y).

We have

eU’6’)h(y) dy 2*/2r(1/2)e’*i/4h(O){G2(O)} */2k- ,/2

(3.5)

If we put

(3.6)

ieiktd2 h(d2) k-* + ieikc(d*)
h(d,) k-* + 0(k-3/2).

G,(d2)

2 S
r(x, y) t(x, y) -x2(X, y)

/ay
y)’

then

(3.7)
h(d,) h(d2)

r(qg(d,),d,),
G(d,)

r(cp(d2) d2).

From (3.5) it follows that

d2

eikaO’)h(y) dy 2’/2F(1/2)e=’/4t(O, 0){D2(0, 0)}-X/2k-1/2

tkG(d2)ie" r(q)(d2),d2)k + ieikC’(d)r(q)(dx),d,)k + 0(k-3/2).

We deduce from (3.3.1) and (3.8) that

(3.9)

H,(k) 2rci{D2(0, 0)}-*/2t(0, O)eik*(’)k-*

21/2F(1/2)e3ni/4eiks((dz)’d2)r((P(d2), d2)k- 3/2

+ 2*/2r(1/2)eai/4eiksttd)’d)r(qg(d,), d,)k- 3/2 + O(k- 2).

From (3.3.2) and (3.5) with h(y) f2(0) (for the meaning off2(0) see (2.17))it follows
that HE(k) O(k-2).
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So our result is

I(k) 2rci{D2(0, 0)}- 1/2t(0, 0)e’ks(’)k-

(3.10)
21/2F(1/2)e3i/4eikS(o(az),aZ)r(q)(d z) dz)k- 3/2

+ 2X/2F(1/2)e3i/4eik(q,(a),a)r(q)(dl), dl)k- 3/2

+ H3(k)+ H4(k)+ O(k-2).
Case II. O2s/c?x2 > 0 in G, D2(x, y) < 0 in G. Then (3.3), (3.3.1), (3.3.2), (3.3.3),

(3.3.4) are valid. Instead of (3.5)we use

’2

21/2F(1/2)e-"’/4h(O){ Gz(0)}-ekG(r)h(y) dy 1/2](;- 1/2

(3.11)
ieikG(d2) h(d2) ,-1 ieikG(dx) h(dl) 3/2)Gi(diI At- G(dl)K-l -3c- O(k

Thus

(3.12)

eikaY)h(y) dy 21/2F(1/2)e-i/4t(O, 0){ D2(0 0)} 1/zk- 1/2

ieikC.(dz)r(q)(d2), d2)k- + ieikG(dl)r(q)(dl), dl)k- + O(k- 3/2).

We deduce from (3.3) and (3.12) that

(3.13)

Case III. 2S/X2 < 0 in G, D2(x y) > 0 in G. From the fact that (2.18) holds
uniformly in y, d _-< y =< d2, it follows that

(3.14)

with

I(k) Ll(k) + L2(k) + H3(k + H4(k) + 0(k -2)

f.’ {s )}Ll(k 21/2F(1/2)e-ni/4eiks(O,O) eikO(Y)t(q), y) -x2(qg, Y

(3.14.1)

dy.k-/2

(3.14.2) L2(k 1/2F()e- 3ri[4ek(O,O) eika(Y)f2(O dy. k- 3/2

and H3(k) and H4(k) as in (3.3.3) and (3.3.4).
We put

{ 12 S }-1/2(3. 5) t(q,, y) -b-x(q,, y) h(y).
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From (3.11) it follows that

2

eik(Y)h(y)dy 21/2F(1/2)e-i/4t(O, 0)}-1/2k-1/20) {D2(0,
t3. 61

ieika2)r(q(d2),de)k + ieika,(p(dl),dl)k -, + O(k-a/e).

Equation (3.14) combined with (3.16) yields

l(k) 2rci{D2(0, 0)}- ’/2t(0, O)eiks(’)k -1

2’/2F(1/2)ei/eia)’a2)r(q(d2), d2)k- 3/2

(3.17)
+ 2’/2F(1/2)ei/4eiks(o(d)’a’)r(q(dl), dl)k- 3/2

+ H3(k) + H(k)+ O(k-2).
Case IV. c2s/cx2 < 0 in G, D2(x, y) < 0 in G. Then (3.14), (3.14.1), (3.14.2)

are valid.
By virtue of (3.5) we have

2

eik6(Y)l(y) 21/2F(1/2)eni/4t(O, 0)}-1/2k-,/2dy 0){ D2(0,

ieiktdr(tp(de),d2)k + ieik6td,(q(d,),d,)k + O(k-2).

We deduce from (3.14) and (3.18) that

I(k) 2re(- DE(0, 0))- ’/2t(0, O)eikst’)k -’

2’/2r(1/2)ei/*eiks(’P(d2)’a2)r(q(d2), d2)k- 3/2

(3.19)
d- 21/2F(1/2)ei/4eiks((d’)’d)r(q(d ,), d,)k- 3/2

+ H3(k) + H,r(k)+ 0(k-2).

4. Application 3. Our starting point is Application 1, with the supplementary
conditions

s
(3.1) y(0, 0) 0,

(4.1)

(4.2)

It may be remarked that

D2(0, 0) 0,

G3(Y # 0 for d =< y =< d2.

(3S 3S (3S 2S d2q)
+ 2 c3xcy(q), y) + -(q), Y) + xc?y(q, Y)y2

and dq/dy, d2o/dy2 are determinable from the equations

(2S (2S
Y) + (q’’ y) o,

c33s dip 6 3
S (2S d2q

+ 2 c?xZ..c3y(q, y)y + c?xc3y2
q), y) + xz(q), Y)y2 O.
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With these assumptions we shall determine the asymptotic behavior of
I(k). We discuss the case c2s/Ox2 > 0 in G and G3(y > 0 for dl -< y =< d2. The
other three cases can be treated in the same manner.

From u3 G(y), 0 <= y <= d2,it follows that y k(u), 0 <_ u _< a {G(d.)} 1/3,
and from u G(d2) G(y), 0 <_ y <= d2, it follows that y =/(u), 0 <_ u <_ G(d2).
We put

(4.3) a(u) h(k(u))k(u), fl(u)= h(l(u))l(u).

By Erd61yi’s Theorem 4 in [4], we have

(4.4)

N- F((n + 1)/3) + 1)/3ei’G’)h(y) dy
3n

eO’ )ra/6on(O)k-n +
n--O

N-1., e-t.+ 1)i/2eitc6{dz)fln(O)k-tn+ 1) q_ o(k-lV/3).
n=0

From /,/3 G(y), d <= y <- 0 it follows that y m(u), 0 _<_ u =< {-G(dl)}l/3,
and from u G(y)- G(dx), d =< y _-< 0, it follows that y n(u), 0 < u -G(dl).
We put

(4.5) 7(u) h(m(u))m (u), 6(u) h(n(u))n (u).

Then

)!
-1 F((n + 1)/3) _t,+

o
ei’atY)h(y)dy

3n
e 1),i/6y,,(O)k-t,,+ 1)/3

n=O

N-1(4.6) + 2 e(n+ a)=i/2eikG(d’)6n(O)k-(n+ 1) q_ o(k-N/3).
n-O

By means of (4.4), (4.6) and the equation a,(0) (- 1)"+ 17,(0), we derive

1 F((n + 1)/3) {eO, + 1),ti/6 + (__ 1).e-(n+ 1)rti/6}O{n(O)k-(n+ 1)/3

d

eikG(’v)h(Y) dy
.=o 3n!
N-1

(4.7) Z (-i)"+ leikG(dz)fln(O)k-(n+ 1)

n=0

N-1

+ i,,+ leikGa,),3,,(O)k-O,+ 1) + o(k-U/3).
n=0

From this we obtain for N 6,

ei’a(Y)h(y) dy r - 2 cos a(0)k- 1/3 + -F 2i sin -6-0 (0)k- 2/3

(4.8) )

_
11

2i sin a3(0)k- 4/3 q_ ..1-’ 2
57r

COS --6-o4(0)k- 5/3

+ ieU,a(,2)fl(O)k + ieG(e,b(O)k q_ O(k-2).
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After this preparation we consider I(k). Relations (3.3), (3.3.1), (3.3.2), (3.3.3),
(3.3.4) are still valid, and we derive, from (3.3.1) and (4.8) with

[Os }-h(y) t(q), y) x2 q), y)

the following result:

..1.-0(k-13/6).

From (4.3) and (4.5) it follows that

(4.10)

/ 1/2

o(0) h(k(O))kl(O h(0)kl(0) t(0, 0)(c32sX2(0, 0 61/3{G3(0)} 1/3

fi(O) h(l(O))ll(O)= h(d2)ll(O),

-Z025 )} -1/2

h(d2) t(q)(d2), d2)
(ex

@(d2), de

/I(U) --/ x(q y) -Jr- ((19, y) (q),

/1(0 1/S((p(d2), d2).

Thus

(4.11) fl(O) r(q)(d2), d2) (for r(x, y) see (3.6)).

In the same way,

(4.12)

fi(O) h(n(O))nl(O)= h(dl)nl(O),

2S )} -1/2

h(dl) t(qg(dl),dl) (x2(qg(dl),d
n(u)

/ -y (q), y), n(O) (q)(d),d),

,5(0) r(q(d ), d).

From (3.3.2) and (4.8) with h(y) f2(0) (for f2(0) see (2.5)) it follows that

1 )3i/4eiks(O,O)l ) 7C
(4.13) H2(k F e -F 2 COS-*(0)k -11/6 + 0(k-13/6).
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Finally we deduce from (3.3), (4.9), (4.10), (4.11), (4.12), (4.13) the result"

I(k) eikS(’)(alk- 5/6 + azk- 7/6 + a3k- 11/6)
21/2F(1/2)e3i/4r(p(d2) d2)eikst’ta2)’d2)k 3/2

+ 21/2F(1/2)e3i/%(q(dl), dl)eiktdl)’dl)k 3/2

+ H3(k)+ H(k) + O(k-2).
It is easily seen that

a --w-F F ei/4t(O, O) O) {G3(0)) -1/3.

5. Application 4. Let p(o) be a positive and continuous function for
0 =< q =< 2n with p(0)= p(2n). Let r p(o) be the polar equation of a curve C.
Then we denote by (3 the union of the curve C and its interior. We suppose that
s(x, y) and t(x, y) are real functions defined in the domain G, and s(x, y) and t(x, y)
have as many continuous partial derivatives in the domain G as is necessary for
the correctness of the proofs.

Furthermore we suppose that

(5.1) (0 O) 0cx(O, o) o, y
2S

(5.2) Ox2(X,y) 0 in G,

c32s 82s
(5.3) D2(x, y)=

[cx2 @2
With these assumptions we shall prove

cxay]
(x, y) > 0

(5.4)

in G.

I(k)= ffGeiks(x’.v)t(x, y) dx dy

2nkr{D2(0, 0)}-1/2t(0, O)ek’t’)k-
ekmt(R)p(q)) (R) dp. k- + O(k--2),

o

where R is the point with polar coordinates (P(q0, 0), 1 if 2S(0, 0)/(X2 > 0,
or er 1 if c?2s(0, 0)/cx2 < 0. For the time being we assume that (2S/X2 > 0 in
G and s(0, 0) 0. Consider

and write

Ii(k) ei(’ "i")t(r cos o, r sin p)r dr,

qo constant, 0<q)<2n

(5.6) g(r) s(r cos (p, r sin q), h(r) t(r cos (p, r sin (p)r, 0 <= r <= p.
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Then

(5.7)

dg
cos (#, r sin q)) cos q9 + @(r cos q, r sin q)) sin 0,

dr c3x y

dZg 2S 2S

dr2 xx(r cos (p, r sin q)) cosZq) + 2 c3c3y(r cos q), r sin qg) cos 0 sin q

2S
+
_

(r cos qo, r sin q)) sin2q,
y-

Thus

d3g 3S 103S
dr3 c3x-g(r cos qg, r sin (]9) COS3(p -+- 3x2c3y(r cos qg, r sin qg) Cos2q? sin q9

3S 3S
+ 3_._.(r cos q), r sin q)) cos q sin2q) + -z-(r cos q, r sin q))sirl3(p.

uuy y-

g(O) gl(O) O,

g2(O) 0 cosZ(p -t- 2//cos q) sin 0 + 7 sinZq9,

2S #2S 2S

x--v(’ o), / xy-a-(’ 0), y-(’ 0),

g3(0) a30 cos3q? + a21 cos2q? sin q9 + a12 cos q)sin2(p -+- a03 sin3(p.
Further,

dhdr t t. )}x(r cos p, r sin ) cos + (r cos p, r sin p r + t(r cos p, r sin

dZh (2t 2
5(r cos o,r sin )cos2o + 2(r cos o,r sin )cos sin

dr

sin+ y_(r cos O, r r

{t__. sin O) + r sin ) sin }+ 2 (r cos O, r cos ey(r cos , O

Thus

(5.10) h(0)=0, hi(0)= t(0,0), h2(0)=2(0,0)cosp +t(0,0)sinp}.
We infer from (5.7), (5.3) and the condition O2s/Ox2 > 0 in G, that there exists a
positive number m such that

d2g
> m in G(5.11)

dr2

Let r k(p), 0 p a be the inverse function of p ). Then

(5.12) l(k) eig()h(r)dr eip((p)dp
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with f(p) h(k(p))k,(p). Now

f(p) hl(k(p))k(p) 4- h(k(p))k2(p),

(5.13) fz(P) hz(k(p))k(p) + 3h,(k(p))k,(p)kz(p) + h(k(p))ka(p),

f(p) ha(k(p))k(p) + 6hz(k(p))k(p)kz(p) + 3hl(k(p))k(p)

+ 4ha(k(p))kl(p)k(p) + h(k(p))k(p),

f(O) O, A(0) 2t(O, O){g2(O)}- 1,

2/2JOt(0(ax’0)cs +’Ot(0 O) sin } {g2(O)} -/2(5.14)

2/t(0, 0){g(0)}

If we apply Theorem with N 3 we find that

(5.15)

(5.15.1)

(5.15.2)

with

b -ie"(2a)- f(a) -ie’g(P)h(p){g(p)} -ie(R)t(R)p(q)) (R

b2 e"{2(2a)- f(a) (2a)- 2f(a)},
ba ie{ 12(2a)- 5f(a) 6(2a)-4f(a) + (2a)- f2(a)}.

We infer from (5.11), (5.13)and Theorem 2 thatf(p),fl(p),fz(p),f(p) are bounded
for 0 =< p =< a, uniformly with respect to q, 0 __< q _< 2rc. From (5.11) we deduce
that g(p) s(p cos q, p sin o) is positive for 0 =< q =< 2c; hence, a- {g(p)}- 1/2

O(1) for 0 =< q <= 2re.
It follows that b2 O(1), b3 --O(1) uniformly in q, 0 __< q) __< 2rc, and by

Theorem 1, R3(k O(k-2) uniformly in q, 0 =< q) =< 2re.
We now deduce from (5.14), (5.15) that

(5.16)

Since

I(k) Ii(k)d(p it(O, O) {g2(O)} -1 dq. k -1

+ 1/4F()e3i/ (O)dq. k-/2 + bl dq. k -1 + O(k-2).
0

{g2(0)}-1 do 2c{D2(0, 0)}- 1/2

e cosZq) + 2fl cos q sin q + 7 sinZq

f(o) do o,
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we obtain the following equation from (5.16), (5.15.2):

I(k) 2rd{D2(0, 0)}- ’/2t(0, O)k -1 eiks(R)t(R)p(qg) (R)

+ O(k- 2).

dq k -1

If (2S/(X2 < 0 in G, then we find by considering the complex conjugate of I(k),

I(k) 2i{D(0, 0)}- /t(O, 0)k --1 e’ks(R)p(qg) (R

+O(k-).
If s(O, O) # O, then we write

I(k) eiks(’)ff eik{s(x’y)-s(O’O)It(X, y)dx dy.

t(R) dqg k-

This completes the proof of (5.4).

6. Application 5. Let G be a convex closed domain, bounded by a continuous
curve C, in the coordinate plane xOy. Let P be the point (x, y, z) with z > 0, Q a
point of G, r the distance PQ, R a point of C.

We suppose that the function u(Q) has as many continuous partial derivatives
in the domain G as is necessary for the correctness of the proofs.

We shall determine the asymptotic behavior of the vibrating potential

f;G
ikr

(6.1) I(k)= u(Q)7-df for k-

if P(x, y, 0) lies in the interior of G.
We introduce polar coordinates (p, q) with pole P1. Then, if we denote the

distance PxR by g(qg), we have

Next

(6.3)

Put

(6.4)

g() eikr fg() deikr

u(Q)--p dp -ik-1 u(Q)-7--dp
0 Y .0 ap

ik-1 eik(z2+g2)’/2u(R)_ eiku(p1 eik" dp
,o -P

f C3U f OU
eikzi2I eikr dp eikz eik(zi+p2)*/i-z)--dpp

If we make in 12 the change of variable

X--- {(Z2 .ql_ p2)1/2__ Z} 1/2
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then we obtain

(6.5)

with a (z2 + g2)1/2
we have

I2 eikX2f(x)dx

z) ’/2, f(x)= (cu/cp)(dp/dx). By Theorem with N 2

(6.6) 12 A2(k) + B2(k)+ R2(k),

A2(k) 1/2F(1/2)e’/f(O)k- ,/2 + 1/2if,(O)k- ’,

B2(k) b,k-’ + b2k-2,

b, ieik2(2a)- f(a),

b2 e"{2(2a)- f(a) (2a)- 2f,(a)},
[R2(k)] 2-/2M2k-/2 + a-5{12if(a)] + 6]f(a)la}k-,

where M2 max [f2(x) for 0 x a. It is easily seen that

U 2U
p X(X2 + 2Z) ’/2, f(0)= (P1)(Zz) 1/2, f,(0)= (P1)Zz,

b, ieika2(R)(Z2 + (zZ zZ
b2 -e

+ 2u
(m ()

Next we deduce from (6.4) and (6.6) that

e’q()e’(2)’ __(P’)- ’ + ’2..()-
(6.7)

-ie+’(z +) (R)k- + eZ(bk- + R(k)),
g

and further from (6.2), (6.3) and (6.7) that

I 2ieiu(P)k- ei(+g/u(R) do. k-

+iei=F()e=i/4(2z)*/2f -rU fn 2u
P(P1)d. k- /2 e=z ( )de

(.a (Z2 + g2)1/2 U
k 2+ eik(z2 + g2)1/2 (g)d.

g

+ ie {bk-a + R(k)k-}do.

Since

cqx cos q + yy sin q,

2u 2u 2u

X2 COS
2

(t9 nt- 2cos q sin q + sin2 (4),
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we have

;(i
’rt Cbl f 2u ((2U 2bl t-- P dq9 O, -p P dq n -x- P + -y P

Thus by (6.8),

(6.9)
(Z2 _. g2)1/2 (U

k 2"- eik(z2 + g2)/ --(R) dq
g

+ iei’z {b2k-3 + R2(k)k-’} dq.

We estimate the last integral in (6.9). Let D be a closed subdomain of G that has
no point in common with the curve C ;let the distance of C and D be denoted by d,
and the diameter of G by d2. We suppose that P1 belongs to D and that z _>_ p,
where p is a fixed positive number.

From the equations
dZp

2x
dx2

it follows that
d3p

<
3
v/z_ l/2o <dTx

X2 - 3Z d3/9 2z2

(x2 _qt_ 2Z)3/2’ dx3 (x2 + 2z)5/2’

=2

d2pl a2 + 3z (z2 + g2)1/2 + 2Z

-]:=a 2a(a2 -k- 2Z) 3/2 2a((z2 "-]- g2)1/2 + Z)3/2

=2

((Z2 _qt_ g2)1/2 z)l/2 (Z2
__

g2)1/2 + 2z
((z + g,)/ + z) /2 (z + g2)/2 + z

z
+ <3.

(Z2 .31_ g- 2 + Z

Further we have

dp
0<

dx

(Z2 %. g2)1/2 + 2

0 < d <_ g(q) _< d2 for 0 _< 99 < 2n

2(X2 + Z) a2 + z

(x2 + 2-zi2 =< 2
(a2 + 2z)1/2

=2
(Z2

__
g2)1/2

((Z2 q_ g2)1/2 q_. Z)l/2
<2--

(Z2
_

g2)1/2
(z +

< 2(z + g)1/2

=< 2(z + d2) 1/2 _<_ 2 _) 1/2

/ z a/2

-1 ((Z2 q_ g2)1/2 q._ Z)1/2 (2z + d2) 1/2
< (2 + d2/p)l/2zl/2
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Thus

f(a) O(z1/2), fl(a) O(z), fz(x)= O(z3/2) for 0 =< x =< a,

and these estimates hold uniformly with respect to 99, 0 =< (p __< 2re.
We can now state the result

I(k) 2rcieikZu(P1)k- eik(z2+g2)’/2u(R) dq) k-

--TczeikZfC2u_ o2u )} (Z2+g2)1/2u
g(P1) + (P1 -2 +

+ 0(23/2k-5/2 + 22k -3 + z3k-+),

b2 O(z2),

--(R) dqg. k- 2

and the estimate of the remainder holds uniformly if P1 belongs to D and z _>_ p > 0.

7. Application 6. We suppose that the real functions s(x, .V, z) and t(x, y, z),
defined in a domain n{Ixl -< a, lYl _-< b, Izl _-< c, a > 0, b > 0, c > 0}, have as many
continuous partial derivatives in the domain H as is necessary for the correctness
of the proofs.

Furthermore we suppose that

(7.1)
cs

(0, 0, 0)
cs c?s
Uyy(O, o, o) Uzz(O, o, o) o,

2S
D1 (Z2

=)/: 0 in H,

(7.2)

(2S 2S

X2

I2S 2S

X(Z (Z2

C:S C2S

C3XC3Z c3yc3z

-0 inH,

2S

cxcz
c32s
0cyc?z

c32s
c3z2

in H.

(A) The equation c3s/cz 0 has a solution z-- W(x, y) for Ixl a, lyl b
with q(0, 0) 0 and I(x, Y)I < c for Ixl =< a, lyl _-< b.

(B) The equation (c3s/c3x)(x, y, W(x, y)) 0 has a solution x qo(y) for lyl =< b
with qg(0) 0 and [q(y)[ < a for lY[ =< b.

With these assumptions we shall determine the asymptotic behavior of

I(k)= fff,; eis(x’.v’z)t(x, y, z)dxdy dz

for k -+ oo.
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We start with

I3(h;)-- eiks(’r’)t(x,y,z)dz, x andyconstant, Ixl =<a, lyl-<_ b.

We first suppose that 82s/822 > 0 in H, and write

13(k) eik(x’-v’a’) eikg(z)t(X, y, Z) dz + eikg(z)t(x, y, z) dz

with g(z) s(x, y, z) s(x, y, q). Then we have g(W) gl(q) 0. It follows from
(7.2) that there exists a number m such that

g2(z) m > 0 in H.

On account of(A) we can apply to I3(k) the method used in Application 1 and obtain

i3(k ,21trt+/-"i/4i’(0)eits(x’Y’w)k-J1/2

__
1/2i(_)e3i/4fz(O)eikS{X,y,v)k- 3/2

(7.3) iei’{x’.v’")t(x, y, c x, y, c k-

+ ieik(’’ -t(x, y, c)
8s

(x, y, c) k- + O(k- 2)

with
( 2S "}- 1/2

(7.3.1) f(0) 2’/2t(x, y, q)--.z(X, y, W)
f2(O 23/2

Z2Z2]
23/2
Z Z2] Z3

(7.3.2)

The estimate of the remainder in (7.3) holds uniformly with respect to x and y,

If #2S/Z2 < 0 in H, then

with

(7.4.1) f(O) 2l/2t(x, y W)
SZs }-1/2

23/2
02t -3/2 -(7.4.2)

z]

(Z3

CZ3 %// --Z21 --Z4] (x,y,t),
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and the estimate of the remainder in (7.4) holds uniformly with respect to x and y,
Ix] _-< a, lyl <_- b.

Let

S(x, y) s(x, y, ’(x, y)).

Then from condition (A) we see that

(7.5)
x &(x, y, ) + .Uz(X, y, 7 x--(x, y, w),

--(x, y, ’),

and thence on account of (7.1),

(7.6) (o, o)= S(o o) o.cy

From ((?s/&) (x, y, ) 0 it follows that

2S
kij)

GkI"/2S
(X, y, kit) -i

t- y 0xz -z (x’ -(7.7)
c32s
cycz

From (7.5) we deduce that

c2S
cx2

2S
)

k[I
--(x, y, ue) + Uz2-(x, y, ; o.

t2
S

2
S

tlil
t’

,x(X, y, e) + &,Z(X, y,

and so together with (7.7) we arrive at

(7.8)
(2S (2s/x,2)(2s/z2) (2S/XZ)2

X2 2S/Z2
Furthermore,

c2S

giving

02(X, y, tYlJ) 2S/tZ2(.X, y, tlJ).

2S2S
(X y ) "-]- (X y

2 2 2

(x, y, ),

(7.9)

2S/Z2

(x, y, ),

2S/2} 12s

771 b7e(x’ y’ e) D(x, y, ’).
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Now we turn to i(k)__ fa fb
have, by (7.3),

(7.10)

with

I3(k)dxdy. If (2S/(22 > 0 in H, then we

I(k) T(k) + T2(k)+ T(k) + 7(k)+ O(k -2)

Tl(k) 21/2F(1/2)ei/4 eikS(x,Y)t(X, y,

(7.10.1)

(x, y, W) dx dy. - /,

-b

(forf(O) see (7.3.2)),

(7.10.3) T() -i e(x’"t(x, y, c) x, y, c dx dy - ,
-b

(7.10.4) T4(k e(’’-t(x, y, -c x, y, -c dxdy. k-.

If 2S/22 < 0 in H, then we have, by (7.4),

(7.11) I(k) T,(k) + T2(k) + T3(k) + T4(k) + O(k -2)
with

(7.11.1)

(7.11.2)

eikSx’y)t(x, y, )

(forf2(0) see (7.4.2)),

and T3(k) and T(k) as in (7.10.3) and (7.10.4).
We distinguish eight cases"

I. Dx > 0, D2 > 0, D > 0.
II. D > 0, D2 > 0, D3 < 0.

III. D > 0, D2 < 0, D3 > 0.
IV. D > 0, D2 < 0,03 < 0.
V. D <0, D2 > 0, D3 >0.

VI. D <0, D2 >0, D3 <0.
VII. D <0, D2 <0, D3 >0.
VIII. D1 < 0, D2 < 0, D3 < 0.
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Case I. By virtue of (7.6), (7.8), (7.9) and condition (B) we may apply the result
(3.10) of Application 2 to Tl(k) of (7.10.1). We obtain

T(k) 21/2F(1/2)ei/42rci{D3(O, O, 0)}-/2t(0, 0, O)eik(’’)k -3/2

+ 2/2F(1/2)eEi/4. 2/2F(1/2)e3i/eikS(q’(b)’b)r(q)(b), b)k- 2

d- 21/2I-’(1/2fti/421/2F(1/2)e3i/4eikS((-b)’-b)r(q)(-- b), b)k- 2

+ T,(k) + T(k) + O(k-5/2)
with

T(k) -2’/2F(1/2)e3i/ eikt
CZ2 x(a’ y’ tP(a’ y)) dy k -3/2

r12(k) 2’/2F(1/2)e3i/ eikt as tp( y)) dy k- 3/2- z2] x(- a, y, a,

From (7.10.2) and the result (3.10) it follows that Tz(k) O(k-/2). So we obtain
from (7.10) the result

I(k) (2)3/2e3i/{D3(O, O, 0)}- /2t(0, 0, O)ei(’’)k 3/2

+ Tx ,(k)+ T12(k) + T3(k)+ T,(k)+ O(k-2).
The other cases can be treated in the same manner. Only in Case do we deduce a
general formula for the main contribution of the stationary point of s(x, y, z),
given by

t -(2)3/2e-’i/4{D3(O, O, 0)}- 1/2t(0, 0, 0)e(’’)k- 3/2.

With the help of the results of Application 2 and (7.10) and (7.11) we find that in
all cases

t (2)3/2aaei/*lD3(O, O, 0)l- /2t(0, 0, O)eik(’’)k 3/2,

where

a= {-11 if D1, DD2, D3 all have the same sign,

if D, DIDz, D3 have differing signs,

ifD3 <0,

ifD3 >0.

REFERENCES

[1] N. CHAIO, Asymptotic expansions of double and multiple integrals occurring in diffraction theory,
J. Inst. Math. Appl., (1965), pp. 372-422.

[2] P. W. M. BOlN, On the method ofstationary phasefor double integrals, Thesis, Delft, 1965.
[3] J. G. VAN DER CORPUT, Zur methode der stationiiren Phase I, Compositio Math., (1934), pp. 15-38.
[4] A. ERDLYI, Asymptotic representations of Fourier integrals and the method of stationary phase,

SIAM J. Appl. Math., 3 (1955), pp. 17-27.



SIAM J. MATH. ANAL.
Vol. 2, No. 1, February 1971

SOME INFINITE SUMS*

N. LIRONS"

1. Introduction. We are interested in deriving properties of

where the ’s are the nonzero roots of tan k, for real nonzero constant k.
It is clear that such roots occur in pairs _+ , and we take only one of each pair.
The numbers 0, arise from the following Sturm-Liouville system"

U + 0
2U 0,

(2)
u(0) 0, u(1) ku’(1).

We know from general theory that there exists an infinite, strictly increasing
2sequence ofeigenvalues, 2o < 2 < .... Moreover, the numbers , are all real and

positive with two exceptions" < 0 if 0 < k < 1, and vanishes for k 1. Corres-
2 of (2) we have the eigenfunctionponding to each eigenvalue ,

(3) u.(x)

These satisfy

sin .x

j.1 1 k cos2
0

(4)
0

U,(X)U(X), dx - 6s sin2 0

In the special case k 1, we have o 0 and uo(y) y.

2. Generating functions. We define the generating function

(5) G(t) S,(k)t2’= 2 t2l= 0 n----O= On

and shall show that

(6) Gk(t)=
1 I 1-kl ksint

2kt2 + 1 + k2t2. 2(kt cos sin t)

and

for k #- 1

3 sin
(7) Gl(t) 2- +

2(t cos sin t)"

We shall prove this by a number of stages, beginning with the case k 4: 1.
LEMMA 1.

3k
(8) X3 q

k- 1
x Anun(X),

n=0
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where

12(1 k) sin2 a,
(9) A,

k k cos2
0{ 0{n4’

n=01,,

Proq[i The left-hand side is twice continuously differentiable and satisfies
the boundary conditions in (2). The possibility of an expansion of the form (8)
follows from Sturm-Liouville theory. We determine the coefficients by use of the
orthogonality relations (4).

LEMMA 2.

(10) x
2(k- 1)i sin2 z, -,u,(x).k k cos2 on=O

Proqfi Since , (n + 1/2)rr for large n, it follows that the coefficients in (9)
satisfy A, O(n-4). We may therefore differentiate (8) twice, term by term, and
the result follows.

LEMMA 3. /f V(X) is such that v(O)= 0 and v"(x) is continuous in (0, 1), then
v(x) can be expanded in the form ,= o B,u,,(x).

Proof Define

(11) u(x) v(x) + x.
k-1

Then u(x) satisfies the boundary conditions in (2), while the last term on the right-
hand side of (11) can be expanded by Lemma 2.

LEMMA 4. For each fixed t,

(12) sin xt C,(t)u,,(x),

where

2 2(13) C.(t) (sin kt cos t)(t 2

Proof The possibility of the expansion (12) follows from Lemma 3, and the
coefficients C,(t)are easily obtained in the usual way, using (4).

LEMMA 5.

(.14) @,(t) -}------.f--j l__.o hit 2l k2t2 ho,

where

sine (Xn 21 2(15) h

_
,, O, 2

,,--o= k COS2
0
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Proof

(16)

hi+
sin2 {Xn 2l- 4

k COS20n On
n--O

k2 " COS2 o

n=% 1 k cos2
{n

k2 sin2
k-l,= o

oz, {1 k cos2 {z,)
k COS2

Rn

k2

(since tan e.

-21-2
(X

If we now define

{17) H(t)= E hlt21
/=0

then it follows from (16) that

k2

(18) [H(t)- ho] T----T[H{t)- G(t}]2

and (14) follows immediately.
LEMMA 6.

k sin
{19) H(t)

2(kt cos sin t)"

Proof Set x in (12). Then

sint= 22 C.(t)
n=0

2(sin kt cos t) o sin2 "k k COS2 n t2 0
2

_2(sin kt COS t) E hit21,

LEMMA 7.

{by {13))

by (15) and hence (! 9).

(20)
k

ho =2(k_ 1)"

Proof This follows immediately from (19) since

ho lim H(t).
t--*0

The formula (6) now follows immediately from (14), (17), (19), (20). To derive
(7), we recall that for k 1, eo 0, uo(y) y. It follows that

l
G(t) 2 t2 + lim a(t) -t t2.(Xn k--*
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3. Recursion relations.
Case 1. k - 1. If we clear the expression (6) of fractions and then expand both

sides in powers of t, we get the relation

(-1)m[k(2n- 2m + 1)- 1]
(21) Sm

m=o (2n- 2m + 1)!

As special cases we obtain

So= /-2=
3k-

l=O 6(k- 1)’

(22) S o/-=
/=0

y’S2 l
6

/=0

n+l
(2n + 3)!

[k(2n + 3)- 1].

15k2 6k +
90(k- 1)2

63k3- 36k2 + 9k-

945(k- 1)3

Case 2. k 1. By using the above technique on (7) we obtain

(-1)"(n + 1 m) (n + 1)(n + 2).(23)
m=0 (2n--2m+ 3)! Sin= (2n+ 5)!

and we now get So 1/10, S 1/350, and $2 1/7875 (see also 7).

4. Limiting values of k.
Case 1. k --, O. We consider k tending to 0 through positive values. For small

positive k, o is purely imaginary and Iol tends to infinity as k 0. The term
(Z 21-2 therefore drops out of Sl in the limit. On the other hand limk-.o , =mt

and hence

(24) lim S (mz)- 21- 2 g- 2l- 2(2/ + 2).
k0 n=l

The limiting process in (24) is immediate since the convergence of the series for
Sl is uniform with respect to k.

By letting k --, 0 in (6), we get the well-known formula

(25) rot. cot rot 1 + 2t2.
t2 n2

(see [1, p. 2073). Again it is known that

(26) (2p) (- 1)p-
Bzp(2rc)ZP
2 (2p)!

where the Br’s are Bernoulli numbers (see [1, p. 2373). By combining (24), (26)
and (2l), we get, after a little manipulation,

2nil {2n+lr=0 r
2rB 0,
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or, in the usual symbolic form,

(27) (1 + 2B)2"+1 0, n 0, 1,2,...,

which is a well-known formula.
Case 2. k --, . Clearly limk , (n + 1/2)re and we get

(28) lim S Z [(n + 1/2)rc]- 2l- 2 - 21- 2(22/+2 1)’(2/+ 2),
n=l

while the limiting form of G(t) yields

rtt 4t
(29) tan ,0 (2n + 1)2 2

(see [1, p. 208]). Substitution of (28) and (26) in the recurrence relation yields
another known symbolic formula"

(30) (1 + 2B)2" (1 + 4B)2n 0, n 0, 1,....

(31)

5. General form of a for k 4: 1.
THEOREM.

Sin(k) (k 1)-"- aPm + l(k),

where P,,, + is a polynomial Ofdegree m + in k, with rational coefficients, and

(32) Pro+ (1) 3-"--.

In particular P,, + 1(1) :/: 0.
Proof The theorem is true by (22) for m 0, 1, 2. Suppose it is true for

0 =< rn =< n. By (21) we have

(- 1)"+ l(k 1)S,+

(33)
n+2

(2n + 5)!
(-1)m[k(2n- 2m + 3)- 1]

[k(2n + 5) 1] ,,=o/-" (2n- 2m + 3)!

n + 2 Pm+
(2n + 5) I[k(2n + 5)- 1]

1)m[k(2n 2m + 3) 1]
m:O (2n- 2m + 3)! (k- 1)"+1

by the inductive hypothesis.
The right-hand side of (33) is clearly of the form Q(k)/(k 1)"+ 1, where Q is

a polynomial of degree =< n + 2 in k, with rational coefficients, and

Sn+ (k 1)n+2

However we have seen above that lim_ S(k) :/: 0 for each l, and so Q(k) must be
of the degree exactly n + 2. It follows then from (33) that

(- 1)"+’P.+2(k) (- l)"+13k-----P. + l(k) + O(k 1),
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and hence

Pn+ 2(1) -Pn+ 1(1)

This completes the induction. We may note further that the leading term in
P.+ l(k) is

(22n+ 2 1)(2n
2n + 2 4- 2)k" + x.

This follows immediately from (31) and (28). Again it follows from (24) that

P.+ (0)
(-1).+

2n+ (2n + 2).

An explicit form of S,,. By using (21), one can give a determinant representa-
tion of Sin(k). On taking the upper limit of the summation in (21) to be 0, 1, 2, -.-, n,
we obtain a set of n + linear equations in So, ..., S,. The determinant A of this
system is triangular, and hence,

A (- 1)n(n+ 1)/2(k 1)"+ 1.

Then, by Cramer’s rule,

S.(k)

(34)

(k- 1)"+

(k- )

3k-
3

(2n + )k-
(2n + 1)!

3k-
0 0 0 1

3!

k-1 5k-I
0 0 2

1! 5!

3k-
(,+ ]).

3
(2n+ 3)k--1

(2n + 3)!

Letting k 0 and using (24) and (26), we have

(2n)!
22n

0 0
1!

1
3 ]- 0

1 1 n

(2n- 1)! (2n- 3)! 3! (2n+ 1)!

which after some manipulation coincides with the expression given by Kishore
[4].
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Letting k and using (26) and (28), we obtain

-(2n)!
22n-22(1 22n)Bzn

1o o o

11 l
0 0 2..

1 1 1

(2n-2)! 2!
n

(2n)!

where G, are the Genocchi numbers. Again this coincides with the expression given
by Kishore [4].

6. An analogous problem. If we start from the numbers /3,, defined as the
roots of k cot fl + fl 0, we can construct

Zl(k /;21-2, 0, 1,...

The generating function now turns out to be

(35)

Al,(t)= T(k)t2= fl,2_ 2
/=0 n=0

2t2
1 /

t2 2(k cos + sin t)’

and hence the recurrence relation is

(36) (-l)m(2n 2m- k)T,,(k 2n + 2- k

0 (2n 2m)! }-((2 + 1)!3"

Again we have

(37) lim T/(k) [(n + 1/2)re]- 2t- 2.
ko k=

We see at once that limk_.o flo 0, and so the sums for T/(0) must start with n 1
with the appropriate modification to the generating function. We then deduce that
limk_, T/(k) rt- 21- 2(2/+ 2).

We can verify that

1 2 1
To(k)

2 k’ Tl(k)
6 3k k,

and, by induction using (36), that T/(k) is a polynomial of degree + 1 in k- with
rational coefficients. Again, by using the same method as was used in deriving the
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explicit form of S,, in 5, one gets an explicit determinant representation for

(38) T,,(k)

and

(_ k).+

(-k)
O

0 0

2-k (-k)
2! O

2n- k
(2n)!

7. Related work. When k 1,

2-k

2-k 2n+2-k
2! 2(2n + 1)!

S,(1) o2.,+ 2(-)

TA )

where a2,(v), n l, 2, ..., are the well-known Rayleigh functions, i.e.,

n= 1,2,...

where Jv,m is the mth positive zero of the Bessel function J(z). These functions are
used to evaluate the first zeros of J(z). The values for S,,(1) and T,,(1) agree with
the values quoted by Watson [2, p. 502] for v and v -23- respectively.

Lorch I3] has also used S,,(1) to evaluate certain estimates connected with the
Riemann summation method (R, 2/), 1, 2, .... Kishore has discussed proper-
ties of the Rayleigh functions in [4] and [8], and of the related Rayleigh polynomial
in [5], [6], [7 and [9]. The Rayleigh functions have also been discussed by Carlitz
[ o3.
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AN INTEGRAL OPERATOR APPROACH
TO CAUCHY’S PROBLEM FOR Ap/ 2U(X) -- F(X)H(X) 0*

DAVID COLTON AND ROBERT P. GILBERT’

Abstract. In this paper an integral operator approach is developed for the Cauchy problem
associated with the elliptic equation

Ap+ 2u(x) + F(x)u(x) 0, x (X 1, X2, Xp+ 2), p 1,2.

For the case p 1, use is made of an integral representation due to Tjong, which reduces to the
Bergman-Whittaker representation when F(x) 0. For p 2, we develop a new representation of the
Tjong type, which reduces to Gilbert’s operator for harmonic functions in four variables when
F(x) 0. We also treat the case ofCauchy’s problem for the given equation when p >_ and F(x) B(r2),

Ixl. Here the appropriate integral representations are found by using the method of ascent.

(1.1)

with Cauchy data

1. Introduction. In this paper we shall develop a constructive method for
obtaining solutions to Cauchy’s problem for a class of linear second order elliptic
partial differential equations in p + 2 variables with analytic coefficients. Such
problems arise frequently in the use of inverse methods to solve free boundary
problems in mathematical physics (cf. [6], [7], [12]), and our approach is important
in the sense that it can be used to obtain sequences of analytic approximations
which converge to the desired solution. The difficulties in trying to develop such
approximation methods arise from the fact that Cauchy’s problem for elliptic
equations is one of the classical examples of an improperly posed problem in the
sense of Hadamard. We illustrate this by two examples for the case of Laplace’s
equation.

Example 1 (Hadamard). Consider

&u bx2 + 0

(1.2) u(x, O) O, _-_.(x, O) n sin nx.
cy

It is easily verified that u(x, y) n-2 sin nx sinh ny is the unique solution of this
particular Cauchy problem. However as n--, the Cauchy data tends to zero
whereas the solution does not. Since u(x, y) 0 is the only solution of Cauchy’s
problem with zero Cauchy data, it is seen that the solution does not depend
continuously on the initial data. (However in this regard see [14] and the references
cited there.)

Example 2 (Schwarz). Suppose there exists a solution u(x, y) for y > 0 to

(1.1) with Cauchy data

u
(1.3) u(x, O) O, _-_.(x, O) f(x).

cy

* Received by the editors February 26, 1970, and in revised form July 16, 1970.

" Department of Mathematics, Indiana University, Bloomington, Indiana 47401. This research
was supported in part by the United States Air Force Office of Scientific Research under Grant
AFOSR 1206-67.

113



114 DAVID COLTON AND ROBERT P. GILBERT

By the Schwarz reflection principle [3, p. 254] it is possible to analytically continue
u(x, y) across the x-axis, which implies that f(x) must be an analytic function of x.
Therefore in general no solution of Cauchy’s problem exists unless the Cauchy
data is analytic.

In view of Example 2 we shall only consider problems with analytic Cauchy
data, which is in fact what occurs in the abovementioned physical applications.
The Cauchy-Kowalewski theorem [3] will in this case assure us of the existence of
a unique solution. However such a power series solution is not satisfactory for
approximations and we look for more constructive techniques. Several approaches
have been given in recent years, and indeed the theory of two-dimensional prob-
lems is now essentially complete [2], [7], [13]. For higher dimensions the situation
is not so pleasant however, since the only available procedures thus far consist
either in converting an elliptic Cauchy problem in only p + 2 variables to a hyper-
bolic Cauchy problem in no less than 2p + 3 variables 51, or in evaluating
intricate contour integrals in the space of several complex variables [4]. Except for
the special case of the (p + 2)-dimensional Laplace equation, prodigious difficul-
ties arise in employing either of these methods for analytic approximation. This
is due in the first case to the singular nature of the Riemann matrix in spaces of
high dimension and in the second case to problems in explicitly evaluating the
resulting contour integral representations of the solution.

In view of these difficulties in approximating solutions to Cauchy’s problem
in higher dimensional space we present in this paper a new approach to the problem
through the use ofintegral operators. The theory of integral operators for equations
in more than two independent variables, as created by Bergman 1], has gained
wide renown for its elegant development of essential parts of the theory ofpartial
differential equations on the basis of the theory of functions of several complex
variables. The basic analytic nature of Cauchy’s problem for elliptic equations
suggests the possible fruitfulness of an integral operator approach to the problem,
and this indeed turns out to be the case. Several significant modifications and
extensions of the original ideas of Bergman must be made however in order to
achieve this success. To be specific, let

(1.4) Lu 0,

where L is a linear second order elliptic operator in p + 2 variables with analytic
coefficients, and suppose we wish to find a solution u of (1.4) such that u satisfies
the Cauchy data

u(x)lxp+2=0 f(xl ,..., Xp+ l),
(1.5)

cu
(x) g(Xl, ..., x, +)X,p+ 2 xp 0

on the plane xp+ 2 0, where x (xl, "", xp+ 2) andfand g are analytic functions
of their independent variables. We now note that ifL is the Laplacian, then a closed
form solution of the Cauchy problem (1.4), (1..5) can be found which is suitable for
analytic approximations (see 2). This suggests trying to construct an operator
which maps harmonicfunctions onto solutions u of(1.4) in a manner which preserves
Cauchy data. To this end we begin in the spirit of Bergman by finding an integral
operator T1 which maps analytic .[unctions h of p + complex variables onto
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solutions u of (1.4):
(1.6) u Tlh.
In many cases one can construct a great variety of such operators. Hence the prob-
lem is not to introduce any such operator but rather ones which possess certain
properties pertinent to our problem; in particular, T1 should have an inverse such
that the analytic function corresponding to a given solution u of (1.4) can be deter-
mined. To accomplish this we require that when L reduces to the Laplacian, T1
remains invertible and in fact reduces to a known representation of harmonic
functions in terms of analytic functions of several complex variables. Let Bp+2
be such an operator for Laplace’s equation and regard T as a perturbation of
Bp+ 2, i.e.,

(1.7) u Tlh (Bp+ e + T2)h,

where T2 -= T Bp+ 2. Since Bp+ 2 is invertible, we can express (1.7) as

u H + T2B-+2H
(1.8) H + TH

(I + T)H,
where H Bp+ 2h is a harmonic function and T (T1 + B,+ 2)B-+2 If [IT[I < 1,
then the operator I + T is invertible. The problem with which we are now faced
is to select T1 and B,+ 2 (and hence T) in such a way that T1 B,+ 2 for L A,+ 2

and such that Cauchy data for H can be constructed in a simple manner from
Cauchy data for u. We can then construct H from this data and represent the solu-
tion by (1.8). We also want T to have a sufficiently "nice" kernel such that (I + T)H
can be readily approximated.

In this paper we carry out the above program for the differential equations

(1.9) A3u + Fl(xl, X2)b/ 0,

(1.10) A4u -j- F2(X1, X2, X3)L/ 0,

(1.11) Ap+zU nt- B(rZ)u O,

where F1, F2 and B are entire functions of their independent variables, r Ixl.
Our results are also valid when F1, F2 and B are only assumed to be analytic in a
sufficiently large ball about the origin. However for the sake of clarity of presen-
tation we make the assumption that these functions are in fact entire. For (1.9)
we can select T1 to be an operator recently discovered by Tjong [15] and B3 to be
the well-known Bergman-Whittaker operator [1]. Equation (1.10) requires the
construction of a new integral operator T1, the first such operator found for equa-
tions in more than three variables which do not have spherically symmetric co-
efficients. The operator B4 in this case is Gilbert’s generalization of the Bergman-
Whittaker operator to four dimensions [8]. For more than four variables there is
no convenient generalization of the Bergman-Whittaker operator and hence no
natural way to motivate the construction of T1. However we are able to handle
equations of the form (1.11) by making use of the method of ascent, which has
recently been developed by one of us [9], [10]. In each case the kernel of the trans-
formation T is an entire function of its independent variables and is expressed in
terms of an infinite series which can be easily approximated.
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We finally would like to emphasize that this paper should be viewed only as
an introduction to the use of integral operator techniques in the investigation of
improperly posed problems of mathematical physics. Our hope is that this paper
will encourage and motivate further developments in this area by other mathemat-
icians and physicists now working in the field.

2. Cauehy’s problem for Laplaee’s equation. Consider the (p + 2)-dimen-
sional Laplace equation

(2.1)

subject to the initial conditions

u(x, x,,+ , O) f(x,, x,,+ ),

(2.2) cu
--(X1, Xp+ l, 0) g(x1, Xp+ l),Xp + 2

wherefand g are analytic functions of the variables x l, ..’, xp+ in some neigh-
borhood of the origin. We first note that if u is a solution of (2.1), (2.2) for./"= 0,
then ul cu/?Xp+ 2 is a solution of (2.1) with Cauchy data ul g, cul/?Xp+ 2 O.
Hence U u + 1 is the solution of the complete Cauchy problem if is a solution
of (2.1) such that 0, ct/CXp+ 2 f Therefore without loss of generality we set

f= 0 in (2.2). From the Cauchy-Kowalewski theorem we know that there exists
a convergent power series solution u in some neighborhood of the origin to (2.!)
such that u 0, cu/cx,+ 2 g" Following Garabedian [5_] we extend this power
series solution to complex values of its independent variables; in particular, we
keep the coordinate Xp+ 2 real but replace xj by corresponding complex variables
zj xj + iy, j- 1,..., p + 1. Since u is an analytic function, the Cauchy--
Riemann equations

(2.3) + 0,

and hence Laplace’s equation

(2.4) u,jj + uyjyj 0

is satisfied. Equations (2.1) and (2.4) now give
p+l

j=l

(2.5)
u,1,1 + +u.,,,+ + 2uy,y + + 2uy,,1Xp lYp+

(X1, "’’, Xp+ 2, Yl, "", Yp+ 1) U(X1 AV iYl, "", Xp+ -t- iyp+ 1, Xp+ 2)

satisfies a linear hyperbolic equation. Now make the change of variables

(2.6) 37 --yj, j 1,2, ..., p + 1.
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Then V(X Xp+ 2,

satisfies
Yl, ;p+ 1) b(Xl’ "’"’ Xp+2’

(2.7) Vxp+2x,,+2 vxlxl + + Vx,+lx+l + vl, + + v,+,+
and the initial conditions

U(X1,’’" Xp+ 1’ O, ;1’ ;p+ 1) O,

Vxp +2(X1, Xp+ l, 0, ;1, Y"p+ l) X1, Xp+ l, ;1, ;p+ l)

(2.8) g(Xl + i1, Xp+ + iN//p+ 1).

Equations (2.7) and (2.8) constitute a well-posed Cauchy problem for the wave
equation in 2p + 3 variables and hence we can immediately write down the solution
in terms of spherical means (cf. [3])"

(2.9)

V(X1, Xp+2, ;1, ;p+ l)

62p tCp (Xp2+ 2 /92)(2p- 1)/2pQp(x, 19 dp,
(2p) c3x2pP+ 2 Oo

where

(2.10)

Qp(x, p)
(D2p+ 2

-at- Op) doo2p + 2,

x (x1, Xp+l, ;1, ;p+l)’
O{ (0{1, O{2p + 2)’ 0{" o

and (D2p + 2 is the surface area of the unit sphere in (2/) + 2)-dimensional space.
We are interested in the restriction of (2.9) to real (p + 2)-dimensional space.

Therefore setting Ys 0, j 1, ..., p + 1, we obtain the solution to the Cauchy
problem (2.1), (2.2) (f 0) as

xp

p2)(2p
1 (2p

(XP2+2 )/2pQp(xl’
(2p) c3x2pp+ 2

where

2(x, , x+ ,
(2.12) f...fg(xl+(Ol+ix/%+l)p(D2p+ 2

,Xp+l -+- (Op+l + iN/fO2p+2)/9)d92p+2.

Xp+ x, P)dp,

If fi denotes the solution (2.11), (2.12) with g replaced by j; then the solution U to
the complete Cauchy problem (2.1), (2.2) can be written as

(2.13) U =u+--
Xp+2
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Equations (2.1.1), (2.12), (2.13) can now be used to obtain analytic approximations
to solutions of (2.1), (2.2). Note that in order to accomplish this it is necessary in
view of (2.12) to approximate g(xl, ..’, xp+ 1) uniformly for complex values of its
independent variables.

3. Cauchy’s problem for/X3u + F(xl, X2)b/ 0. In [15] Tjong showed that it
was possible to generate solutions of

(3.1) AaU + F(x 1, X2, X3)U 0

when F(xl, x2, xa) was an entire function in 7 where a denotes the space of three
complex variables. In order to present her result we first introduce the following
notations"

(3.2)

X= xa, Z= 1/2(xl + ix2), Z* 1/2(-xx + ix2),

w--(1 t2)v, v-- X qt_ Z nt- -1Z*,

1 X, 2 X + 2Z, 3 X + 2-

Then (3.1) can be written in the form

(3.3) (2lp d21/)
X2 + P(x, z, z*) o,

where O(X, Z, Z*) u(xl, X2, X3), P(X, Z, Z*) - F(xl, X2, X3), and there exist
solutions of (3.1) of the form

(3.4)
U(Xl,X2, X3) i[l(X, Z,Z*)

f dt d
E(X, Z, Z* , t)f(w, )x//1 2 ,2hi 1=1

where 7 is a rectifiable curve joining 1 to 1, f(w, ) is an analytic function
of two complex variables, and

(3.5)
E(X, Z, Z*, , g) /(1, 2, 3, ,/7)

+ , t2"v"p(")(l, 2, a, ).
n>l

The p(") are defined by

p(n + l)

(3.6)

_
p(ln+ 1} n) .(n) .(n) 2n(n) -).,(n)

11 "+" F22 -I- /J33 -1- /-’12 _.it_ z-’F13 z"F23 +2n+

P(O)(l, 2, 3, ) 1, p(n+ 1)(0 2, 3’ ) 0,

2p(n)
i= 1,2,3, j= 1,2,3.
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Let us introduce the further notation

x (x, z, z*),

=X’+

In addition, we introduce the function

x’ (x’, z’, z*’),

1- Z*’.

where

P(; v s, )A,,(s, f) ds,M(X, X’)
[

(3.7) P(,; v S, ) n_l> B(n, 1/2)
p(n)(; )(U S)n-1

and

ff ; / fl 12scz(1- oc)b + a
A.(s, ) =_ da dfl 1--fi" 4safl(1 a) a]"

In (3.7) B(p, q) denotes the beta function. We remark that the parameter a > 0 is
chosen to be sufficiently large so that the domain of definition of if(X) (which we
assume is bounded) is contained in the sphere Sa {IX] =< a}.

By using the representation (3.21) given in [11] for O(X) it is possible to rewrite
(3.4) as

(3.8) U(X1, X2, X3) 0(X) n(x) / H(Y’)M(X Y’R2) sin 0’ dO’ dqg’,

where H(X) H(X, Z, Z*) is a harmonic function defined in a neighborhood of
the origin by the Bergman-Whittaker representation

(3.9)
l fl g(v,)-d-,H(X,Z,Z*) B3g ----where g(v, ) is related to f(w, ) by

dt
(3.10) g(v, ) f(w, ) /1 2

In (3.8) the radius of the integration sphere is given by R’ a2/R, R
Now consider the equation

(3.11) m3u / F(xl, X2)U--O,

i.e., F(x1,x2,x3) F(x1,x2) is independent of X Then t/(X1, X2, --X3) is also a
solution of (3.11)and hence so is the even part of u with respect to x3 (denoted by
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Ue(Xl x2, x3)). ue(xl x2, x3) can be represented as

1
u(x,x,x) =_ (-x, z, z*l + (x, z, z*)]

(3.12)

He(X) + H(Y’)Me(X; Y’R2) sin 0’ dO’ dq’,

where

(3.13)
He(X) 1/2[H(- X, Z, Z*) + H(X, Z, Z*)],

Me(X; X’) 1/2[M(- X, Z, Z* X’) + M(X, Z, Z* X’)].

Note that as a consequence of (3.6) we have Me(XjX’ 0 when x3 0. Now
suppose we wish to find a solution of (3.11) satisfying the Cauchy data

(3.14)
u(xl, x2, O) f(xl, x2),

63X3
where f(x 1, x2) and g(x 1, X2) are holomorphic in some neighborhood of the origin.
First consider the case where g(xl, x2) 0 and let He(X) be the (unique) harmonic
function of the variables Xl, x2, x3 constructed from 2 satisfying

(3.15)
He(X)

x3=O

X3
(X)

f(xl, x2),

Then from (3.15), (3.12), and the fact that Me(X; X’) is an even function of X x3

we have that, if we set H(X)= He(X), (3.12) defines a solution ue(xl,x2,x3)
satisfying the Cauchy data (3.14) with g(xl,x2) O. With this construction in
mind let te(xl, x2, x3) be the solution of (3.11) with Cauchy data

IE(X1, X2,0) g(Xl, X2)

(3.16) IE (x1, X2 O) O.
c3x 3

Then, since F(xl, x2) is independent of x3,

(3.17) bIo(X1,X2,X3) ffIE(X1,X2,x3)dx3
0

is a solution of (3.11) which satisfies

b/0(X1, X2,0) 0,

cuo77__-(X1, X2, O) g(xl, x2).
u.x;.3
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Hence the solution of our original Cauchy problem (3.11), (3.14) is

(3.19)

bI(X1,X2,X3 bIE(X1,X2,X3 + LiO(XI,X2,X3)

He(X) + He(Y’)Me(X Y’R2) sin 0’ dO’ dqg’

f3+ /-E(X) dx3 + le(Y’)Me(X; Y’R2) sin 0’ dO’ dqg’ dx3,

where He(X) is the (unique) harmonic function of the variables xl, X2, X3 con-
structed by means of 2 which satisfies the Cauchy data

(3.20)
/-E(X)ix3-0 g(xl’

O
3--0

and He(X) is the harmonic function satisfying the Cauchy data (3.15).
A word should be said about the domain of regularity of u(xl, x2, x3) as

given by (3.19). As pointed out by Gilbert and Lo in [11], U(Xl, x2, x3) has the same
domain of regularity as (in our case) the largest domain in which He(X) and
He(X) are both regular. Equations (2.11) and (2.12) show that this domain is in
turn determined by the domain of regularity off(x1, x2) and g(x, x2) in the space
2 of tWO complex variables. Hence (3.19) gives a solution of Cauchy’s problem
"in the large" and can be used for analytic continuation if so desired. Equations
(3.7), (3.13) and (3.19) in conjunction with the results of 2 giye a means for analytic-
ally approximating this solution. Note that Me(X; X’) is an entire function of its
independent variables.

4. An integral operator for Au + F(x, X2, X3, X4)U O. Consider the
partial differential equation

(4.1) Au + F(xa x2, x3, x)u O,

where F(x, x2, x3, x) is an entire function of its independent variables. Equation
(4.1) also takes the form

(4.2) , , + P(r, r*, z*) 0,

where

(4.3)

P(Y, Y*, Z, Z*) =- F(x X2, X3,

I//(Y, Y*, Z, Z*) /,/(x1,x2,x3,

Z--- x4 + ix3, Z* -(x4 ix3)

Y x + ix2, Y* X ix2.
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Throughout this section we shall use the following notations"

1 --Z--Z*,

3 --t] -1z* --t- Y,

4 F] -lz* -31- /-1-1y,,

{ (, ,3,,),

X (Y, Y*,Z,Z*),
(4.4)

V 2 -- 4 Y + -1Z - g] -1Z* -" t]-l -1Y*’
w ---(1 t2)v, Itl =< 1,

(. . .. . ) (v. v*. z. z*).

E(I, 2, 3, 4, , t/, t) /(Y, Y*, Z, Z*, , r/, t),

3E 632E 32E
E . E E,

THEOREM 4.1. Let D be a domain in the w-plane containing the origin w 0,

B {((, r/)[1/2- e < I1 < - + ,1 < I1 < 1 + ), 0 < < -,
G be a neighborhood of the origin in the (1, 2, 3, 4)-space, and T {t[ [tl _-< 1}.
Letf(w, , ri) be an analyticfunction ofthree complex variables w, , r in the product
domain D x B and E(, , t/, t)

_
E(1, 2, 3, 4, , q, t) be a solution ofthe equation

(4.5)

2vt[-rlE11 t/E12 + E13 + E23 nt- E14- E34- rIEF

_1_( t/)E 0+ (1 t2)( tl)Elt-

which is regular in the product domain G x B x T. Then

0(Y, Y*, Z, Z*) P{ f}

1 (Y, Y* Z,Z* ( ri,t)f(w tl) w t2 rl
(4.6) 4rC2 l 1/2 r/I

where 7 is a path in T joining -1 and + 1, is a solution of (4.2) which is
regular in a neighborhood of the origin in (Y, Y*, Z, Z*)-space.

Proof E({, , rl, t) is regular in G x B x T, f(w, , ri) is regular in D x B and
the Jacobian of the transformation from
/, t) is
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Hence/(K Y*, Z, Z*, , rl, t)f(w, , rl)is regular in the product domain H x B x T,
where H is a neighborhood of the origin in the (Y, Y*, Z, Z*)-space. Thus
/(Y, Y*,Z,Z*)=_ P{f} is regular in a neighborhood of the origin in the
(Y, Y*, Z, Z*)-space. Straightforward differentiation (using the fact that
fzz, J, 0 due to analyticity in w) gives

-lfl(4.7) 47c2 ;I 1/2 rtl

+ (1 t)f

Using the relation

@ /z /r) 1 dt dq d+-
tl - V/1-t rl

and integrating by parts we find

(4.8)

1//z,t_ /z, zt z+ -/ t (1 2) f + --(1 2)
t2r/

Er*t(1 /:2)

-’Y* -Yt y)] dt dtld
a

rl
(1 a) + -[- fx//f--Z- rl

Changing to the variables 1, 2, 3, 4 gives

(4.9)

Ozz,- 0,- 1 fl fl f[2vt(-tlE,4c2 1 1/2 t/l=

t/El:z + E13 + E23 + E14- E34- rlEF)

f dt drl d-- (1 t2)( l)Elt (- ///)E
2vttl w/1 2 rl

Hence if E satisfies (4.5), then as defined by (4.6) is a solution of (4.2).
We now need to show that the operator P exists; i.e., we need to show the

existence of a generating function E satisfying the hypothesis of Theorem 4.1.
In order to do this we need to make use of the idea of a dominant which we define
below.

DEFINITION 4.1. A function

2 2...2g(z zk) a,,,, .,k 2
nl=0 n2=0 nk=O
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is said to be a dominant of a function

f(z, z) Z zn22 nkE E...
nl--0 n2=0 nk=0

if and only if a,l,2...,k >__ 0 and [b,,...,[ =< a,1,2..., for all ni 0, 1, 2,..., 1,
2, -.., k. If g is a dominant off, we shall write

f(zl, z2,’.’, zk) << g(zl, z2, "’",

or more concisely f << g.
The use of dominants is a standard tool in the theory of several complex

variables and the reader is referred to [1], 8] and [15] for further details. In par-
ticular it is easy to verify that iff(zl, z2, ..., z) is regular in a polydisc

)1 }D {(z, z2, z [zi] =< ri, 1,2, k

then

f(zl,zz,...,z)<< C(1 Z-l)
holds for some C > 0 in

-1

D {(Z1, Z2, Zk)l[Zi[ < ri, 1,..., k}.

THEOREM 4.2. Let D {(1, 2, 3, 4)1[i[ < r, i= 1,2,3,4}, where r is an
arbitrary positive number, and

B2.= {(q,)[]q-t/ol <2e,[-o] <2e}, 0<e<,
where o, qo are arbitrary with [qo[ 1, ]o] . Then jbr each n, n O, 1,2,...,
there exists a unique function p")(, , q) p")(i, 2, , , , q) which is regular
in D x B2 aM satisfies

2
F23/F12

(4.11.)

where

r,,(n) + ,,(n) + rlp(n)ff}F14 k’34

(4.12)

and

p(n+ 1)(0 2, 3, 4, , ?]) O,

p(O)(, 2, 3, 4, , ) 1

n =0,1,2,...

i
P!7)

i(j

Furthermore the function

(4.13)
E({, , r/, t) E(a, 2, 3, 4, , r/, t)

+ t2"v"p(")({, ,
n=l

i,j= 1,2,3,4.
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is a solution of (4.5), which is regular in the product domain GR B T, where R
is an arbitrary positive number and

GR {(1, z, 3, 4)11.,] < R, 1,2, 3, 4},
(4.14) B

T {tlltl <- 1}.
Thefunction defined in (4.13) satisfies
(4.15) E(0, 2, 3, 4, , r/, t) 1.

Proof For n 0, (4.1.1) and (4.12) become

p=,
(4.16)

pl)(0, 2, 3, 4, ’, q) 0;

and hence
1

(4.17) p)(,, , r/) q(ff(, 2, 3, 4, ’, r/)d

is unique and regular in Or B2. By induction it follows that each p")(, ’, r/)
exists, is unique, and is regular in Dr B2. Now consider the formal series defined
by (4.13). By straightforward differentiation and collection of terms it is easily
verified that if the p")(, (; q) are defined by (4.11) and (4.12), then E(, , r/, t)
formally satisfies (4.5). It remains to be shown that E(,, , r/, t) is regular in
GR B T, i.e., the series (4.13) converges uniformly in this region. Since B
is a compact subset of the ((, r/)-space, there are finitely many points ((j, r/j) with
]j] 1/2, ]r/j] 1, j 1,2, -.., N, such that B is covered by the union of sets

(4.18) Uj {(, r/)[[ j[ < z3-e, Ir/ r/j[ < e}, j 1,2, ..., N.

Thus it is sufficient to show that the series (4.13) converges uniformly in
GR Uj T. To this end we proceed to majorize the pC,). Since F(,, ’, r/) is regular
in Dr Bzt, we have

(4.19)
F(, , r/) << C

2 1
r/ r/o

2e

for some C > 0 and (a, 2, 3, 4, , r/)e Dr B2. Furthermore in Uj we have

(4.20)

11

9

209I1 < - < a,
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We shall now show by induction that, in Dr x Uj x T,

(4.21)

p]") << M(112 + 6)"(2n 1)-
(2n

(2n- 1) r/ t/o r-"

M(2 + 6)"(2n-

where

2

and M, 6 are positive constants independent of n. Equations (4.16), (4.19) show
that (4.21) is true for n 1. Suppose now that (4.21) is true for n k. Then using
the facts that dominance is maintained under the operations of differentiation
and integration and f << g implies

we arrive at

(4.23)

Equations (4.11), (4.20) and (4.23) now show that

M
(4.24) p] + 1) <<

2k+l
2k-

80+ 32
2k

8Cr2
2k(Zk 1) (1 12 + 6) + 1"

For k sufficiently large,

(4.25) 80 + 32
2k 1 8Cr2

--2- +
2k(2k- 1) < 112 + c5;

and hence if .M is chosen sufficiently large to begin with, we have shown (4.21) is
true for n k + 1, thus completing the induction proof. Equation (4.21) now
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implies that, in Or U T,

(4.26)

]p")] << M(l12 + 6)"(2n- 2)(2n- 1)1-[_.1!)-2,-2)
1- 1- 1-

Now consider It"v"p")(, , r/)l in Or Uj T where

(2n- 1)

-n+l

(4.27) Dr {(1, 2, 3, )ll,l < r/, > , 2, 3,4}.
Then in Dr U T we have

1 _l,l >_- 1

(4.28)
2e 4’

2r
Ivl 12 -+- 1 <

Itl 1.

i= 1,2,3,4,

Thus from (4.26) and (4.28) we have

(4.29)
Itz"v"p(") Mr(e- 1)5(2n- 2)-1(2n- 1)-

[32z7(112 + 6)(e- 1)-s]".

Choose e such that

(4.30)
32cz7(112 + 6)(- 1) -s < 1.

Then the series for E(, , q, t) converges absolutely and uniformly in Dr Uj T.
By taking r R we have that E(, , /, t) is regular in G Uj T and hence in
G B x T. Equation (4.15) follows from (4.12).

5. Cauchy’s problem for A, + F(x, x2, x3)u 0. We now put the operator
P into a different form with the aim of converting it into an operator mapping
harmonic functions instead ofanalytic functions onto solutions of (4.2). Equation
(4.6) can be written as

(X) P{ f}
(5.1) 1

+ Z tz"v"P(")(,,q f(w,,q)
/1-t2492 1 1/2 .l W



128 DAVID COLTON AND ROBERT P. GILBERT

Let

(5.2) f(w, , rl) ak,,vkrl’(1 tz).
k=0 /=0 rn=0

Then

dt
(5.3) t:f(w, , ) /

Define

Z Z Z a,.v’,r(k + 1/2)r(n + 1/2)
=o =o,,=o F(n + k + 1)

dt
(5.4) g(v, , rl) f(w, , rl)x//1 t)

Then straightforward calculation using well-known properties of the beta function
B(m, n) gives

(5.5) (V )n-lg(, , r])do
F(r/+ 1/2 x//1 2"

Hence

(5.6)

We now make use of Gilbert’s generalization of the Bergman-Whittaker
operator [8, p. 75] to observe that if g(v, , r/) is regular in N x B, where N is some
domain in the v-plane containing the origin and B is defined as in Theorem 4.1,
then

(5.7)
H(X) G4g g(v, l)d__q_q d_f

42, 1=1/2 rtl=l q

is a harmonic function of the variables xl, x2 x3, x4 regular in some neighborhood
of the origin. We note that, since f(w, , ) is regular in D x B (D being defined in
Theorem 4.1), (5.4) in conjunction with Gilbert’s "envelope method" [8] shows
that g(v, , rl) is regular in N x B for some domain N as defined above. If we
express H(X) in terms of hyperspherical coordinates

H(X) V(p, 01,02, q))

We use the notation G4 instead of B4 in order to distinguish this operator from Bergman’s
operator for p + 2 variables [8, p. 82].
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and define

(5.9) 5(X) r/Y* +
fl(X) Y- Y’r/(- Zr/ + Z*(,

then for p sufficiently small we can invert the operator G4 via the formula [8, p. 82

1 fn V(p, 01,02, q))(2z-1 fi 25)(5
dOg(a, , r/) G21H 2-u2 02(- ()2(0- ( fl)2

where the integration is over the sphere of radius p and the bar denotes complex
conjugation. Substituting (5.7), (5.8) and (5.10) into the formula given by (5.6) and
interchanging orders of integration by Fubini’s theorem gives

O(X) H(X) + fa H(Y)M(X; Y)dfy,

where

(5.12)
dr/d

and is a point on the sphere f of radius p.
Now suppose we wish to find a solution of

(5.13) A4u -+- F(x1, x2, x3)t/ 0

(i.e., F(x1, X2, X3, X4) F(x1, x2, X3) is independent of x4) satisfying the Cauchy
data

(5.14)
U(X1, X2, X3, O) f(x1, X2, X3),

U
--(X1, X2, X3,0) g(x X2 X3),

where f(xl, X2, X3) and g(x1, X2, X3) are holomorphic functions of xl, x2, x3 in
some neighborhood of the origin. Using (5.11), (5.12), (4.12), (4.3), (4.4), and
following the same analysis as in 3, we can express the solution to (5.13), (5.14) as

t/(Xl, X2, X3, X4) HE(X -- Jf H/(Y)ME(X; Y) df

+ He(X) dx4 + Be(Y)Me(X Y) dx
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where Me (X;Y) denotes the even part of M(X; Y) with respect to x4 and He(X),
/-)(X) are the (unique) harmonic functions of the variables Xl, x2, x3,x,, con-
structed by the methods of 2 which satisfy the Cauchy data

H(X) f(xl, x2, x3),
x4=O

(5.16)
cH(x) O,
X4 x=O

/:(X) g(x 1, x2, x3),
X4=0

(5.17)
?/e

X4

0,(x)
=o

respectively.
As we discussed in 3, the domain of regularity of u(x 1, x2, x3, x4) as given by

(5.15) is determined by the domain of regularity off(x1, xz, x3) and g(xl, x2, x3)
in the space 73 of three complex variables. Approximations can be readily made
through the use of (5.12) and (5.15) in conjunction with the results of 2.

6. Cauchy’s problem for Av+2u + B(r2)u 0. In this section we solve
Cauchy’s problem for the equation

(6.1) L[u] Ap+2u + B(r2)u O,

where B(r2) is an entire function of r2, r IXl, X (xl,’", xp+ 2). To accom-
plish this we use the method of ascent [9], [10] to represent u(X) in terms of a
harmonic function of p + 2 variables H(X)"

(6.2) u(X) (I + G)H(X) _-- H(X) + aP+ 1a(r, a2)g(Xo-2) do,

where

(6.3) G(r, 1 a2) 2rRl(rY2 0", r, r)

and R(z,z*;,*) is the Riemann function for A2u + B(r2)u--0, the sub-
script in (6.3) denoting differentiation with respect to the first variable. If
r, 0 (01,02, .’., 0v), (p are hyperspherical coordinates, the harmonic function
H(X) (r, 0, 09) in (6.2) is given by

(6.4) ffl(r, O, qg) (t(r, O, q) + r -p/2 F(p, r)pp/2t(p, O, qg)dp,

where

(6.5)

F(p, r) 2 K(1)(P, r),
/=1

K(l + 1)(p, r) K(1)(t, r)K(l)(p t) dr,

K( )(p r) R (p 0; r, r),

u(X) _-- a(r, 0, o).
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Equation (6.4) can be written in Cartesian coordinates as

(6.6) H(X) u(X) + F(tr, r)tP/u(Xt)dr.

Now suppose we wish to find a solution to (6.1) such that

u(x, x, x+ , O) f(x, x+ ),
(6.7)

Ou
(xl, x2, Xp+ 1, O) g(xl, Xp+ 1),
C3Xp+2

where fand g are regular in some neighborhood of the origin in the space
of p + 1 complex variables. From (6.6) we have

(6.8) H(X) f(Y) + F(tR, R)tp/2f(tY)dt,
Xp

where

(6.9) Y (X1, Xp+ 1),

and

(6.10)

H(X)
g(Y) + ---F(tr, r) tv/2f(tY)dt

Xp+ 2 xp 0

+ F(tR, R)t/ + lg() d.

We can now use the results of 2 to construct H(X). By using this harmonic
function the solution to the Cauchy problem (6.1), (6.7) is given by (6.2). From its
definition in terms of the Riemann function it is seen that G(r, 1 a2) is an entire
function of its variables [8], [9]. Hence (6.2) in conjunction with the formulas of
2 give an efficient method of approximating solutions to the Cauchy problem

(6.1), (6.7).

REFERENCES

Eli S. BERGMAN, Integral Operators & the Theory of Linear Partial Differential Equations, Springer,
Berlin, 1961.

[2] D. COLTON, Cauchy’s problem for almost linear elliptic equations in two independent variables,
I, H, J. Approx. Theory, to appear.

[3] P. GARABEDIAN, Partial Differential Equations, John Wiley, New York, 1964.

[4] Partial differential equations with more than two independent variables in the complex
domain, J. Math. Mech., 9 (1960), pp. 241--271.

[5] Stability ofCauchy’sproblem in spacefor analytic systems ofarbitrary type, Ibid., 9 (1960),
pp. 905--914.

[6] Applications of the theory ofpartial differential equations to problems offluid mechanics,
Modern Mathematics for the Engineer: Second Series, McGraw-Hill, New York, 1961, pp.
347--372.

[7] P. GARABEDIAN AND H. M. LIEBERSTEIN, On the numerical calculation ofdetached bow shock waves

in hypersonicflow, J. Aeronaut. Sci., 25 (1958), pp. 109-118.



132 DAVID COLTON AND ROBERT P. GILBERT

[8] R. P. GILBERT, Function Theoretic Methods & Partial Differential Equations, Academic Press,
New York, 1969.

[9] -----, The construction of solutions for boundary value problems by function theoretic methods,
this Journal, (1970), pp. 96-114.

10] --, A methodofascent,for solving boundary valueproblems, Bull. Amer. Math. Soc., 75 (1969),
pp. 1286-1289.

11] R. P. GILtERT AND C. Y. Lo, On the approximation of solutions of elliptic partial differential
equations in two and three dimensions, this Journal, 2 (1971), pp. 17-30.

[12] K. J. HARKER, Determination of electrode shapes for axially symmetric electron guns, J. Appl.
Phys., 31 (1960), pp. 2165-2170.

[133 P. HENRICI, A survey of I. N. Vekua’s theory of elliptic partial differential equations with analytic
coefficients, Z. Angew. Math. Phys., 8 (1957), pp. 169-203.

14] L. E. PAYNE, On a priori bounds in the Cauchyproblemfor elliptic,equations, this Journal, (1970),
pp. 82-89.

El5] B. L. TJONG, Operators generating solutions of A3(x,y,z + F(x,y,z) d/(x,y,z) 0 and their
properties, Analytic Methods in Mathematical Physics, R. P. Gilbert and R. G. Newton,
eds., Gordon and Breach, New York, 1970, pp. 547-552.



SIAM J. MATH. ANAL.
Vol. 2, No. 1, February 1971

STABILITY AND ENTERING OF THE ORIGIN FOR REAL,
NONLINEAR, AUTONOMOUS DIFFERENTIAL EQUATIONS

OF THIRD ORDER*

CHARLES E. ROBERTS" AND GENEVA G. BELFORD

Abstract. This paper is concerned with the asymptotic behavior of solutions to third order
differential equations in the neighborhood ofa stable critical point. In particular, the question ofwhether
or not solution trajectories enter the critical point is investigated. Two new theorems on entering
(extensions of known theorems for the two-dimensional case) are proved, and these, as well as known
results on asymptotic behavior, are applied to a case-by-case analysis of the possibilities for third order
equations.

1. Introduction. Although not of such universal importance as second order
equations, third order autonomous differential equations do arise in a number of
applications, for example, in the study ofsome types of electronic oscillator circuits
(see [23, [83, [14]). It is therefore of importance that stability and qualitative be-
havior of solution curves of such equations be investigated.

Most of the literature on the problem deals with special cases. However, in
1964 Reyn [153 classified the critical points of the third order linear autonomous
system

(1) (t) Az(t),

where A is a real, constant, third order matrix and z(t) (Zl(t), z2(t), z3(t)). He also
described the behavior of the integral curves in a neighborhood of the critical
points. Reyn suggested that his work be the starting point for the study ofnonlinear
third order autonomous systems of the form

(n) - Az + R(z),

where R(z) o([]z][) as []z[[ 0. Recently Bihari [1] has carried out such a study,
but restricted himself to the case where A is nonsingular. We have studied (n) with
the restriction that it be equivalent to some differential equation Y f(x, 2, ).
In 3 of this paper we summarize our more interesting findings; more details are
to be found in [16]. Before presenting these results, in 2 we establish necessary
and sufficient conditions for an integral curve of (n) to "enter" a simple critical
point at the origin with direction cosines n, n2, n3. We also give a set of equations
which the quantities hi, n2, n3 must satisfy. These theorems, extensions to three
dimensions of analogous theorems given by Hurewicz [5, p. 87 ff.] for the two-
dimensional case, are useful for obtaining some of the results of 3.

2. General qualitative behavior. Throughout this paper we assume that
conditions are such that the local existence of solutions of (n) for []z[[ sufficiently
small is guaranteed. (We shall be using the usual Euclidean norm for ][z[[ .) Re-
quiring R(z) to be continuous is sufficient. We then expect that at least in some cases
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the behavior of the integral curves of a nonlinear system (n) will be similar in some
sense to that of the integral curves of the related linear system (1) for small
We present some results to this effect in this section. Our definitions and methods
in general follow Hurewicz [5].

First, we require some terminology. A point p is called a critical point of (n) if
Ap + R(p) O. Thus the origin (z 0) is a critical point of both (n) and (1). A
critical point p is referred to as isolated if there exists a sphere centered at p con-
taining no other critical point, and the critical point z 0 of the nonlinear system
(n) is said to be simple if the determinant of A is nonzero.

Now suppose that (1) and (n) are defined in a domain D containing the origin
and that the origin is a simple critical point. Then with each point z 4:0 in D there
are associated two vectors N(z) Az + R(z) and X(z) =_ Az. Let p(z) be the vector

z. Finally, define angles (z), fl(z), and 7(z), all lying in [0, ] and such that is the
angle between N and p, fl the angle between X and p, and 7 the angle between N and
X. The geometry of this situation is pictured in Fig. 1.

N r X

FG.

THEOREM 1. If the origin is a simple critical point of (n), it is also isolated.
Furthermore, as z approaches zero we have

(i) lira 11_o S(z)ll/ X(z)ll- 1,
(ii) lim zll-o 7(z) 0,

(iii) lim zllo ((z) fl(z)) O.
Proof. For all z O, IIX(z)l > 0 since the critical point at the origin is simple.
Let k min IIz X(z)ll Then k > 0, and for all z - 0,

llX(z)ll/llzll IX(z/llzll)ll k.

Therefore X(z)l -> k zll for all z 4: 0, and

(2.1) lim
N(z) X(z)

IIz 11-o X(z)
< lim

R(z)
0.

IIztl-,O klz
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Now if N(z) 0, then II(N(z) X(z))/llX(z)ll 1, But by (2.1) we see that this
quantity cannot equal 1 arbitrarily close to the origin. Therefore a simple critical
point at the origin is isolated. Now we proceed to the proofs of statements (i)-(iii).

(i) We have II(N(z) X(z))/llS(z)ll >= IIN(z)ll/llX(z)ll 1. Taking the limit
as [Izll goes to zero we conclude that limllzll_ o IIN(z)ll/llX(z)ll _-< 1. Similarly from
II(S(z) N(z))/llX(z)ll > IIg(z)ll/llX(z)ll, we find that

lim IN(z)ll/ X(z)ll 1.
Ilzll-,0

Hence (i) holds.
(ii) Suppose limllzll_, o 7(z) O. Then N(z)/llzl]- X(z)/llzll is a vector of

length bounded away from zero as Ilzll --, 0. Hence limllzll_ 0 (N(z) X(z))/llzll
4: 0. But this contradicts (2.1).

(iii) Suppose limllzll_o (e(z) -fl(z))- 0. Then limllzll_, o (cos e(z)- cos fl(z))- 0. Hence

lim I p(z)" N(z) P(z)" X(z) 1
lim

P(Z) [ N(z) X(z) 1IIzlt-,o llp(z)----" IIU(z)tl S(z)ll
-: 0,

where the dot (.) indicates the inner product oftwo vectors. Therefore limll zll-,o 7(z)- 0. But this contradicts (ii), so the proof of the theorem is complete.
Now for the next theorem, let the determinant of A be nonzero, and let system

(n) be defined in a domain D (containing the origin) and have unique solutions
there. For any p e D let z,(t) be the unique trajectory of (n) passing through p,

+and suppose tp is a time such that z,(t,)= p. Then the half-trajectory zp (t)
{zp(t)[t >= tp} is said to approach the critical point at the origin if and only if

+ +limt_ / Zp (t) 0. A half-trajectory Zp (t) which approaches the critical point at
the origin is said to enter the critical point if and only if the radius vector from the

+origin to the point zp (t) has a limiting direction as +
+ half-trajectory of system (n) which approaches theTHEOREM 2. Let Zp (t) be a

+simple critical point at the origin. A necessary and sufficient condition that zp (t) enter
the origin with direction cosines n (n n2, n3), where ni limt_
is that for some k (k 1, 2, 3) and for all j k, limt_ + .i(t)/,(t) exists and equals
n/nk. The only values that rll n2, rl 3 may have are normalized (llnll 1) solutions of

nj/n, (a;. n)/(a,, n),

where nk :/: 0 and a.i denotes the j-th row of A.
Proof Suppose that for some k(k 1, 2, 3), lim,+ .j(t)/.(t)= n;/n for

j 4: k. Without loss of generality we may take k 1. Then by l’Hospital’s rule,
lim_ +oo Zz(t)/z(t)-- nz/n and lim_+ z3(t)/z(t)= n3/n. Hence the following
limit exists:

lim I 111/2,--,+oo (z2(t)/zI(t))2 -4" (z3(t)/zI(t))2 + 1 lim [z(t) z(/)ll-X nx.
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Suppose nl 1. Then lim,_+o[(z2(t)/z(t))2+ (z3(t)/z(t))2] --0 and this
implies that n2 n3 0.

Suppose n - 1. In this case either lim,_. +o (22(t)/z1(t))2 :/: 0 or

lim (z 3(t)/z 1(0)2 0.

For definiteness suppose limt+ (z2(t)/z(t)) O. Then

lim
Zl(t)

,+ and lim z3(t)_ lim
z(t) z3(t)

,+ Zz(t ,+Zz(t z(t)

exist. Therefore the following limit exists"

lim [. 1 1/2,+ (Zl(t)/Zz(t))2 + (z3(t)/ze(t))2 + 1 ,+lim z2(t) z(t)l[ - n2.

Iflim, + (z3(t)/z(t))2 0, then lim, + z3(t) z(t)ll- exists and n3 0. If on the
other hand, lim, + (z3(t)/z(t))2 # 0, then we find that lim, + z3(t)llz(t)ll- n3.
This proves the sufficiency part of the theorem.

+Now suppose that Zp (t) enters the origin with direction cosines n, n2, n3.

Then for some index l, n 0 and therefore ak" n 0 for some k. Then the quotient

et) a. zt) +
() a. z(t) + R(t)’

where Rj denotes the jth component of R, has a well-defined limit as +
for all j k. Dividing numerator and denominator by llz we see that in the
limit we obtain

n/nk (aj. n)/(ak n)

for all j k, as was to be proved.

3. Qualitative behavior of 2 f(x, , ). We have carried out a study of the
behavior of the integral curves of the general equation 2 f(x, , ), or equiva-
lently, of the third order system of differential equations

(3.1) : Z2, 2 Z3, "3 f(Zl, Z2, Z3)"

We assume that f(0, 0, 0) 0 and that f/Oz1, f/z2 and f/LZ3 all exist and are
continuous in some domain D containing the origin. Defining c3f/c3Zl[(O,O,O) c,
c3f/c3zl(o,o,o) b and c3f/c3z3lo,o,o) a, we write system (3.1) as

x /0 0 z 0

(3.2) :/= ii tO 0 z + 0 =Az+R(z),

c b a z3 r(z,z2,z3)

where limllzll_ o r(z, z2, z3)llzll- 0. We further assume that r(za, Z2, Z3) is
continuous in D.

First we consider how stability depends upon the signs of the real constants
a, b and c appearing in (3.2). Rather surprisingly, it turns out that most cases are
unstable. The only exceptions are the following"



STABILITY AND ENTERING OF THE ORIGIN 137

Case I. a<0;b<0;c<0;ab+c>0;
Case lI. a<0;b<0;c<0;ab+c=0"
CaselII. a= b=c=0;
Case IV. a= c=0;b<0;
Case V. b=c=0;a<0;
Case VI. c=0;a<0;b<0.

All other cases are immediately seen to be unstable because at least one eigenvalue
of the matrix A has positive real part. (For definitions of the terms "stability,"
"instability" and "asymptotic stability" as used here, see for example [6, pp. 31-2].)

Since Bihari omits singular cases (det A 0) and since we omit unstable
cases, the area of common analysis is Cases I and II. Because of the indeterminacy
of Case II, Bihari does very little with it, so it is only in Case I that our results are
comparable with his. (Cases II-VI are "critical" or "indeterminate" in the sense
that stability or instability depends upon the nonlinearity r(zl,z2,z3). This
occurs because at least one eigenvalue has zero real part in each of these cases.)

It is to be emphasized that our primary interest in this paper is in whether or
not, in stable cases, trajectories actually enter the critical point. Our comments on
stability in what follows are therefore only in the nature of providing a guide to
some cases in which the question of entering arises, and are not intended to be
comprehensive. An extensive literature exists on the determination of whether or
not a critical point of a nonlinear nth order system (particularly in nonsingular
cases) is stable, and many of these general theorems and techniques could, of
course, be profitably applied to our third order systems. (For example, in cases
where the nonlinearity is analytic, see the books of Liapunov [9], [10] and in the
general case see the books of Hartman [3, Chap. 10], Lefschtez [7] and Malkin [11]
(although Malkin also assumes analyticity in his analysis of the difficult critical
cases) .)

Case I. All the characteristic roots of A have negative real parts. Hence all
solutions z(t) of system (3.2) with Ilz(0)ll sufficiently small exist for all >_ 0 and
limt_+ z(t)= 0. There are four subcases to be considered. They correspond
respectively to characteristic roots 21,22 and 23 of A which are (i) all real and
equal, (ii) all real with 22 23, (iii) real and distinct, or (iv) 21 real and 22 and 23
complex conjugates. We shall consider case (i) in some detail and then indicate
briefly how the other cases differ.

(i) Let 21 22 =/3 a/3 < 0. System (3.2) can be transformed into the
canonical form

(3.3)

a/3 1

f= I00 a/3 u+

0 a/3 r

Jlu +

0

0

S(Ul, U2, U3)

0

a a2 2a
Ul,-/,/1 q- /,/2,--Ul -]--U2 -}- U 3
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Applying Theorem 2, we find that a trajectory (integral curve) of system (3.3)
which enters the origin must have direction cosines (1, 0, 0) or (-1, 0, 0) at the
origin. That is, any integral curve of system (3.3) which enters the origin must do
so tangent to the u 1-axis at the origin. The following theorem gives conditions
under which all trajectories beginning sufficiently close to the origin enter the
origin tangent to the ul-axis.

THEOREM 3. Let system (3.3) satisfy the additional condition that .for some
e > 0 and all u with u[ < Po (Po > O),s(u) O( full +e). Thenfor every set of initial
values k (k k2 k3) with Ilkll sufficiently small there exists a unique solution (t) of
the system such that (0) k and fi(t) enters the origin tangent to the ul-axis.

Proof. By our general smoothness assumptions on (3.2), for every k in the
domain of definition of (3.3) there exists a unique solution u(t) such that u(0) k.
Since 21 22 23 a/3 < 0, any solution u(t) of system (3.3) with Ilu(0)l Ilk
< p x, where P > 0 is sufficiently small, exists for all _> 0, and

lim In Ilu(t) /t a/3

for any nontrivial solution u(t) of system (3.3) for which Ilu(0)ll < pa, (See Hartman
and Wintrier [4, pp. 694-696] .)

Throughout the remainder of this proof let (t) designate a nontrivial solution
of (3.3) with fi(0)ll < p (Po, P), where p > 0 is less than p and small enough so
that Ilfi(t)[ < Po for all => 0. Then there exists a 6 > 0 such that

(3.4)

0

S(fi(t)) 01 s(fi(t)) O(e(a/3-a)t) for >= 0.

Since fi(t) is a solution of (3.3), fi(t) satisfies the integral equation

fi(t) eS’tk + eJ’tt-)S(fi(v)) dr.

Furthermore, because the characteristic roots of J are real, equal and negative,
there exist positive constants K and a such that a < 6 and

(3.5) IleJ"ll =< Ke(a/3-)t for 0.

Then for any solution (t) of system (3.3), e-J’vS(fi(v)) dv < oe; therefore the

above integral equation may be written as

(3.6) fi(t) eJ"k* eS’t’-o)S(fi(v)) dv for some k*.

From (3.4) and (3.5) it follows that

(3.7) fi(t) eJ’tk* + O(ea/3-)t) for => 0.
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If we assume that (t) is not the trivial solution (so that k* # 0), it follows from
(3.7) that

2(t) at2/3 + 3lim lim
,--’ + l(t) t--, + aft 1/3 + fie

lim

and similarly,

(ak’/3 + (at/3 + 1)k])cat + O(c(a/3-6)t)

tk]eat + O(e(a/3-)t)

lim 3(t)/a(t) O.
t-* +

The theorem now follows from Theorem 2.
The theorem above is somewhat similar to Bihari’s Theorem 4.1 l, p. 282].

However, Bihari’s result, being stated in terms of(3.3)as transformed into spherical
coordinates, is less readily applicable, and his proof is by purely geometrical
arguments.

We conclude our discussion of case (i) by presenting an example which illus-
trates that requiring s(u) o(llull) as ]lull--, 0 is not sufficient to insure that the
behavior of the integral curves of the linear system ft J u and that of the integral
curves of a nonlinear system having the form of system (3.3) are essentially the
same in a small neighborhood of the origin. Notice that in the linear case, the
origin is a "node"--i.e., all trajectories beginning sufficiently close to the origin
enter it. (For detailed behavior of trajectories in this and other linear cases, the
reader is referred to the paper by Reyn 15] .) Our example is of a perturbed system
which has at least one solution which approaches the origin but does not enter it.

Example 1. Consider the differential equation

Yi 35i 32 x + r(z z, z3),

where

-1[/’(ZI’ Z2’ Z3) Iin ZI z + z2 + --z + + zj
Z2

r(0, 0, 0) 0, zl X, Z2 3, Z 3 5/, and Ze z21 --[-- (z --[-- z2)2.

Transformation to canonical form yields

(3.8) a

where

S(H1, U2, U3)

-1 0 0 0

0 -1 u+ 0

0 0 s(u, U2, /’/3)

IlnRI u2+ -ua +---
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with R2 u2 + u2
2 and s(0, 0, 0)= 0. In cylindrical coordinates (R2 u2 + u2

2

0 tan-1 (U2/Ul) and u3 u3) we have

/= -R+Rsin0cos0+u3sin0,

(3.9) RO u3 cos 0 R sin2 0,

l 3 --U3 -[- w(R, 0, U3)

where

w(R, 0, U3)
[In R[

sin 0 +
]In R[ + cos 0 sin 0 1 +

Iln RI
Notice that s(u) o(ull) as Ilu --, 0; but there does not exist any > 0 such that
s(u) O( u +) as ul --, 0.

Now U3(t -R cos 0/lln RI isa particular solution ofti 3 --/2 3 -[-- Iv(R, O, u3).
For this particular solution, for 0 < R < e-1, and for initial value Ro 0 suffi-
ciently small so that the corresponding particular solution of system (3.9) is
defined for all > 0 and approaches the origin as --, + oe, straightforward analysis
shows that as t--, / o,10(t)l--, +oe. Hencelim,_+oou2(t)/ul(t)= limt_,+ tan 0(t)
does not exist and therefore this solution cannot enter the origin.

(ii) In this case 2, 22,23 < 0 and 21 22 23. Application of Theorem 2
(after transformation of the system into canonical form analogous to (3.3)) shows
that any integral curve which enters the origin must do so tangent to either the
u 1-axis or the u2-axis. Theorem 3 carries over with only the small change that the
entering may be along either the Ul- or u2-axis, and again an example can be con-
structed to show that if the hypothesis on s(u) is weakened to s o(llul[), integral
curves approaching the origin need not enter it.

(iii) Now consider the case where the eigenvalues 2i of A are negative and
distinct. In the linear case, the origin is a nondegenerate node--all trajectories
enter the origin tangent to one or another of the three characteristic directions.
Unlike the situation for the degenerate cases treated above, one can prove--under
the general assumptions made at the beginning of 3--that it is also true for the
perturbed system that all nontrivial solutions u(t) with u(0) sufficiently small
exist for all > 0 and enter the origin.

(iv) Here we have 21 < 0, 22 e + ifl and /3 ( ifl, where e < 0 and
>0.

Because of the spiraling behavior, even in the linear case all trajectories need
not enter the origin. Investigation of the perturbed system shows that (again
under our general assumptions) there is always at least one trajectory that does
enter. Any trajectories that enter the origin must, of course, do so along the
positive or negative ul-axis. (This is a simple consequence of Theorem 2.)

Case II. a < 0, b < 0, c < 0; ab + c 0. The eigenvalues of A are then a and
_+ i, where fl x//- b. System (3.2) may be put into the canonical form

a 0 0 fl
(3.10) ft= 0 0 fl u+ -fl is(u).

0 -fl 0 a
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The fact that the nonlinear terms in the equations are all (except for a constant
factor) identical might be expected to limit somewhat the possible sorts of be-
havior. In fact, however, the critical point at the origin may be stable, asymptotically
stable or unstable, depending on the function s(u). (A similar remark will be seen
to hold in most of the following cases.)

In the linear case, s(u) O, the critical point at the origin is clearly stable and a
general trajectory may be described as a "converging circular cylindrical spiral."
Introduction of the perturbation s(u) may or may not cause instability. In any case
Theorem 2 gives us the immediate result that any trajectories entering the origin
may only do so along the u1-axis. In case s is a function of u2 and Ua only, the last
two equations of (3.10) are independent of ux(t) and we can get results such as the
following.

THEOREM 4. In system (3.10) let s(u)= h(u2,u3). Assume that the critical
point (0, O) of

(3.11)
0

is asymptotically stable and that there exists a positive integer n such that, for any
solution (Uz(t), u3(t)) of (3.11),

-"- <=(u(t)+u(t))/2 fort_>_to> 1

and

lim "+ eatt-V)lh(uz(v), u3(v))] dv <
t-- +

for to > 1.

Then only the integral curve coinciding with the positive u 1-axis and the integral
curve coinciding with the negative u x-axis enter the origin.

Proof Let u(t) be any solution of the system (3.10) such that u22(to) + u(to)- 0 (to > 1). Then it follows that

lim eat-’)lu(to) -+- fl e’-V)]h(u2(v), ua(v)) dv /t -"-x < or.
t--* +

The result follows since the limit as + of the quotient (u(t) + u(t))/u(t),
if it exists, cannot be zero.

Remark. We wish to justify the reasonableness of the hypothesis that there
exists a positive integer n such that t-"-x <__ (u(t) + u(t)) 1/2 for >= to > 1. By
asymptotic stability, (u(t) + uZ3(t)) 1/2 will in general approach zero "like" some
power of this power, however, cannot be arbitrarily large, since if(u(t) + u(t))/2
went to zero "like" e- that would imply that the real parts of the characteristic
roots corresponding to u2 and u3 are negative.

It is clear that under the hypotheses of Theorem 4 the system (3.10) is asymp-
totically stable. In fact, since (3.11) is independent of ul, stability or instability of
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(3.10) depends upon stability or instability of(3.11). Pliss [13 has shown that under
very general conditions, study of the stability of a system with n eigenvalues having
zero real parts (and the rest negative real parts) may be similarly reduced to the
study of the stability of an n-dimensional system. The method ofreduction involves
determination of an invariant surface for the full system and, for any given system,
is likely to be difficult to carry out in practice.

Case III. a b c 0. Then system (3.2) is already in canonical form. In
the linear case (r(z) 0), all points on the z 1-axis are critical points. This axis forms
a so-called "shear line." No critical point is stable.

Adding the nonlinearity r(z), we introduce the possibility that the critical
point at the origin may be isolated. In fact this occurs if and only if there is a de-
leted neighborhood of z 0 within which r(za, 0, 0) : 0. Assuming that this is
the case, we may then inquire as to whether this isolated critical point at the origin
is stable. It is easy to see that in most cases (for example, whenever the origin is an
isolated zero of r(zl, z2, z3)) the instability of the linear case carries over into the
nonlinear one. It is possible, however, that the introduction of a nonlinear per-
turbation may convert the origin into a stable critical point, as the following
example shows.

Example 2. Consider the differential equation 3 _()3. Letting zl x,
z2 and z3 , we obtain a third order system which can be written

(3.12) dzl dz2 dz3

Z2 Z3

Solving the right-hand equality, we obtain as a first integral

(3.13) z + z{/2 c.
Solving (3.13) for Z2 and substituting into (3.12), we have

dz dz3/-x//(c21 z)’/2.

Therefore, for c O,

(3.14) z, + (1/x/) sin-’ (z3/Icll) c2.

The solutions of(3.12) for fixed c1(4:0) and C2 are curves which are the intersections
of the cylinders defined by (3.13) and (3.14). For Cl 0 the solutions are all points
(k, 0, 0,)--i.e., points on the z a-axis. Typical trajectories are sketched in Fig. 2.
Clearly each point of the z,-axis is a stable critical point.

We leave open the question of whether for some perturbation r(z) the origin
may become an asymptotically stable critical point. It seems to us highly unlikely.

Of course, even in unstable cases some trajectories may approach the origin,
and the question as to whether or not they enter the origin becomes pertinent.
Theorem 2 is unfortunately not applicable here (nor in any of the singular cases to
follow), but considering Case III as a limiting form of Case (i) we conjecture that
integral curves entering the origin must do so tangent to the ul-axis.
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Z3

z2

FIG. 2

Case IV. a c 0; b < 0. The eigenvalues of A are, in this case, 0 and +_ ifl,
where fl w/- b; and the canonical form of the system is

0 0 0 l/b\
(3.15) = 0 0 fl u+ l/bIs(u).

o]o - o

The linear case (s(u) 0) is neutrally stable. (The u -axis forms a "line of centers.")
One therefore expects that the introduction of the nonlinearity s(u) could induce
either asymptotically stable or unstable behavior. This is in fact the case.

Cetaev’s theorem I6, p. 39] may be used to readily derive sufficient conditions
for instability. For example, we find that if the origin is an isolated zero of s(u),
then the origin is an isolated, unstable, critical point of (3.15).

The following example shows that asymptotic stability is also a possibility.
Example 3. In system (3.15) let s(u)= b(ux u2)3. Let p2 u2 + u22 + u32.

Then pfi "----(U --U2)4". Hence for p 0 and u :](: U2, < 0. Let 0
tan -1 (u2/ul). Then for p - 0, u3 4:0 and u u2, 0 flu3/2u :/: O. Finally,

for p 4: 0, u3 0 and u u2, 03 flu2 4: O. Thus for this example system
(3.15) has an isolated critical point at the origin which is asymptotically stable.

For this case no results concerning entering have been established. However,
by considering this case to be a limiting case of Case I (iv), Case II or Case VI (iii)
one is inclined to predict that there are instances in which integral curves enter
the origin tangent to the line u2 u3 0. We have been unable to find an example
of such an instance.
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Case V. b c 0; a < 0. The eigenvalues of A are 0, 0, a, and the canonical
form of the system is

a 0 0 1/a2

(3.16) ft=- 0 0 10u+ -_l/a
2 s(u).

0 0 1/a

In the linear case (s(u) 0) all points on the u2-axis are unstable critical points.
Instability is therefore the normal situation, and as in Cases III and IV, it is easy
to show that if the origin is an isolated zero of s(u), then the origin is an isolated
unstable critical point of (3.16).

Turning to the question of entering, we find (as an immediate application of
Theorem (*) of Hartman and Wintner [4, p. 695]) that there always exists a solution
u(t) of (3.16) which enters the origin tangent to the u-axis. We also may obtain a
theorem quite analogous to Theorem 4 for Case II--i.e., stating that under the same
hypotheses as in Theorem 4, only the integral curves coinciding with the positive
and negative u-axes enter the origin.

Case VI. c=0; a<0, b<0. The eigenvalues of A are 0 and (1/2)
(a -+- (a2 -+- 4b)X/2). The canonical form of the system will depend upon the sign of

(a2 -k- 4b), but these subcases have certain common features which we first discuss.
The linear case is essentially stable; all points along the z-axis (the u-axis in the
canonical system) are stable critical points. The stability of any one critical point
is of the "neutral" type, however, so that an arbitrary perturbation is likely to
cause instability. In fact, as in Cases Ill-V, if the origin is an isolated zero of
r(z), then the origin is an unstable isolated critical point of (3.2). It is possible,
however, that an isolated critical point at the origin may be stable or even
asymptotically stable. This fact will become clear as we look closer at the three
subcases.

Before doing this, we note that a natural way to study stability in this case is
through the "product-space" approach (see, for example, Lefschetz 7]) and a
theorem which we will find useful is the following.

THEOREM 5. Consider the system of q + 1 equations

(3.17) g(y) + h(y, z),

(3.17/3) Qz + k(y, z),

where z and k are q-dimensional (q >= 1) and Q is a constant, stable q x q matrix.
Assume that the following conditions hold."

1. g(y), h(y, z) and k(y, z) are each continuously differentiable in some domain
containing the origin of the appropriate space.

2. g(0) h(0, 0) 0; k(0, 0) 0.
3. g(y) o(lyl)as lYl--’ O.
4. There exist positive constants p and P2 such that

sgn g(y) sgn [g(y) + h(y, z)]

whenever [Yl < P and Ilzll < p2,
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5. There exist positive constants P3 and K, and nonnegative continuous func-
tions l(y) and m(z), with l(y) o(lyl) as ]Yl --* O, such that

k(y, z) <= Kl(y)m(z) whenever II(Y, z) < P3.

Then the critical point at the origin of (3.17) is stable (asymptotically stable) if the
critical point at x 0 of the equation

(3.8) g(x)

is stable (asymptotically stable).
A proof of this theorem may be found in [163. Essentially, the technique is to

invoke a converse Lyapunov theorem for (3.18) and, using the Lyapunov function
thus known to exist, to obtain asymptotic information about y and ultimately z.
We omit the proof here since the theorem is very similar to one given by Munir
[12_ in a somewhat more general context.

In looking at the three subcases, we shall, as in Case I, present in some detail
results for the first case considered and then only indicate briefly how the other
cases may differ.

(i) a2 -+- 4b 0. The canonical form of the system is then

0 0 4/a2 t
(3.19) t 0 a/2 u + 4/a2 J s(u).

0 0 a/2 2/a /
In the special case that s is a function of U only, we may readily apply Theorem 5
with q 2. Furthermore, although Theorem 2 is not applicable (because of the
singularity of A) we can get some information on entering under hypotheses similar
to those of Theorem 4. To be precise, we obtain the following result.

THEOREM 6. In system (3.19) let s(u) g(Ul).
(a) The critical point at the origin is stable if and only if U 0 is a stable

critical point of

(3.20) 1 4g(ul)/a2.

Furthermore, if the critical point U 0 of system (3.20) is asymptotically stable,
then the critical point at the origin of system (3.19) is asymptotically stable.

(b) Let the critical point u 0 of system (3.20) be asymptotically stable and
assume there exists a positive integer n such that for any solution u l(t) of (3.20),
t-"-1

____
[ul(t)[ for >= to > and

lim "+: ea(t-v)/2[g(Ul(V))[ dv 0 for to > 1.
t-- +

Then all integral curves lying in the /,/2, u3-plane enter the origin tangent to the

u2-axis while all integral curves not lying in the u2, Ua-plane enter the origin tangent
to the u l-axis.

Proof. Statement (a) follows immediately from Theorem 5. It remains only to
prove (b).
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Suppose that ul(t) 0 for some t. Then from system (3.19) with s(u) g(ul)
we see that

ftl(t) 4g(u(t))/a2 O,

ftz(t auz(t)/2 + u3(t),

ft3(t au3(t)/2

since g(0) 0. Hence any solution which begins (when 0) on the u2, u3-plane
remains on the u2, u3-plane and satisfies

U2(t (U2(0) -k- u3(O)t)eat and u3(t u3(O)ea’/2.

If u3(0) 0, then the integral curve coincides with a u2-semiaxis if u3(0) - 0, then
limt_, / u3(t)/u2(t) 0. Therefore all integral curves lying in the u2, u3-plane enter
the origin tangent to the ue-axis.

Now consider an integral curve which does not lie in the ue, u3-plane; i.e.,
suppose that u(to) - 0 for to > 1. Then

U3(t u3(to)ea(t-)/2 -+- 2 ea"-v)/2g(u(v)) dv/a, >= to > 1.

Hence for __> to > 1,

]U3(t) < ]U3(to)]ea(,_to)/2
2 ft ea(t- v)/Zlg(u (V)) d/).

Then it follows immediately from the hypotheses that

lim lu3(t)l/lu(t)l O.

Now

Hence

u2(t ea(t-t)/2[U2(lO) nt- (t to)U3(to)

[_4+ e"- v)/2g(ul(v)) + dr.
a

luz(t)l e"-’)/Zffluz(to)l + (t to)lU3(to)13

4 2(t- v)
dr.+ e"(t- )/2lg(u l(v))l a2 a

Finally, if we replace the term -2(t v)/a in the integrand by the larger quantity
-2t/a and then divide by lu(t)l and apply the hypotheses, we get

lim lu=(t)l/lu(t)l O.

This completes the proof.
Of course, although consideration of the special case s(u) s(u) leads to the

most definitive results, this choice does not provide the only possibility of stable
behavior. For example, it is clear that the origin is stable if s(u) is a function only of
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U2 and u3. Furthermore, examples (admittedly rather complicated ones) in which
the origin is an asymptotically stable isolated critical point can be constructed.

(ii) a2 + 4b > 0. The canonical form is

0 0 0 ’3 22
(3.21) = 0 2e 0 u+ -23 s(u),

0 0 23 /2

where 2,3 (1/2)(a + (a2 + 4b)1/2).
Stability results similar to those for subcase (i) hold here. This is not surprising,

since in both instances there is one zero eigenvalue and there are two eigenvalues
with negative real parts. In particular, we can prove a theorem completely analo-
gous to Theorem 6; however, in this case the statement on entering must be modi-
fied to except the particular solutions coinciding with the positive and negative
u3-axes.

(iii) a e + 4b < 0. Although the canonical form is now

0 0 o /

(3.22) f= 0 a/2 fl u+ -/3 s(u),

o fi a/2 a/2

where fl (1/2)(-(a2 + 4b2)) */2, we again have one zero eigenvalue and two with
negative real parts, and therefore stability results similar to those for subcase (i)
apply. Again in the case that s(u) s(u), we can prove a theorem analogous to
Theorem 6, but the conclusion on entering is that no integral curve lying in the
ue, u3-plane enters the origin Whereas all integral curves not lying in the u2, u3-plane
enter the origin tangent to the u-axis. One most easily verifies the spiraling be-
havior oftrajectories lying in the u., u3-plane by transforming (3.22) into cylindrical

Re= u + u and 0 tan-(u3/u2). One then readilycoordinates u, u,
determines that, under the hypotheses of Theorem 6, in this case all solutions lying
in the u2, u3-plane satisfy lim,_+oo 10(1)1 oo, so that lim,_ tan O(t) does not exist.
The asymptotic behavior of curves not lying in the ue, u3-plane is then obtained
by showing (as in the proof of Theorem 6) that lim,_o R(t)/lu(t)l O.

4. Summary. We have here presented some results of a study of the behavior
of solution curves of third order autonomous differential equations in the neigh-
borhood of a critical point. Without loss of generality, we have taken the critical
point to be at the origin. We have chiefly concentrated on one aspect of the prob-
lem ;namely, whether, in the case that the critical point is stable, all or some integral
curves enter the critical point. Results in the "determinate" cases (where the matrix
A associated with the unperturbed system has no eigenvalue with zero real part)
are fairly complete. In other cases we have attempted to indicate possible sorts of
behavior and to point out areas requiring further study.
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GLOBAL REDUCTION OF LINEAR DIFFERENTIAL SYSTEMS
INVOLVING A SMALL SINGULAR PARAMETER*

B. L. J. BRAAKSMA’

Abstract. The splitting of linear holomorphic differential systems involving a small singular
parameter into lower order systems has been discussed by Sibuya and Wasow.

The systems which are considered are of the form em(du/dz) A(z, e)u, where A(z, e) Av(z)e
as 0 and the eigenvalues of the lead matrix Ao(z are blockwise distinct in a sufficiently small
neighborhood ofa point z As stated in a reduction theorem of Sibuya’s, such a system is locally equiv-
alent to two systems of the same type and of an order less than n. In this paper by using holomorphic
block diagonalization and triangularization of holomorphic matrices the methods employed by
Sibuya and Wasow are extended. This enables us to prove a global version of the reduction theorem of
Sibuya. By applying the global reduction theorem we obtain theorems on asymptotic expansions and
factorizations of differential equations involving a small parameter. These theorems are related to
results of Langer and Erd61yi.

Introduction. We consider systems of n ordinary first order linear homoge-
neous differential equations involving a small parameter

du
(:) F. a(z-z
Here A(z, e) is an n n matrix, u is an n-vector and m is a positive integer. The
matrix A(z, e) is holomorphic in z and e for z in a domain D and e in a sector
[arg el =< 3, 0 < Il 5 1. Furthermore, A(z, e) has the asymptotic expansion

(**) a(z, ) a(z) as 0
0

uniformly for z D, [arg [ __< .
The asymptotic behavior of solutions of (,) as 0, [arg [ __< , is known

in the case n 2 and in the case that the lead matrix Ao(z) in (**) has n different
eigenvalues in D (cf. Langer 2]). If some of these eigenvalues coincide at points
z in D, this asymptotic behavior is not known except in special cases. In the case
that the eigenvalues of the lead matrix Ao(z) are blockwise distinct, Sibuya
has shown that the system (,) is locally equivalent to two systems of the same
type of an order less than n. In this paper we prove a global version of this reduc-
tion theorem.

The splitting of system (,) into systems of lower order can be used in the
study of the asymptotic behavior of solutions of (,). Another application could
be the study of multipoint boundary value problems for (,).

In we consider the triangularization of holomorphic matrices. This and
a result of Sibuya 5] on block diagonalization of holomorphic matrices are the
tools employed in the proof of the global reduction theorem. In 2 we obtain an
inequality involving a fundamental system of solutions of (*) in the case that
A(z, e) is an upper triangular matrix independent of . Using the results of
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and 2, in 3 we prove a global version of an existence theorem of Sibuya for
asymptotic expansions of a nonlinear differential equation. From this theorem
we deduce the global reduction theorem. The proof is similar to the proof of
Sibuya (see the exposition given by Wasow in [6, Chap. 7]).

The result of Langer mentioned above with slightly more restrictive condi-
tions is obtained in 5 as a special case of the reduction theorem. Moreover,
in 5 we present an analytic factorization theorem for nth order linear homo-
geneous differential equations involving a small parameter. This theorem is an
extension of the results of Langer [3] and Erd61yi [1] on asymptotic factorization
of such equations.

The following terminology is used:
I, denotes the n n identity matrix. The norm of an n m matrix A with

elements ajh,j 1, ..., n; h 1, ..., m, is defined by

IlZll max lajhl.
j=l,...,nh=

A matrix A(z) is said to be holomorphic in a set D of the complex z-plane if all its
elements are holomorphic in z in a domain containing D. A matrix A(z) is said
to be algebroid in a set D if there exists a domain containing D such that the
elements of A(z) are algebroid in this domain.

S(e0,60) denotes the sector in the complex e-plane where 0 < lel =< eo and
]argel =< 6o.

1. Triangularization of holomorphic matrices. First we prove the following
lemma.

LEMMA 1. Let C(z) be an m n matrix which is holomorphic in a compact
set D. Suppose rank C(z) n- 1 for all points z in D. Then there exists a holo-
morphic n-vector v(z) in D such that

(1.1) C(z)v(z) 0

and v(z) 0 for all points z in D.
Proof Let r be the maximurrt of the rank of C(z) in D and let Zo be a point

in D such that rank C(zo)= r. Then there exists an r r submatrix C*(z) of
C(z) such that rank C*(zo) r =< n 1. The zeros of det C*(z) are isolated in D.
By deleting these zeros from D we obtain a set D1 in which C*(z) is nonsingular
and rank C(z) r. Therefore in D 1, (1.1) is equivalent to the equation C(z)v(z) O,
where Cl(Z) is the r n submatrix of C(z) which has C*(z) as a submatrix.

The r components of v(z), which in this equation are multiplied by elements
of C*(z), may be expressed in the n- r other components of v(z) by means of
Cramer’s rule. Taking these n r components equal to zero except for one which
is chosen to be det C*(z), we obtain a solution (z) of (1.1) in D. This vector is
holomorphic in D, but it may vanish in the isolated zeros z a,..., Zk of det C*(z).

Let flj be the minimum of the orders of the zero zj of the components of
(z). Let v(z) I-I= (z z)-tJ(z). Now v(z) is holomorphic in D and v(z) 4:0
throughout D. Since v(z) satisfies (1.1) in D1, it also satisfies (1.1) in D.

Using Lemma we can prove the following theorem on triangularization
of holomorphic matrices.
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THEOREM 1. Suppose A(z) is a square matrix which is holomorphic in a compact
set D. Then in D there exist an upper triangular matrix B(z) and a nonsingular
matrix C(z) satisfying

(1.2) B(z) C- (z)A(z)C(z)

in D. Furthermore B(z) and C(z) are algebroid in D with the same algebraic singu-
larities as the eigenvalues of A(z).

Proof Let 2(z),..., 2,(z) be the eigenvalues of the n n matrix A(z).
They are algebroid functions in D. Consider the Riemann surface of these eigen-
values above D and use a uniformization parameter z* as a new variable. Let
D* be the domain of definition of z. We shall write A(z*) and 2j(z*) instead of
A(z(z*)) and 2(z(z*)).

The rank of the matrix A(z*) 2(z*)I, is less than n. So by Lemma 1 there
exists a holomorphic vector v(z*) in D* which is an eigenvector belonging to the
eigenvalue 2(z*) of A(z*) on D*. Next we construct an orthogonal basis
v(z*), ..., v,(z*) in D* of holomorphic vectors. The condition that a vector
v(z*) is orthogonal to r holomorphic vectors j(z*), j 1, ..., r, with r < n can
be written in the form (1.1). Hence according to Lemma there exists a holo-
morphic vector v(z*) in D* satisfying this condition with v(z*) 4:0 in D*. So the
orthogonal basis mentioned above exists.

Let V(z*) be the matrix with columns v(z*), ..., v,(z*). Then V(z*)is
nonsingular and holomorphic in D* and

V-I(z*)A(z*)VI(Z*) [l(Z*) An12 l(Z*)]An2_2 x(Z*)
where A,2_ (z*) is a holomorphic (n- 1) (n- 1) matrix with eigenvalues
22(z*),..., 2,(z*) in D. The 1 (n- 1) matrix A,2 (z*) is also holomorphic
in D*.

We apply the same process to A,22_ (z*) instead of A(z*) and thus obtain a
matrix V2(z* etc. Let l/Vg(z*) denote the matrix diag {Ij-x, Vg(z*)}, j 1,...
n 1. Choosing C(z*) W(z*) W,_ (z*), we can easily deduce the assertions
of the theorem.

Finally we mention the following theorem on holomorphic block diagonali-
zation of Sibuya (cf. [5]) which will be used in 3.

TEOREM 2. Let A(z) be a holomorphic n n matrix in a compact simply-
connected set D. Let the characteristic polynomial of A(z) be equal to the product
of two coprime polynomials c(2, z) and c2(2, z) of degrees n and n2 in 2 with holo-
morphic coefficients in D.

Then there exist an n x n matrix C(z), an n x n matrix B(z) and an n2 x n2
matrix B2(z), all holomorphic in D, such that C-(z)A(z)C(z) diag {B(z), B2(z)},
z e D, and the characteristic polynomial of Bj(z) is cj(2, z), j 1, 2.

2. A basic inequality. In this section we prove an inequality for integrals
related to the differential equation (2.2) where T(z) is an upper triangular matrix.
The role of this inequality (see Lemma 2) in the proof of the global reduction
theorem is similar to that of Lemma 27.1 of Wasow [6] in the proof of Sibuya’s
theorem.
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First we formulate a condition H(6) which is used in Lemma 2. This condition
is similar to that on "associated regions" used by Langer [2] in obtaining the
asymptotic expansions for solutions of (*) in the case of n different eigenvalues
of A(z, 0). At the end of this section we present a condition H*(6) which implies
H(fi).

Let D be a simply-connected domain with boundary C which is piecewise
smooth. Let be a positive number.

DEFINITION 1. The domain D and the N algebroid functions t(z), , t(z)
in D U C are said to satisfy condition H(b) if these functions do not have zeros
in D and if there exist branchcuts L,...,
is simply-connected and such that there exist branches of t(z),..., t(z) in D
with the following property"

There exists a point z* on C such that any point z in D can be connected
with z* by a smooth curve in D which does not intersect L, ..., L, and satisfies
the inequality

(2.1) larg tj(O dCI <-_ 1/2rt 8, j 1,..., N,

if runs from z to z* along this curve. If z is a point of a branchcut different from
a branchpoint there have to be two such curves, one on each side of the cut.

Let T(z) be an algebroid upper triangular matrix in D with diagonal elements
l(z),’", tN(Z) satisfying condition H(8). Let the branchpoints of T(z) be the
same as those of th(z), h 1,..., N. We denote these points by el,’", %.
In the sequel we choose the branch of T(z) which corresponds to the branches
of th(z)mentioned in condition H(6).

Consider the matrix differential equation

dV
(2.2) d"--- T(z)V.

dz

Let V(z, , e) be the fundamental matrix solution of (2.2) in D* with the
property

(2.3) V(’,

for any point " in/3.
The following lemma contains an inequality on which the discussion in 3

is based.
LEMMA 2. Let rl, 1 and 61 be positive constants 0 < rl <= 1, m61 < 6. Let

7.(z, e) be holomorphic for z , e S(el, 61) such that

(2.4)

for z e/3, ee S(el, 61). Here R is a constant independent of z.
Then there exists a positive constant K independent of Z, z and such that

(2.5) V(z, , e)X((, e) d <__ geleml

for z
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Proof Let Vhj(Z, , e) be the element at the place (h,j) of V(z, , e). Then we
derive from (2.2) and (2.3),

(2.6)

and

vuj(z, , ) O, ..., vs+ ,s(z, , e) O,

vjj(z, , e) exp e tj(l) dl, j= 1,...,N,

(2.7) vhj(z,,e) e-" thz(’z)Vj(2, , e) exp e th(l) dl d2
/=h+l

ifh
Consider a point z in/ and a curve L from z to z* such that (2.1) holds on L.

We may transform L into a curve L’ from z to z* such that the arc length
along L’ satisfies la(2)- (1)] -< 2]2 -1] for 1 and 2 on L’ in sufficiently
small neighborhoods of . ;, j 1, ..., q. The curve L’ may be constructed
in such a way that (2.1) remains valid if we replace 6 by a constant 62, where
m61 <(2 <("

Since the functions tj(z), j 1,..., N, do not have zeros in D, there exists
a constant kl such that ]t.i()] k > 0, 6 D, j 1, ..., N. Now it is easily veri-
fied that there exists a positive constant k2 such that

(2.8) Re e-" tj()d => k2]e]-"{a(2)

if and 2 lie on L’, 1 lies between z and on L’ and [arg e[ _<_ 61
From (2.6) we obtain for these points and 2 the following inequality:

(2.9) [vjj(,, 2, e)[ exp k218 -m{a(ff2 a(l)}.
From (2.7), (2.8) and (2.9) it can be proved by induction that there exist constants
Kj, h j- 1, j- 2,..-, 1, such that

j-h

(2.10)
/=1

if h < j, 1 and 2 lie on L’ and 1 lies between z and 2 on L’, larg el =< (1"
Now we choose L’ as the path of integration in the left-hand side of (2.5) and

we take a(0 as a new variable of integration. Using (2.4), (2.9) and (2.10), we obtain
the assertion of the lemma.

The condition H(6) used above may be replaced by the following condition
H*(6).

DEFINITION 2. The domain D and the functions t(z),..., tN(z) in D satisfy
condition H*(6) if"

(i) the functions t(z),..., tN(z) have no zeros in D;
(ii) they are the roots of an equation

N-1

(2.11) + fl;(z)t 0
j=0

with holomorphic coefficients flj(z), j 0, ..., N 1, in D;



154 B.L.J. BRAAKSMA

(iii) any pair of roots t(z) and t*(z) of (2.11) satisfies the inequality

]arg t(z)/t*(z)l <= rc- 26

in all points z in D;
(iv) there exists a point z* on C such that the sectors

]arg (( z*) + arg tj(z*)[ __< 1/2z 6, j 1, .-., N,

contain the restriction to D of a neighborhood of z*;
(v) if z C, z 4: z*, there exists a line segment with endpoint z in D such that

on this segment

]arg tj(z) + arg (" z)] < 1/2re- 6, j 1, ..., N.
We prove the following property of this condition: Condition H*(6) implies

condition H(di).
Proof Let el, "", eq be the branchpoints of l(z),..., tN(z) in D. Consider

a point z in D and suppose that the principal value of [arg t2(z)/th(z)[ is maximal
forj=jo, h ho.

Then we define

(2.12) qo(z) -1/2 arg tjo(Z)tho(Z).

On account of (iii) we have

(2.13) ]q(z) + arg t(z)] 1/2 6

for any root t(z) of (2.11).
Let the branchcut L, k 1, ..., q, be the carve with starting point z

such that its tangent vector at any point z coincides with the half-line arg (( - z)
(p(z) + re. Let t(0 be one of the roots of (2.11) and consider J’2 t(()d( along a

curve on the Riemann surface of t(() whose projection is L. The real part of
this integral decreases if z runs along that curve from e onwards because
has a positive lower bound in D (cf. (i)) and because of (2.13). Hence Lk is not
closed and Lk is of finite length in D. So L connects e with a point on C.

If Zo is an arbitrary point in D, z0 q C, we construct a curve L in D with starting
point z0 such that its tangent vector at any point z coincides with the half-line
arg (" z)= q)(z).

Next suppose Zo C, Zo q L, Zo - z*. Then we choose the curve L such that
the first part of it coincides with the line segment mentioned in condition (v)
and does not intersect a branchcut. The second part of L is chosen in the same
way as above. If Zo is the endpoint of a curve L, we choose L in the same way
as if z q C. Now (2.12), (2.13) and (v) imply that (2.1) holds if runs from z to z*
along L.

From the constructions of L and L it follows that L does not intersect a
branchcut. If z0 lies on Lk, the curve L partly coincides with L. Such curves L
are counted twice. From conditions (iv) and (v) it follows that the endpoints
of the curves L coincide with z*. Hence condition H(6) is satisfied.

3. An existence theorem for a nonlinear differential equation. In this section
we prove an extension of the fundamental lemma of Sibuya in [4] (cf. Theorem 26.1
in [6]).



GLOBAL REDUCTION OF LINEAR DIFFERENTIAL SYSTEMS 155

THEOREM 3. Let m and N be positive integers, wo, eo and 6 positive constants
and D a simply-connected domain in the complex z-plane with a piecewise smooth
boundary C. Let w be an N-vector and f(z, w, e) be an N-vector holomorphic.in z,
w and e for z D, IIwll <= Wo and e, S(eo, 6). Suppose

f(z, w, e) aj(z, w)e
j=O

as e 0 uniformly for e e S(eo, 6), z e D, IIw Wo.
Let fi(z, w, e), j 1,

be the Jacobian matrix
N, denote the components of f(z, w, e) and let A(z)

z,w,e)]w= o
0

largel-<

Denote the characteristic polynomial of A(z) by p(2, z). Suppose p(0,z)- 0 for
z D and

(3.1) p(2, z) i--[ Ph(2, Z),
h=l

where p1(2, z), pr(2, z) are r mutually coprime polynomials in 2, the coefficients
of which are holomorphic in D. Let Ph(2, Z) be of degree Nh in 2 and let the zeros

of ph(2, Z) be denoted by 2hj(Z), j 1,..., Nh. Assume that the functions 2hj(Z),
j 1,..., Nh, satisfy condition H(6o) or H*(6o) (cf. Definitions 1 and 2 in 2)/f
h 1, ..., r. Here 6o is a constant with 6o > mr.

Suppose that the differential equation

(3.2) emdw-z f(z, w, e)

is formally satisfied in D by a formal series

(3.3) wv(z)ev,
v----1

where wv(z), v 1, 2,..., are holomorphic functions in D and the norms of the
partial sums in (3.3) have an upper bound less than Wo for z e D, e S(eo, 6).

Then there exists a solution w q)(z, e) of (3.2)for z e D, e S(e, 6), 0 < e
<= eo, such that q)(z, e) possesses the asymptotic expansion (3.3) as e 0 uniformly
for z e D, larg el =< 6.

Proof We assume that condition H(6o) holds, since condition H*(6o)
implies H(6o). There exists a function qg*(z, e) which is holomorphic in z and e
for z e D, e e S(eo,6), which has the asymptotic expansion (3.3) as e 0 uni-
formly for z e D, [arg el =< 6, whereas [[qg*(z, e)[[ < W < W0 for z e D, e e S(el, 6).
Here e is a constant such that 0 < ex N eo. Substituting

(3.4) u w o*(z, e)

in (3.2) we obtain the following equation in u (cf. [6, 27.1])"

(3.5) e
du
z b(z, ) + B(z, )u + g(z, u, ),
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where B(z, e) is an N x N matrix and b(z, e) and g(z, u, e) are N-vectors holo-
morphic in z, e and u for z e D, e e S(el, 6), Ilu[I =< Uo, Uo being some positive
constant. Further,

(3.6) B(z,e) A(z)(1 + o(1)), b(z,e) O(eu) as e- 0

uniformly for z e D, ]arg e[ N 6. Here p is any positive integer.
Finally,

(3.7) g(z,O,e) O, -uig(z,u,e)[,=o 0, j= 1,...,N,

for z D, e S(el, 3).
We only have to show that (3.5) admits of a solution u(z, e) with the property

(3.8) u(z, e) O(eu) as e - 0

uniformly for z e D, larg el =< 6, for any positive integer #.
By Theorem 2 there exists a nonsingular holomorphic matrix R(z) in D

such that

R-l(z)A(z)R(z) A(z) diag {AI(z), "’, At(z)},

where An(z) is a holomorphic Nh x Nh matrix with characteristic polynomial
ph(2, z), h 1,..., r. The substitution u(z)= R(z)(z) transforms (3.5) into an
equation of the same type for with the same properties for the functions/,/
and corresponding to b, B and g. In (3.6) we can replace B, A and b by B, A
and/. It follows that it is sufficient to consider (3.5) in the case that A(z) diag
{Al(z), ..., At(z)} in (3.6).

Applying Theorem we infer that there exist algebroid Nh x Nn matrices
S(z) and T(z) such that Sh(z) is nonsingular in O and

(3.9) s; (z)A(z)S(z) T(z),

whereas T(z) is upper triangular with 2hj(z), j 1, ..., N, on the diagonal. Here
h 1, ..., r. The branchpoints of Sn(z) and T(z) are those of the functions 2nj(z),
j 1, ..., Nh. Denote these points by k, k 1, ..., q. Let Lk, k 1, ..., q
be the branchcuts ofcondition H(6o) for 2hj(z),j 1, ..., Nh. LetD be the domain
obtained by deleting from D these cuts and let D* be the intersection ofD1, "’", Dr.
In Dh we choose the branches of the matrices S(z) and T(z) which correspond to
the choice for the branches of the functions 2j(z), j 1, ..., N, in condition
H(6o). Finally we define

S(z) diag {Sl(z), ..., S(z)}, T(z) diag {T(z), ..., T(z)}.
Substituting

(3.0) u(z) S(z)v(z)

in (3.5) we obtain the differential equation

mdv(3.11) e zz c(z, e) + T(z, e)v + h(z, v, e),
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where

dS
(3.12) T(z, ) S-l(z)O(z, e)S(z) eroS l(z) d--"
The matrix T(z, e) and the N-vectors c(z, e) and h(z, v, e) are algebroid in z with
branchpoints in z---hj,-h- 1,..., r, j 1, .-., qh, and holomorphic in
and v for e e S(e, 6) and [Iv[[ < Vo, where Vo is a positive constant. Further we
have

(3.13) c(z, e) O(eu) as e 0

uniformly for z D, larg el =< 6 and any positive integer /, and

(3.14) h(z, O, e) O, h(z,v,e)lv=o 0, j= 1,...,N,

if z D, e S(el, 6). From (3.12) and (3.6) we deduce that there exist a positive
constant r/=< and a function e(7) defined for 7 > 0 such that 0 < e(7)<= el and

(3.15) T(Z, e) r(z)ll -<_ / le-m(z hk)l-’ +"
h=l k=l

if z D and e e S(e(7), 6). Here T(z) T(z, 0).
Let V,(z, ’, e) be the fundamental matrix solution of the matrix differential

equation
dV

(3 6) r(z)V,Tz
with the property that Vh(, ’, e) INh. Here z and " are points in Dh.

If d is any N-vector; we denote by dl) the vector consisting of the first N
components of d, d(2) the vector consisting of the next N2 components of d, etc.
So d {d, ..., d(}.

If v is any N-vector, we define

(3.17) p(,v,e) c(,e) + {T(,e)- T()}v + h(,v,e).

Now consider the following system of integral equations for the N-vector v(z,

(.lal v(h(z, -’ Vh(z, , )(, v(, ), ) d, h l, ..., r.

Here z denotes the point z* mentioned in condition H(o) for the functions 2h(z),
j 1,..., Nh. Furthermore, the path of integration from z to z lies entirely
in Dh.

Any solution v(z, e) of (3.18) which is continuous in D* satisfies (3.11). In
order to construct such a solution we define

v(z,e,O) O,

(3.19) vh)(z, e, v) e-" fz
h= 1,...,r, v=l,2,....
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Then V(h)(Z ,, ) is continuous in D with continuous boundary values on the
cuts Lhk k 1, ..., qh.

The differential equation (3.16) and its fundamental matrix solution Vh(z, , e)
have been considered in 2 (cf. (2.2)). Let Kh be the constant K as in Lemma 2
corresponding to the choice T(z)= Th(Z) in 2. Let/ be the maximum of
K1, .’., K. From (3.17), (3.14) and (3.15) we deduce that there exist constants
/33 and v such that 33 /32, 0 < /91 < /)0 and

(3.20) lip(z, l), F_.) o(z, ), F.){
_

1/2R- llu {I 1 -Jl-- I.-m(z hk)l rl-1
h=l =1

ifzD*, Ilvll < vx, I111 < vl,eS(e3,6). We caninfer from (3.17),(3.13)and (3.14)
that there exist positive constants Cu such that

(3.21) lip(z, 0, )1 _-< C.l"l, 1,2,...,

if z D*, e S(e3,6).
Applying Lemma 2 and using (3.19), (3.21) and (3.20) we deduce that there

exist constants eu,/ 1, 2,..., such that

(3.22). v(z, , v) v(z. , v 1)ll _-< 2-Rfulel, v 1,2,

* < /3 and 2/Cu(eu*)u < v Hence lim_ v(z, e, v)if z D*, e S(e’, 6), where 0 < eu
v(z, ) exists if z s D*, e S(e’, 6). Moreover, since V(h)(Z, e, V) is continuous in

D with continuous boundary values, the function vh)(z, ) has the same properties.
Furthermore, v(z,e) is a holomorphic solution of (3.18) and (3.11) for zD*,. S(e’, 6), whereas v(z, e) O() as e --, 0 uniformly for z s D*, larg el =< 6 for
any positive integer

Using the substitution (3.10) we obtain a holomorphic solution u(z,e) of
(3.5) with the desired property (3.8) for z D*, S(e’, 6). The block diagonal
form of S(z) and (3.10) imply that uh)(z) is continuous in D with continuous
boundary values on the cuts Lh, k 1,..., qh. However, the possibility that
these boundary values are different at both sides of a cut is not excluded a priori.

Since the right-hand side of (3.5) depends holomorphically on z and u, (3.5)
with initial condition U(Zo) fi at any point Zo in D and for any fi with 1711 < u0
has a unique holomorphic solution in a neighborhood of Zo in D. Choosing
Zo eh we see that u(z, e) is one-valued on Lhk between h and the first point of
intersection of Lhk and another cut Ljl,J =/= h. Denoting the latter point by
we see that the boundary values on both sides of Lhk of U(h)(Z ,) in the point//1
coincide. Choosing z0 =/ we deduce that u(z, e) is one-valued on Lh between
z =/3 and the next point of intersection of Lhk with another cut. Hence u(h)(z,
is continuous in D. So u(z, e) is a continuous solution of (3.5) for z D, S(e’, 6).
Moreover, it is clear that the estimate (3.8) holds for any positive integer # uniformly
for z e D and e e S(e.’, 6). This completes the proof.

4. The global reduction theorem. Using the existence theorem of 3 we may
prove a global analogue of the theorem of Sibuya (cf. [4] or Theorem 26.2 in [6]).
Since the proof very much resembles the proof of Wasow of Sibuya’s result,
it is not presented here.
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THEOREM 4. Let m and n be positive integers, let 6, 6o and eo be positive constants
with 6o > m6 and let D be a simply-connected domain in the complex z-plane with
boundary C which is piecewise smooth.

Suppose A(z, e) is an n x n matrix which is holomorphic in z and e .for z D
and S(eo, 3). Suppose

(4.1) A(z, e) Av(z)e as e --, 0
v=0

uniformly for z D and larg z[ =< 6.
Assume that the characteristic polynomial of Ao(z is the product of two mutually

coprime polynomials in 2, viz. c1(2, z) and c2(2, z). Let p(2, z) be the resultant of
c1(2 + #,z) and c2(#,z), the latter polynomials being considered as polynomials
in It.

Suppose that (3.1) holds, where p(2, z), ..., pr(2, z) are mutually coprime
polynomials in 2 with coefficients which are holomorphic in D. Let the polynomial
ph(2, z) be of degree N in 2 and let the zeros of the polynomial ph(}C, Z) be denoted
by ,hj(Z), j- 1, ..., Nh. Assume that D and the functions ,hj(Z), j 1,..., Nh,
satisfy condition H(6o)or H*(6o)(cf. Definitions 1 and 2 of 2) /f h 1, .-., r.
Assume the same for the functions -2hi(Z).

Then there exist a constant el, 0 < 1 /0, and an n n matrix P(z,e)
holomorphic in both variables for z D, e S(el, 6) with the following properties"

The differential equation

du
(4.2) e zz A(z, e)u

is transformed by the substitution

(4.3) u P(z, e)v

into the differential equation

mdv(4.4) e zz B(z, e)v,

where B(z,e)= diag {BX(z,e),BZZ(z,e)}. Here B(z,e) and BZZ(z,e) are square
matrices which are holomorphic in z and for z D, e S(ex 6). Moreover,

(4.5) P(z, e) P(z)e, BJJ(z, e) BJ(z)e, j= 1,2, as e --, O
v=0 v=0

uniformly for z D, larg el <= 6. The matrix Po(z) is nonsingular in D, and the char-
acteristic polynomial of BJ(z) is c(2, z), j 1, 2.

Equation (4.4) is equivalent to the differential equations

dw
(4.6) em- B l(z, e)w and

dz -z
where w (Va,’", v,,} r and v {v,1 +,...,

Remark 1. The conditions concerning Ao(z) may be replaced by the following
equivalent conditions.
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Let the eigenvalues of Ao(z) be 21(z), ..., 2,(z). There exists an integer nl,
1 =< n < n, such that 2j(z) 4: 2h(z) if zD and 1 __< j < n < h _<_ n. The set of
differences 2j(z) 2h(z), 1 =< j =< n < h __< n, can be split up into r subsets, each
subset satisfying condition H(6o) or H*(6o). In the same way the set of differences
2(z) 2j(z), 1 < j =< n < h __< n, can be split up into subsets satisfying condition
H(6o) or H*(6o).

Remark 2. If T(z) is a holomorphic nonsingular n x n matrix in D with the
property that T-(z)Ao(z)T(z)= diag {A(z),A22(z)}, where AJJ(z) is a square
holomorphic matrix in D with characteristic polynomial c(2, z), j 1, 2, then the
matrix P(z, e) may be chosen such that

(4.7) lim P(z, e) T(z)
--0

uniformly for z e D, e e S(el, 3).

5. Applications. In the case that all eigenvalues ofthe matrix Ao(z) in Theorem
4 are different we obtain the following result.

TI-mORFM 5. Let rn and n be positive integers, let 6, 6o and eo be positive constants,

o > mr, and let D be a simply-connected domain in the complex z-plane with
boundary C which is piecewise smooth. Let A(z, e) be an n x n matrix which is

holomorphic in z and e for z D, e S(eo, 6) and which satisfies (4.1) uniformly for
z D and larg El <= 6. Let the eigenvalues of the matrix Ao(z occurring in (4.1) be
denoted by )cx(z),..., 2n(Z). Assume that 2j(z) - 2h(z) if j 4: h and z D. Suppose
that for any choice ofj and h with j 4: h, the function 2j(z) 2h(z) satisfies condition
H(6o) or H*(6o) (cf. Definitions 1 and 2 in 2).

Then the matrix differential equation emdU/dz A(z, e)U possesses a funda-
mental matrix solution U(z, e) of the form

U(z, e) (J(z, e) exp Q(z, e)

for z D, e S(el 6) with the following properties"
The n x n matrices (z, e) and Q(z, e) are holomorphic in z and e for z D,

e S(, ).

(5.2) Q(z, e) Qv(z)e -v,

where Qv(z), v 1,... m, are holomorphic n x n matrices in D and

Q,,(z) diag 2t() d’, ..., 2,(0 d
Z0 ZO

zo being some point in D.

(5.3) t3(z,) y r3(z)
v=0

aseO
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uniformly for z e D, ]arge] =< 6, where (Jr(z), v O, 1, 2, are holomorphic
n x n matrices and o(Z) is nonsingular for z D. The number ex is a constant with
0< =<e0.

The proof of Theorem 5 is quite similar to the proof of Theorem 26.3 in 6].
In [2] Theorem 5 is proved with slightly different conditions. Instead of condition
H(6o), Langer assumed that there exist points zjh on C, j =/= h, such that any point
z D can be connected with zjh by a curve in D with the property that

(5.4) Re 8-" {Zj(" 1) /]’h(’ 1)} d’

increases if runs from z to zjh along this curve for any fixed e with [arge[ __< 6.
In this paper we have assumed

larg {2(’)- 2n()} dl-< 1/2- 6o

if runs from z to zjh along that curve (cf. (2.1)). Condition (5.5) implies the con-
dition concerning (5.4).

Another special case of Theorem 4 is obtained by considering an nth order
differential equation. We state in the following theorem an analytic factorization
of such differential equations which is related to the asymptotic factorization
theorems of Langer E3] and Erddlyi [1].

TI-IOIEN 6. Let m, n, 6o, 6, eo, D and C be as in Theorem 4. Let at(z,
j 1,..., n, be holomorphic functions of z and e for z D, e S(eo, (5) which have
the asymptotic expansions

(5.6) aj(z,e) aj(z)e as O, j 1,..., n,
v’-0

uniformly for z e D, ]arg el =< 6.
Suppose

(5.7) 2" + ajo(Z)2"-J= cl(2,Z)Cz(2, z),
j=l

where cj(2, z), j 1, 2, is a polynomial in 2 of degree ni with holomorphic coefficients
in D. Let cx(2, z and c2(2, z satisfy the same conditions as in Theorem 4.

Then the differential equation

(5.8) e q- e(n-J)maj(z, e)dT.n< 0
j=l

is equivalent to the differential equations

mdnly nl d,-jy
(5.9) e" dz,--Z; + )= e("-J)mj(z, 8)dz, 0
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and
n2 dn2-jy

(5.10) en2m + E E(nz-j)m’J(Z e) --0
dZn2

in the sense that all linear combinations of solutions of (5.9) and (5.10) are solutions

of (5.8) and conversely, for z D, e S(el 6), ex being some constant with 0 < e <= e.
The functions flj(z, ), j 1,..., n, and Yh(Z, e), h 1,..., n2, are holomorphic
in z and e jbr z D, e. S(el, ), and

flj(z, e) flj(z)e j 1, "’, n l, -- O,
v=O

uniformly for z D, ]arg el _-< 6. Finally,

,nl "Jl" E jO(Z)/nx C 1(/,
j=l

;t"+ 7o(Z),l"- c2(,z).
j=l

Proof. The differential equation (5.8) is equivalent to the system

eau. (z e)u.an_j+dz =

j= 1,...,n- 1,

This system is a special case of (4.2), the matrix A(z, e) being the companion
matrix of the polynomial

2" + aj(z, e)2"- J.

This matrix satisfies (4.1), where now Ao(z) is the companion matrix of the poly-
nomial in the left-hand side of (5.7). All assumptions of Theorem 4 are fulfilled.
So there exist matrices P(z, e) and B(z, e) with the properties mentioned in Theorem
4. In particular, (5.13) is transformed into (4.4) by means of the substitution (4.3),
where B(z, e) has block diagonal form.

Using Remark 2 of 4 we show that we may choose the matrix P(z, e) such
that lim_.o P(z, e) has a special property. Let C (z) and C22(z) be the companion
matrices of the polynomials c1(2, z) and c2(2, z). Then

R(z)Ao(z [diag {C’X(z), C22(z)}]R(z),
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where R(z) is the n x n matrix defined by

(5.14) R(z)=

)n2 )n2-
\
\

\ \ \\
\ \ \
\ \ \

\ \

’\ \ \

\
\

\ \\
\
\

\ \
\ \

\ \ \
\ \ \
\ \ \
\ \ \
\ \ \
\ \ \
\ \ \
\ \ \
\ ,\ \
\ \ \
\ \
\ \
\ \
\

\
\
\

\ \
\ \
\ \
\ \
\

0 0

\
\
\

\ \

nl nl--1

\
\
\
\

\ 0\
\

71 \1
0

\\ \

\\\ \
\ \
\ \
\ \

Here the quantities 7j and //h are the functions 7j0(z) and h0(z), j 1,..., n2,
h 1,..., nl, defined by means of (5.12). The matrix R(z) is nonsingular since
its determinant is the resultant of the coprime polynomials c(2, z) and cz(2, z).
So the matrix T(z) R- l(z) is nonsingular and holomorphic in D and satisfies

(5.5) T-I(z)Ao(z)T(z diag {Cll(z), C22(z)}.

In view of Remark 2 following Theorem 4 we may choose P(z, e) such that (4.7)
holds.

Let W(z, ) and l(z, e) be fundamental matrix solutions in D of the matrix
differential equations

g,mdW 22(Z
dz

Bll(z’ 3)W, ,mdl/ B e)I,

which correspond to equations (4.6). Then the columns of the matrix U(z,
defined by

(5.16) U(z, e) P(z, e) diag W(z, e), fie(z,
constitute a fundamental system of solutions of (5.13). Putting ul y in (5.13)
we see that (5.8) possesses a fundamental system of solutions yl, "’", Y, in D with
Wronskian matrix U(z,
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Let U*(z, e) and P*(z, e) be the matrices consisting of the first nl columns
and n + 1 rows of the matrices U(z, e) and P(z, e). Then

(5.17) U*(z, e) P*(z, e)W(z, e)

on account of (5.16). Let Ul(z,e) denote the matrix which arises by enlarging
U*(z,e) with an (nl + 1)st column consisting of y,e"y’,..., e"l"y’1). Then the
equation
(5.18) det Ul(Z, e) 0

is an nlth order linear homogeneous differential equation for the function y,
which possesses the fundamental system of solutions yl, "’", Y,1 in D.

It follows from the construction of Ul(z, e) and (5.17) that (5.18) is equivalent
to the equation

(5.19) zj(z, e)e"Jy) O,
0

where (-1)"l+Jej(z,e) is the determinant of the matrix which is obtained by
omitting the (j + 1)st row in P*(z, e). So the functions ej(z, e) have asymptotic
expansions of the form (5.11) as e 0 uniformly for Z e D, larg el =< 6.

Let the matrices PJh(z, e), j, h 1, 2, denote the matrices into which P(z, e)
is divided by cuts after the (nl + 1)st row and column. Similarly the matrices
TJh(z) and RJh(z) are defined. Then the function ej(z, e)(-1)"+J is the minor of
the element in the (j + 1)st row and last column of p11(z, e). Equation (4.7) implies
that p1 (z, e,) T 1(z) as e, --. 0. Hence,

(5.20) lim aj(z, e) (- 1)"l+J (minor of the element at the place
-0 (j + 1, n + 1) of T 11(z)).

Since T= R-1 we have

R21T1 + R22T21 --0, RlT11 + R12T21 Inl+l"
As det R22 (cf. (5.14)) we can deduce from these equations that

(5.21) {R R12(R22)-R2}T 11 I,,+ 1"

Therefore T11 is nonsingular and the right-hand side of (5.20) is equal to the
element at the place (n + 1,j + 1) Of {Tll(z)} -1 times det T(z). From (5.14)
and (5.21) we deduce that this element is equal to fl,l-j,o(Z) ifj 0, ..., n
and equal to 1 ifj n. Hence, (5.19) may be written in the form (5.9) where the
functions flj(z, e) satisfy the assertions of the theorem. Moreover, since (5.18) has
the fundamental system of solutions Y l, Yn, SO has (5.9).

I 0 I)1 By replacing P(z,) byLet I(nl,n2) denote the matrix
1,2

P(z, e)I(nl, n2) in (4.3) we obtain (4.4) with B and B;22 interchanged. The reasoning
given above remains valid with some modifications. Among others we have to re-
place T(z) and R(z) by T(z)I(na, n2) and I(nl, nz)R(z) and we have to interchange
W(z) and W(z), ill,’", ft,1 and Vl, "", V,2 and Yl, "’", Y,1 and Y,1+1, "", Y,.
T.hen we obtain (5.10) with coefficients satisfying the assertions of the theorem and
with Y,1 + 1, "’", Y, as the fundamental system of solutions.
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Remark. The coefficients in the asymptotic expansions (5.11) may be cal-
culated by means of a method of Erd61yi’s [1].
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A NOTE ON THE CONSTRUCTION OF GENERALIZED
WALSH FUNCTIONS*
G. ROBERT R-EDINBO"

Abstract. A straightforward method for constructing the generalized Walsh functions is presented.
This method defines the function in parts with_ each new part being a scaled linear translate of the

previously defined portion.

In a recent article Byrnes and Swick [2] presented a method for constructing
the Walsh functions. The purposes of this note are twofold. The first is to indicate
that the set of functions resulting from that method while being identical with the
set defined by Walsh [9] are different from the set used by most authors [1],
[3]-[8]. The second purpose is to give a straightforward method for constructing
the generalized Walsh functions which include the Walsh functions as defined
by the majority of authors. These generalized functions are used.in Fine integral
transforms [5], [8].

The definition of the generalized Walsh function (0, + ) is given here for
reference:

0(t) (- )s,
S 2 yitj

i+j=l

y 2/+.._c_k Yi2-i is the dyadic expansion for y and similarly for t. It is assumed
that Y-k 1 and yi 0 for all < -k. The construction procedure is outlined.
Clearly r(t) 1 for re(0,2-k-l). However for xe(2-k-l,2-k), qG(x

y(t + 2-k- x) 1 where e (0, 2-k- x). Continuing in this manner, the
construction of qy(x) for x e (2p- 1, 2p) can be given in terms of the previously
defined part of Cy(t)"

r(x r(t + 2- x) (_ 1)r,y(t), e (0, 2p-

p= -k,-k+ 1,...,0, +1,....

To complete the construction take fly(0) + and y(t) 0 at any jump.
A generalized Walsh function for any y with dyadic rational value is periodic.

If y C + D/2 where (D, 2) 1, then the period of q/r(t) is 2.
Finally it is clear how to construct the generalized functions over the integers

module for >_ 2 (see [3], [8]).
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A BOUNDARY VALUE PROBLEM WHOSE SOLUTION INVOLVES
EQUATIONS NONLINEAR IN AN EIGENVALUE PARAMETER*

C. A. DEAVOURS"

Abstract. The nonseparable partial differential equation for one-dimensional damped wave
motion with a variable damping coefficient qgx,, (Dtt P()C)q)t is solved in series form for the usual
mixed boundary value problem on a semi-infinite strip. The solution is assumed to have the form:
q . c,d/.(x)e"t from which the differential equation (2 + 2p(x))d/, 0 with (+ 1) 0 is
found. Since the preceding equation is not of the classical Sturm-Liouville type, the existence of eigen-
values, eigenfunctions and properties of the relevant eigenfunction expansion are proved using asymp-
totic expansions and complex variable techniques. The coefficients in the solution series are found by
converting the equation for , to a first order system of differential equations in which the eigenvalue
parameter 2. occurs linearly. The eigenvectors of this system are found to be orthogonal with respect
to an indefinite bilinear form so that the coefficients c, in the solution may be found by exact formula
even though the eigenfunctions 0, are not orthogonal.

1. Introduction. This paper is concerned with the solution, in series, of
equations of the form

(1) qg (19 p x q)

where p is a continuously differentiable, nonnegative function of x on the interval
-1 =< x __< 1 (denoted by I). The solution of (1) is sought in the semi-infinite
strip defined by the inequalities

(2) -1 <x=< 1, 0=< t< oo

with the mixed boundary conditions prescribed as follows"

q(-1,t) 0,(3a)

(3b)

(3c)

(3d)

p(1, t) 0,

q)(x, O) f(x),

q,,(x, o) g(x),

where f and g are arbitrary except for certain mild differentiability conditions
which will emerge later. In order to simplify matters somewhat, we shall also
assume that f( _+ 1) p(4-1) 0.

Equation(I) is not separable unless p reduces to a constant on the interval 1;
nevertheless, the solution of the problem will be obtained in the series form

(4) q(x, t) a,,(x)e"’t,

where the a, and the 2, are denumerable sets of complex constants.
Equation (1) is the one-dimensional damped wave equation with a variable

damping term p. Problems of this form arise frequently in various disciplines
and, hence, no specific physical interpretation will be discussed as the reader may
supply his own.

Received by the editors September 8, 1969, and in final revised form July 24, 1970.- Department of Mathematics, School of Engineering and Science, The Cooper Union for the
Advancement of Science and Art, Cooper Square, New York, New York 10003.
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Substituting (4) into (1), the equation which , must satisfy is found to be

(5) + 0

with the boundary conditions

(6) ft,(+_ 1) 0

in order that the series (4) satisfy the boundary conditions (3a) and (3b). Equations
(5) and (6) thus constitute an "eigenvalue" problem which is not of the classical
Sturm-Liouville variety since the eigenvalue parameter 2, occurs nonlinearly in
(5). The principal object of this paper is to establish the existence of a denumerable
set of complex eigenvalues and corresponding eigenfunctions for the above
problem and to establish the relevant expansion properties necessary for the
solution of (1) subject to the desired boundary value problem. A formula for
calculating the coefficients , of (4) in terms of the functions g and f will also be
obtained.

In the sequel, vectors are printed in boldface. Vectors are indexed using
subscripts with their components indicated by superscripts, thus

z. (z(.

A dot. between two vectors indicates the real Euclidean inner product even if
the vectors are complex-valued; therefore, ifx (x(1), x(2)) and y (y(1), y(2)), then
x.y X(1)y(1) nt- X(2)y(2). The symbol I.I denotes the absolute value of a complex
number and the symbol II" denotes the corresponding matrix or vector norm, i.e.,

Ilz"]l 2 iz.X)12 / iZCn2)12
a, a12

[all q-lax2[ / [a211 q-1a221
a2x

The inequality

Ax dt <= b al IIA 2 Ilxll 2 at,

which follows directly from the two easily proved inequalities

< Ib al IIx dr, IIAxll IIAII Ilxll,

has been used several times.
The two remaining boundary conditions, (3c) and (3d), are expressed in

series form by the equations

(7a) f(x) e,,O,,(x),

(7b) g(x)

Thus, two functions f and g must be simultaneously expanded in terms of the
eigenfunctions , if the desired series solution is to be obtained. The eigenfunctions
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, (provided that they exist) are not orthogonal so that the determination of the
coefficients a, is not straightforward as in the usual case.

Instead of treating (5) directly, we shall convert it to an equivalent system
of two first order differential equations which are linear in the eigenvalue param-
eter 2,. To this end, let

Then it is easy to verify that

(8)

Using (5), we derive

(9) z,2)’ (2. + p)z).

In vector form, (8) and (9) become

z, 2,Az, + Bz,,(10)

where

z,:
lz,2)

A
1

B=
P

The remaining boundary conditions, represented by (7a) and (7b), may be written
in vector form as

(11) ,Ifg, c,z,, c, 2,,.

Thus, our problem is to expand the vector (g,f’) in terms of the eigenvector
solutions2 of (10) so as to determine the coefficients c, from which the , may then
be calculated. We shall show in the sequel that such an expansion is possible
under certain conditions and that a simple formula for the coefficients c, can be
found.

2. Existence and properties of the eigenvalues and eigenfunctions.
THEOREM 1. Let z be the solution of the equation

(12) z’= 2Az + Bz

Let 2. be the eigenvalue corresponding to the eigenfunction q. and let 2,. correspond to
The usual cross product multiplication process yields, after utilization of (6),

(2 An) (2,. + A + P)nO,. dx -O.

So, if 2. 2m, then

f+l (2" + 2. + p)d/,,d/,, dx O.
-1

Thus, the weight function 2, + m + P depends on 2i so that orthogonality in the classical sense
fails.

Systems of differential equations having the form (10) have been treated by various authors
using methods which are essentially distinct from those which will be used here. See, for instance,

[1, pp. 51-128].
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subject to the initial condition

Then

where

24:0, xI.

Z

sinh Q(x, 2)

Q,-- cosh Q(x, 2)

p(s) ds,Q(x,R)=2(x + 1)+ -and the last term indicates a vector whose norm is of that order.
Proof. Let

(i)= sinh Q, (2)= (1),/2"
Then, by differentiating, it is easy to verify that the vector

satisfies the differential equation

’= 2A + B + C(13)

with the initial condition

where

If we set

(-)

0 0

p2 p,
42 2Q’

then satisfies the differential equation

F’= 2AF + B- C(14)

with the initial conditions

To estimate the order of the vector F, we shall construct an integral representation
of F utilizing the two vector equations

(15) -YI 2AYi + BYi + DYi, i= 1,2,
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with the initial conditions

where

0
D= p2

42

It is easily verified that

and

sinh Q

Q,-- cosh Q

cosh Q

Q,
sinh Q

To form the desired representation of , multiply (14) and (15) by the matrix
A (A2 I) and take the inner product of (14) with Yi and (15) with thereby
deriving the equations

Yi" AW’ 2Y. W + Y. ABW Yi.. AC,
-. AY’ 2. Y + . ABY + . ADYi.

Subtracting the two previous equations and utilizing the boundary conditions,
we derive

(Yi. AW)’ -W. ADY Yi" AC,

(Y. AF)(x) F ADY dt Y AC dt.

This last equation can be solved for the vector ’. The result is

2
Q’(x)

Y(21)(x) Y(11)(X)l
Y(22)(x) Y]2)(x)I

qt ADY1 dt f( Y1 AC dt

+
ADY2 dt f Y2 AC dt

which can be rewritten, after some algebraic manipulations, in the form

M1(16) S, -1 (kl)()(t)k(1)t(1)(t)
M2k2)tp)(t)

dt , k(2)((2)(t)
dr,
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where

R(x, t, 2)= Q(x)- Q(t)= 2(x t)+- p(s) ds,

A(t)
Q’(t)

sinh R
M

A(x) cosh R
A(t) cosh R

A(x)A(t) sinh R]
A(t) cosh R

A(t)A(x) sinh R
A(t) cosh R

A(t)A(x) sinh R]"
If we put

(x, 2) eIl(x + )
r(1)

r(2)/’
then (16) becomes

p2
42’ 2Q"

elal,_)M (k’)r(’)(t)k(2)r(1)(t)]
dt-

from which we see that

e- I;tl(x + 1)fxA
_ M2 k(2)l

i(1)

"(2)1
dt,

r(1)
el .l(t- X)r( 1)M

k(1) e-lal(x+ a) ; M2k(2)
at

A k(2)(2)
dt

k(2)
dt + A

k(1)(1)M2(k(2)((2) dt

-1

2

-+-
IA[2

]]M2l[2
k(2)(2)/

2

or

e2[ a[(’- X)p(t)2 M 1]] 2
2

IIMal[ 2

k(2)(2)/

2

where we have used the inequality

Ir(*)l lr(*)12 + 12)12.
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As 121 --* oe, we see that

]A] 2 0(1),
k()

k(2)/

so that, if

then

IIMII O(e21al(-t)),
ii,llm O(e21l(x+ 1)),

=0

p* max p(x),
xI

/ f_ e2l’l(t- x)

p* <__ p* 2
m(x)2

[IMIII 2

k(2)
dt

+ 2
A(x)2 k(2)((2)

dr.

Both integrals of the previous equation are readily seen to be O(1/I,12). Thus,

+O

which implies that

p,< O(1/.2,) O()o(1/ll)

Hence

from which the theorem follows at oce.
LEPTA 1.1. Let 0 be the solution of the equation

(17) 0" 22 + 2p)0 0

satisfying the initial conditions

(8) (- ) 0, ’(- 1) .
Then

(19) 0(x,2)=sinhQ(x,2) 1 +O 20.

Pro@ The first component, zt, of (12) satisfies the same equation as 0 and
initial conditions z(( 1)= 0, z(’( 1)= 2. Hence 0 z(/2, and the lemma
follows directly from Theorem 1.

LENNA 1.2. There exists a denumerable set ofeigenvalues 2 and corresponding
eigenfunctions O satisfying (5) and (6).
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Proof. Any solution of (17) satisfying (18) will be an eigenfunction of the
problem if, in addition, satisfies the equation

2.) o

for some 2 2,. The corresponding 2, are the eigenvalues. Since both (17) and
its initial conditions (18) are entire functions of the complex variable 2, it follows
that itself will be entire in 2 for each x in I (see [2, p. 72]). In particular, if(l, 2)
is an entire function of 2. If if(l, 2) has no zeros in the complex 2-plane, then

(20) q(1,2) eh(),

where

h(2) ho + h12 + h222 /...

is an entire function of 2. From Lemma 1.1 it is obvious that

(21) 0(1,2) sinh(22 + c) 1 + O Ol-/,
and hence, (17) can only hold if

h(2)=ho+h12.

However this last equation is impossible since (20) would then assert that I(1, 2)1
is exponentially decreasing along one ray of the real axis, whereas (21) asserts
that I(1, 2)1 is exponentially increasing along both rays of the real 2-axis. Thus,
(1, 2) has at least one zero, 2o. If (1, 2) has only one zero, then it is of the form

O(1,2) (2 2o)eht),

where h is again some entire function of 2. The previous argument may now be
repeated to demonstrate the existence of another zero, 21, of (1, 2). Continuing
in this manner, we may show the existence of an infinite set of eigenvalues. The
eigenvalues are denumerable; otherwise they would have an accumulation point
in the finite part of the plane and hence q(1, 2) would vanish identically.

LEMMA 1.3. If p(x) const. 4:0 on I, then the eigenvalues 2, of the previous
lemma satisfy the inequalities"

(a) Re (2,) < 0,
(b) -1/2 max p =< Re (2,) < 0/flm (2,) 4: 0,
(c) max p < Re (2,) < 0/f Im (2,) 0.

Proof. Multiplying (5) by the complex conjugate of ft,, i.e., ft,, and multiply-
ing the complex conjugate of (5) by ft, and subtracting the two resulting equations,
we obtain

which may be rewritten as

d
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Integrating the above equation over the interval I and utilizing the boundary
conditions for . and . yields, after division by 2i,

(22) Im (2) {2 Re (2,,) + p} I1 dx O,
-1

which can be used to obtain several results"
(i) If Im (2,) 4= 0, then Re (2) < 0. This statement follows since 2 Re (2) + p

should be positive on I and hence the integral of (22) would be positive instead of
zero.

(ii) If Im (2,) 0, then Re(2,)> - max/p. This implication follows in a
similar manner since its denial would imply that the integral of (22) is strictly
negative instead of zero.

If we repeat the above multiplication process and add instead of subtracting
the resulting equations, we derive the equation

which may be rewritten more compactly in the form

Re (.) {Re (2) + Re (2.)p}lO.I 2

Integration and application of the boundary conditions yield

ff- {Re (2) + Re(R.) (Im(2.))2}1.12 dx

(23)
+1

-[ I;I2dx<0.
d -1

From (23) the two following implications may be obtained in a manner similar
to that previously used"

(iii) If Im (2,) 0, then Re (2,) < 0.
(iv) If Im (2,) 0, then Re (2,) > maxt p.

From (i) and (iii) follows (a) of the lemma, and thence from (a) and (ii) follows (b).
Similarly, (c) follows from (a) and (iv).

Thus, all the 2, lie in the strip

-max p<Re(2,)<0

of the complex 2-plane. We are thereby assured that the terms of the proposed
series solution (4) do not grow exponentially with time and will, in fact, represent
damped oscillatory behavior.

LMM 1.4. For Inl large enough, there is exactly one eigenvalue of (5) in the
rectangle R, of the complex 2-plane defined by the inequalities

-max p < Re (2) < 0, (n- ) Im (2) }(n + }).

Proof. Equation (21) may be written in the form

2(1,2) sinh (22 + c) + O(e2Z/121).
As previously noted, (1, 2) is an entire function of 2, as is the function sinh (22 + c).
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Let E(2)= 20(1,2), E1(2)= sinh(22 + c), and let E2(/ denote the function
represented by O(e211/12]). E and E1 are entire functions of 2, and from (24) we see
that

() () ();

hence, E2 is also an entire function of 2. The entire function

E() E1() + E2(

is such that, for 121 large enough,

IE2()I < IE,()I;

hence, by Rouche’s theorem, E has the same number of zeros in the domain
enclosed as E,. These zeros are the eigenvalues of (5) (excluding 2 0). (This
provides yet another proof of the existence of the eigenvalues.) The zeros of E1
are at

ni c
2-

2 2’

thus, for 121 large enough, or equivalently Inl large enough, it is easy to see that there
must be exactly one eigenvalue such that (n )n Im (2,) n + 7) and
this fact along with the previous lemma establishes the result.

Although we have shown that the set of eigenvalues of (5) is denumerable,
we have not discussed any specific way of enumerating them. It would seem
natural to do this such that

ni c
2n 2. 2

forn= 1,2,....
To ultimately accomplish the above result, we consider the circles in the

complex 2-plane defined by

N
Cu’ll < ,

where N is an integer. For large enough N, the number of eigenvalues inside
Cu is not greater than 2(N 1). This last statement follows since, for N large
enough, the number of eigenvalues in Cu is the same as the number of zeros of
the function sinh (22 + c); this number is found if we deteine how large Inl
can be and satisfy the inequality

IXl= + <5-
Manipulation of this inequality yields

n < N)2
C2 < N)2 N,

which shows that the number of eigenvalues is not greater than 2(N 1) since
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n may assume the values n

_
1, ___2,"-, +_N- 1. We now find N large

enough so that"
(a) no more than 2(N 1)eigenvalues lie in CN;
(b) the 2(N 1) rectangles R,, n + 1, 2, ..., +__ N 1, lie in C,
(c) every eigenvalue exterior to CN lies alone in a rectangle R, for Inl => N.
The desired enumeration is then accomplished by numbering the eigenvalues

inside C, in any manner using the subscripts 1, 2,..., N- and voiding any
extra subscripts and denoting the eigenvalues exterior to Cu lying in
n-- ___N, ___(N + 1),

LEMMA 1.5. The eigenvalues of (5) are such that

c nni O(nl)+

Proof. This lemma follows directly from Lemma 1.4 and the system of
enumeration discussed above if we substitute into (21) the expression

c nni

+-5- +

and thereby verify that

The theorem and lemmas proved so far allow us to assert via the transforma-
tion equations

q,.,

the existence of solutions of (10) and to obtain estimates of the solution eigen-
vectors when needed. Due to the singularity of the transformation equations at
2 0, the system (10) possesses the extraneous eigenvalue 2 0 and the corre-
sponding eigenvector (0, 1). This fact does not influence the solution series (4)
since the term corresponding to the eigenvalue 0 is zero.

3. Orthogonality and completeness of the eigenvectors.
THEOREM 2. Let z, and z be solutions of (10) corresponding to different

eigenvalues, 2 and 2 Then
+1

dx O,Z Mz,.
-1

where

and the dot indicates the usual scalar product.
Proof. Zm satisfies the equation

(24) z, 2mAZ + Bz
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o
Let J denote the matrix Taking the scalar product of (10) with JZm

1
and the scalar product of (26) with Jz, and subtracting, we obtain the equation

(25)
Jz z Jz z

/nJZn. Az mJZn Az + Jz Bz Jz Bz

Since jT j, jTA (jTA)T jTB (jTB)T and JTA --M, we arrive at the
following equations"

Jz z’ Jz Zm {Z Jz’ + ztm JZn}
(z JZn)t

/nJz Az,, ,mJZn. Az -(/n /m)Zm Mzn
Jzm. Bz Jzn. Bz O.

Hence, we may write (25) in the form

(Zm" JZn)’ --(/m /n)Zm Mz,.

The theorem may now be obtained from this last equation by integration and
application of the boundary conditions.

THEOREM 3. Let F (Fl)(x),FZ)(x)) be a vector such that

(26) z,. JF dx 0,
-1

where

for all eigenvectors of (10). Then F 0 on I.
Proof. Consider the equation

(27) ’= 2A + B + F

with boundary conditions

O)(+ 1) 0.

Eliminating the second component of , i.e. 2), from the two scalar equations
of (27), we find that ) satisfies the equation

O(1)-__ (/2 + /p)O(1) /F(2) -k- F(1)’

with

(])(1)(_. 1) 0.

Thus, (1) is an analytic function of 2 for each x in 1 except possibly at the eigen-
values of the homogeneous equation (5); at these exceptional points, a necessary
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and sufficient condition for the ana!yticity of tl) is that

f_.-1 n(’nF(2) + F(I)’) dx 0

(see [2, p. 266]). Integrating the above equation by parts, we arrive at the equations

,n(0nF(2) 0’hE(x)) dx -2n Zn" JF dx,

which shows that this condition is equivalent to (26), 2 4: 0. Therefore, ) is
an entire function of 2.

The first component of (27)can be written in the form

(2)(X, 2 ((1), F(1)),

which demonstrates that the function 2(2) is also an entire function of 2. We
have thereby shown that the vector 2 has components which are entire functions
of 2 for every x in I. To obtain estimates of [[2[[ we now form an integral repre-
sentation of the vector using the two auxiliary equations

w’i 2Arwi + Brwi, 1,2,

which satisfy the initial value problems

w(1, ) w2( 1, )
0

Using the equation for the w and (27) we form the usual cross inner products
and subtract the resulting equations to obtain the equations

(wi.)’=wi.F, i= 1,2,

which may then be integrated so that we derive the two equations

F dt,

W2 (1) W2 F dt.
-1

Solution of the last two equations algebraically for the vector yields

/x fx1 1
N2F dt,(28) 0 N1F dt + - -1

where

w(x)wi(t)
N

w(21)(x)w(11)(t)

(2) (2)w2 (x)wa (t)
W(z )(x)w]Z)(t)

(2) (2)--W (X)W2 (t)
(1) (2)w (x)w2 (t)
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and

w()w()- w(x)w(x).
From the equation for we deduce, as previously,

2 A
NzF dtI1Oll NF dt +

(29)

To estimate ]12ll as 121 , asymptotic estimates for the w are necessary.
Since w2 satisfies the equation

-w2 2Arw + Brw,
we find that

and

-(Jw2)’ 2JArw2 + JBrw2 -2A(Jw2)- B(Jw.)

Jw2(- 1

Comparing this result with (12) we conclude that z Jw2; hence, from Theorem 1
we have

W2 --- cosh Q

sinh Q
+0

The same equation applies to W with boundary conditions at x 1; a simple
change of variable in Theorem yields the obvious result

W -- cosh Rsinh R /

+0 el al(x
I1

where

R(x, 2) 2(x 1) + - p ds.

We therefore have the asymptotic relations

Wi1) O(e-I1(- 1)),

w O(ell+ 1),
from which it is easy to verify that

The function 6 is actually independent of x as is indicated from this last equation;
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in fact,
d
dx
--() -w Jw’ w’2 Jw

W2 Jw’t + wt Jw’2
,(W2 JAw w JAw2) +w JBTw2 w2 JB’wx O.

The vector F in (28) is chosen so that the zeros of 6 are removable singularities
of the quotient terms for each component equation (except possibly 2 -0 for
the second component). Since all of the functions involved on the left side of
(28) are exponential in character, so will be the resultant entire functions
and/(I)(2) (see [3, Ex. iv, p. 255]). From our previous results, we have

N1 2 O(e21,l(x-t)+4),
I{Nzll 2 O(eZl;l(t-x)+4).

Thus,

o();

and, similarly,

/121y_: IIN21 2

16-IIFII 2dt O(1),

so that, from the inequality (29), we find

Since both components of 2 are entire functions, both components must be
constant by Liouville’s theorem. The function )itself is entire; hence, (t) 0,
which leaves us with the reduced equations

2(I)(2)-- -F(1)(x), (I)(2)’ F(Z)(x),

which immediately yield the fact that -F(1)’(x) )Ft2)(x). These equations can
only hold provided Ft2)-- 0 and F(1)’ 0. Thus F must be of the form (Co, 0),
where Co is a constant. This is impossible unless Co 0 because, for the eigen-
value 2 0 of (10), condition (26) becomes

z,. JF dx 0(0
The theorem is proved.

Using Theorem 3 we can orthogonalize the eigenvectors z, with respect to
the indefinite bilinear form

(...). M(. .) dx.
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LEMMA 3.1.

f_" Zn Mz, # 0dx

for all n.

Proof Suppose that there exists some n n’ such that

(30) z,,. Mz,, dx O.

Then, since

Mz,, JTAz,, J(Az,,),

we have for (26) and (30) that the vector Az,, F satisfies the equation
1

z,. JF dx 0

for all n; therefore, by Theorem 3, Az,, 0 which implies z, 0, a contradiction.
Since the integral in the previous lemma never vanishes, we may define

1 Mz dx
-1

and the set of vectors Z, 7,z, satisfies the orthonormality conditions

4+1

Z,. MZ, dx
-1

If we make the identification
1.5 that

z(x, 2,), it follows from Theorem and Lemma

sinh (c + nci/2)(x + 1) + p ds
-1

(1 + p(x)/(c + nrci/2))cosh (c + nri/2)(x + 1) + f p ds
-1

if we notice that the O(exp 121 (x + 1)) terms in the asymptotic expressions actually
depend only on Re (2) which is uniformly bounded for 2 2,. This last expression
for z, shows that both components of the vector are bounded as [2,1 oo. The
identification of z(x, 2) and z, is certainly permissible since z, has thus far only
been determined up to an arbitrary constant multiple.

4. Convergence of the eigenvector expansion.
LEMMA 3.2.

7n - n,

where
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Proof. We find that

1 f_l f+lz,,. Mz,, dx [- (z(,,))2 -- (Z(n2))2] dx

sinh Q(x, 2.) + O
1

Q(x, 2.)- sink2 Q(x, 2.)+ 0[1,/cosh2 dx
lnl/_;1

1 + 0 dx 2 + 0 dx.

cosh Q(x, 2.) + O

This last integral I, can be made as small as desired by taking ]nl large enough.
Thus,

Y" w/ w/1 + 1,,/2 i(I + O(x/"))

from which the lemma follows.
The last lemma demonstrates that the components of the set of eigenvectors

Z. 7.Z. are bounded as Inl --’ oo. The expansion problem embodied in (11) can
now be-solved. From the previous orthogonality equation, the coefficients c. of
(11) should be given by

(3) c.
f’

.MZ. dx.

THEOREM 4. Let f be trice and g be twice continuously d!fferentiable on I
with g( + 1) 0. The series , c,Z,, where c, is given by (31), converges uniformly
and absolutely to the vector (g, f’).

Proof.

c,, MZ dx M{2.A + B}- {2.A + B}Z. dx

f+l g,) {2.A + B} {2.A + B}Z. dx
-1 f

f+ g,){2.A + B}
y. M Z’. dx._

f 2 +
We now integrate this last equation twice by parts to obtain

+7. f"
Z.xc.= 7. f,, 2 + 2.p -1 - 2. + d.p

f+l ;} MB’ f+l ;)m(nA + B)
-7. .Z.dx +2.7.2. + 2.p (2 + 2.p)2

p’Z. dx.
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The last equation, the boundedness of the components of z., and the estimate
for 7. yield

c.=O =0-
Hence, the series converges absolutely and uniformly. To show that the series
does indeed converge to the desired vector (g, f’), we set

r(1)
c.Z.

and note that

f__el (r(1,)) f_’-11 ) 1(gt)MZ. dx6.m MZ.. dxMZ. dx .r(2 f
which implies

- r(a f’
.Mdx 0

for all n, so, r( g and r( f’.
Since the coefficients c. may be found using (31) and conditions asserting

the convergence of the eigenvector expansion have been found, the final solution
may now be formulated.

5. Solution and summary.
THEOREM 5. The solution of (1) satisfying the boundary conditions in (3a)-(3d)

is given by the series

q(x, t)= . nnn@n(X)ea’t
where the 2. and /. are defined through the equations

(ii) -0.2 + dx

(iii) q/.(_-t- 1) 0

and

gq,. +
j
d g + q’"

The series solution is absolutely and uniformly convergent provided thatfand
g are 3 and 2 times continuously differentiable respectively and g(___ 1) 0.

As we have seen, certain nonseparable partial differential equations of the
form (1) can be solved in terms of eigenfunction expansions as in the separable
case. The major disadvantage in assuming a specific form for the solution, in
order to separate it, arises in the nonlinearity of the eigenvalue problem obtained.
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In spite of this consideration, the ordinary differential equation obtained in the
separation process may be transformed to a system of two differential equations
in which the eigenvalue parameter occurs linearly. The eigenvectors of the resulting
system are orthogonal with respect to an indefinite bilinear form, and the boundary
conditions for the original problem become expressed as a simple vector expansion
in which formulas for the coefficients in the expansion can be found. Thus, even
though the solution is obtained in terms of nonorthogonal eigenfunctions, the
coefficients of the solution expansion are known exactly without resorting to the
use of infinite systems of algebraic equations which would generally have to be
solved approximately.

Acknowledgments. The author wishes to thank Professor G. E. Latta for
suggesting this line of work and the referee for his many valuable improvements
in the paper.
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THEORETICAL PROPERTIES OF BEST POLYNOMIAL
APPROXIMATION IN WI’2[- 1, 1]*

EDGAR A. COHEN, JR.’

1. Introduction. The purpose of this paper is to present several theorems
concerning the behavior of best polynomial fits to absolutely continuous func-
tions f(x) with square-summable derivatives in the norm

(1) jlfjl2 f2 dx + o dx.

Here is any given positive number. The properties of the best fits in this norm
are also contrasted with those for the topologically equivalent norm

(2) Ifll f2(_ 1) + f,2 dx.
-1

2. Analysis. There is a certain interesting connection between best approx-
imation by polynomials of a preassigned degree in the Sobolev norm (1) and best
approximation by polynomials of the same degree in the topologically equivalent,
but somewhat simpler-looking norm (2). The following theorem summarizes
this result. The proof is due, in part, to the work of Theodore A. Orlow.

THEOREM 1. Suppose f is an absolutely continuous function on [-1, 1 and
that the derivative off is square-summable. Assume that k >= 2. Then, if Pk,(X) is
the best polynomial approximation of degree at most k in (1) for f, then lim_ Pk,,
exists. Furthermore, this limit is the best polynomial of degree at most k for f in
the norm (2).

Proof. To find the best fit Pk, in (1) of degree at most k, the following expres-
sion is to be minimized over all polynomials Rk(X) =o ajxj"

(3) Sk,(ao, a 1,’", ak) (f Rk)2 dx q- o (f’ R)2 dx.

Equation (3) will be minimized if the following conditions are met by the aj"

(4) -1/2cS,/cao (x)- ax dx O,
-1 j=O

fl j=O

+ i f’(x) jajx- xi- dx O, 1 N iN k.
-1 j=l

If (4) and (5) are explicitly solved by Cramer’s rule for the aj as functions of , it
is found that, for every j, aj() is a quotient of two polynomials of degree k in .
After dividing both numerator and denominator by k, we see that aj() tends to
a limit as , since the limit of the denominator is a nonzero constant times

* Received by the editors March 10, 1970, and in revised form September 17, 1970.

" United States Naval Ordnance Laboratory, White Oak, Silver Spring, Maryland 20910.
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the Grammian in L2[ 1, 1] of the set {xi}k-i=o.1 This Grammian is well-known to
be positive [1, p. 178]. Now, if Pk,, minimizes (3), it is clear that it also minimizes

(l/a) (f Rk)2 dx + (f’- R,)2 dx.
-1 -1

Let Qk-l(x) be that polynomial of degree at most k such that

(6) (f’ Qk- 1)2 dx is minimum
-1

and define

Ik(X) Qk- 1(0 dt
-1

as its integral. Then, by definition of Pk,,,

(i/a) (f_ p,,)2 dx + P[,,=) dx
-1 -1

=< (I/a) (f_ i,)2 dx + (f’- Q,_ 1)2 dx.
-1 -1

Letting a m, we have

(f,_ p)2 dx 1)2 dx,(f’-
-1 -1

where Pk(X)= lim,_.o Pk,,(X). However, by (6), Qk-l(x)is the best fit to if(x),
so that P[,(x)= Qk-l(x). Therefore, it is necessary that the following conditions
be satisfied:

c3 f (f, p,)Z dx O, <_ <_ k.(7)
cai

Since f is absolutely continuous, we have, upon setting 1 in (7),

(8) f(1)- f(-1)= Pk(1)- Pk(-- 1).

So the average slope of both f and Pk are the same. From (4), we see, upon letting

(9) f(x) dx P(x) dx,
-1 -1

so that the areas are the same, also. Letting 2 in (7), one sees, by integration
by parts, that

f(1) / f( 1) f(x) dx P,(1) + P( 1) P(x) dx,
-1 -1

so that, using (9),

(10) f(-1) + f(1)=. P(- 1) + P,(1).
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From (10) and (8), one deduces that f(+_ 1) Pk(+--1) for the same sign. Thus Pk
is just the best fit in the norm (2).

It is well known [1, pp. 236-237] that if f(x) is continuous on [a, b], then the
best approximation to f(x) in the least squares sense over all polynomials of degree
not exceeding n coincides with f in at least n + 1 points of the open interval
(a, b). The following theorem is a generalization of this result for [[f[[ 2.

THEOREM 2. Suppose that k >_ 2. If Pk(X) is the best polynomial of degree at
most k for f in (2), then the deviation Dk f- Pk changes sign in at least k 1
points in the open interval (-1, 1) unless f itself is a polynomial of degree not
exceeding k. Furthermore, if f’(x) exists everywhere on (-1, 1), either finite or
infinite, then D;, changes sign in at least k points of (- 1, 1).

Proof. It is clear that the best polynomial approximation Pk(X) of maximum
degree k is just that polynomial whose derivative is the best least squares fit to
if(x) and whose value at x- -1 is f(-1). For 4: 0, one sees from (7) that

Ix{f(x)] ixi- *f(x) dx [XiPk(X)] ixi- Pk(X) dx-1 -1
-1 -1

1 __< __< k 1, from which it follows that

(11) x- D(x) dx O, 1 <_ <_ k- 1.
-1

If k 2, it is clear from (11) that D(x) must change sign at least once unless f
is a polynomial of degree at most k. If k > 2, suppose that f is not a polynomial
of degree less than or equal to k and that there are at most r changes of sign of
Dk(X f(x) Pk(X) in (- 1, 1), say at x x, X2, Xr, where r __< k 2. Then the
product Dk(X) I-[= (x xi) is of one sign throughout (- 1, 1), and we have

(12) Dk(X) (x x) dx : O
-1 i=1

However, this is impossible, since (11) implies that the left member of (12) is zero.
Therefore, there are at least k 1 such points. Also, we know that Dk(-- 1) D(1)

0. So, if f’(x) exists everywhere on (-1, 1), either finite or infinite, we may
apply Rolle’s theorem to assert that D’k(X) changes sign in at least k points of
(- 1, 1).

Note. If instead of usinB -1 or - 1 in the norm, we choose any
point a in the open interval (-1, 1), the same kind of result is not in general
obtainable for the norm

IlfJl 2 f2(a + dx.
-1

One can see this immediately if a is close to the absolute minimum of the deviation
curve for (2), for all the deviation curves obtained for various values of a are
merely translates of each other, each being 0 for x a.

Let Dk,o(X f(x) Pk,o(X), and define the moments

Mi, Dk,(X)X dx, 0 <= <__ k.
-1
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Then we have the following theorem.
THEOREM 3. For the Sobolev norm (1), the moments M, can always be expressed

in terms of the deviations Dk, at the endpoints. Furthermore, iff is an even function,
the odd moments vanish; and, iff is an odd function, the even moments vanish.

Proof. First of all, we know from (4) that

f(x) dx Pk,=(X) dx.
-1

1_ Dk, dx 0. By setting i= 1 in (5)Therefore Mo,

We thus have

By setting 2,

Dk,X dx + D’k, dx O.
-1

M,, a[Dk,(1) Dk,(-- 1)].

Dk,aX2 dx + 2 D’k,X dx O,
-1

from which one deduces that

With i= 3,

and

M2, 2a[Dk,(1) + Dk,(-- 1)].

Dk,aX 3 dx + 3 D’ X2 dx 0k,a
-1 -1

M3, 3(2a + 1)[D,,,(1) D,,,( 1)].

One may continue this process to obtain similar results for the other moments.
In particular, for example, if is odd and =< k, it can be shown by mathematical
induction that

(i- 1)/2

Mi,=--ia(Dk,(1)--Dk,(--1)) Z (i--l)(2J)j,
j=0

where, as is usual in the calculus of finite differences, we define

i(o)= 1,
k

(i 1)(k) I-I (i j).
j=l

A similar result can be established by induction when is even. If f is even, we
know that Pk, is also an even function. Therefore, Dk,,(1) Dk,(-- 1) and

mzi-1,-- O, 1 -< < k/2.
On the other hand, if f is odd, so is Pk,,, and we see that

MEi, 0, 1 =< =< (k 1)/2.
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It is known [1, pp. 165-167] that there exists an orthogonal set {pk,(x)} of poly-
nomials, each of degree k, in [If 1. These are used in the following theorem. As
is customary, also, we define

(f, g)l fg dx + a f’g’ dx.

THZOREM 4. Suppose that k >= 2. If Pk,,(x) is the best polynomial approximation
of degree at most k to f(x) in the Sobolev norm (1) and Pk(x) is the best approximant
of degree at most k in the norm (2), then

where

and

e,,(x)- e(x)= p,,(x) + p_ ,,(x),

x(f(x) e(x)) dx/(p,
-1

Xk-2 x- l(f(x) P(x)) dx/(p_ 1,, 111.
-1

Proof. Let P,(x)= P(x)+ q(x), where qk(x) is to be determined. The
first orthogonality condition is obtained as before, by differentiating partially
with respect to the constant.term. We have

(f(x)- P(x)- q(x))dx O.
-1

But using (9), we have

q,(x) dx O.
-1

From (5), we see that

x(f(x) P(x)- q(x))dx + i x- (f’(x)- P/,(x)- q;,(x))dx O,
-1 -1

which, on substitution of (7) and (11), yields

xiqk(X) dx + ai xi- lq’(x)dx O, 1 <= < k- 2,
-1 -1

i.e.,

(xi,qk(x))l 0, 1 =< i<_k- 2.

One can verify that

q(x) fllPk,(x) + flzP-1,(x)

(Xk- 1, q,(x))l x’- l(f(x) Pk(x)) dx
-1

From these conditions, it follows easily that q(x) is a linear combination of
p,,(x) and p_ 1,,(x) alone, i.e.,
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and that

by using the fact that

x’(f(x) Pt,(x)) dx

P,,(x)- P,(x)= D,(x)- D,,(x)
and by using (5) and (7). Therefore,

x’- ’) x’- x(f(x) P,(x)) dx(x’- q,(x)) fl2(P,- ,,
-1

SO

Xk- 1)f12 Xk- l(f(x) P,(x)) dx/(p,_ i,,
-1

Upon taking the inner product with xk, we find

fll(Pk.,, x), (q,, x)a x(f(x) Pk(x)) dx,
-1

SO

fl x’(f(x) P,(x)) dx/(p,,, x’)
-1

The result in Theorem 4 is important because it has been demonstrated more
explicitly how Pk.,(x), the best approximant in (1), differs from P,(x), the best
approximant in (2). It turns out that, for any a, P,,,(x) and P,(x), when expanded
upon the basis {p,.,}, differ only in the last two Fourier coefficients.
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THE ABSTRACT BACKWARD BEAM EQUATION*
ALFRED CARASSO

Abstract. We consider a two-point boundary value problem for the equation u,t A(t)u f(t, u)
where, for each t, A(t) is an unbounded operator in Hilbert space whose domain varies with t. We
establish the existence (but not the uniqueness) of "weak" solutions of this problem by using finite
difference methods. When A(t) represents a differential operator in the space variables, the method of
proof can be converted into a convergent numerical procedure.

1. Introduction. Let H be a separable Hilbert space with scalar product
(.,.) and corresponding norm I1" ]In. For each in the finite interval [0, T] let
A(t) be a closed linear operator with (variable) domain Da(t) dense in H, and let A(t)
have the following property: For every complex 2 with positive real part,
A(t) + 2]-a exists and is a bounded operator with domain all of H, and

(1.1) [A(t) --It then follows (see [5, p. 279J) that
Re2’

(1.2) Re (A(t)v, v) >= O. for all v Da(t).

Re2 > 0.

We note that according to the Hille-Yosida theorem, (1.1) is a necessary and suffi-
cient condition in order that the closed densely defined operator -A(t) be the
generator of a strongly continuous semigroup of contraction operators.

In this study we are concerned with the mildly nonlinear two-point boundary
value problem

(1.3)
u,, A(t)u f(t, u), 0 < < T,

u(O) g 1, u(T) g2,

where u is an H-valued function and g 1, gz are given vectors in H.
Although initial value problems for ordinary differential equations in Banach

space have been extensively studied in the literature, two-point problems were
apparently first considered by S. Krein and G. Laptev in [7] and [8]. Previously,
in [6], the same authors considered the related "eigenvalue problem" in con-
nection with a problem of M. Krein’s arising in wave-guide theory. (See also [9].)
In [7] and [8] the linear problem is considered, and A is assumed independent of t.

The differential equation in (1.3) is then replaced by an equivalent first order
system involving A a/2, and an important role is played by the semigroup of
operators generated by -A 1/2. More recently, the fixed domain, time-dependent
linear problem has been considered by Sobolevskii in [12]. The latter author
announces results on the solvability of the problem in certain Lipschitz spaces
with weight. The method consists in relating the time-dependent case to the
case with constant A by means of a partition of unity argument. It is assumed

* Received by the editors June 11, 1970.

" Department of Mathematics and Statistics, University of New Mexico, Albuquerque, New
Mexico 87106. This research was supported by the National Science Foundation under Grant
GP-13024.
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that --A 1/2 generates an analytic semigroup and that A(t)A-1(0) satisfies a
Lipschitz condition.

Our motivation for studying this problem is that we view the equation

(1.4) u,, A(t)u 0

as an abstract version of

(1 5)
102V
c3t2 c3x4’

and our interest in (1.4) stems from the fact that a solution of the heat equation
vt vxx also satisfies (1.5). In the near future we hope to make use of this observa-
tion in connection with "boundary value techniques" for the numerical compu-
tation of parabolic problems with a known steady state solution (cf. [1]). For
want of a better name, we call (1.5) the backward beam equation because of its
apparent similarity with the equation of the vibrating beam, vt + Vx 0
(see [2, p. 295]).

In the present paper we establish the existence of "weak" solutions to the
problem (1.3) using techniques borrowed from numerical analysis. We discretize
the t-variable and replace ut by a centered second difference quotient to obtain an
inhomogeneous system of equations with coefficients which are linear operators
in H. This approximate problem is simpler than (1.3). In the linear case, we show
that this system always has a unique solution, and we develop an algorithm for
finding this solution. As a matter of fact, this algorithm (which is the basis for
"Gaussian elimination" in numerical analysis) is the key to many of our results;
it seemed interesting to us that it could be implemented even though the domain
of A(t) varies with t. In the nonlinear case we assume that f(t, u) is monotone
and that, in addition to (1.1), [A(t) + 2] -1 is compact for Re 2 > 0. Existence
of solutions for the finite difference equations then follows from the results for
the linear case and the Schauder fixed-point theorem, while uniqueness is a conse-
quence of the monotonicity of f As a by-product of our analysis, it follows that
if (1.3) has a (unique) strong solution u(t) satisfying a relatively weak smoothness
assumption, namely (3.3) below, then the solution of the finite difference equations
converges uniformly to that of (1.3) at the rate of O(At2.). Finally, we associate
a "weak" two-point problem with (1.3). Using a priori estimates for the solu-
tions of the difference equations, we study their behavior as At 0, and we
prove convergence of the solutions of a sequence of discrete problems to a solution
of the weak problem; moreover we estimate this solution in the uniform norm
in terms of the boundary data and the LZ-norm of the inhomogeneous term.
We do not prove uniqueness in the weak problem. On theother hand, it is easily
seen by means of an integration by parts that there is at most one solution to
(1.3) possessing two continuous derivatives. Hence, uniqueness follows upon
proving that weak solutions are strong solutions. Such "regularity" results can
easily be obtained for the case where the domain of A(t) is independent of t,
and gl, g2 Da(t). We do not know how to handle the regularity theory for the
variable domain problem.

In conclusion we would like to make some remarks about possible alter-
native ways of treating the existence question for (1.3). Consider the linear prob-
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lem for simplicity. Unlike the case of scalar two-point boundary value problems
(see e.g. [13, p. 68]) there seems to be no simple way of reducing the problem to the
case where g and g2 are zero. Such a reduction would be attractive provided the
operator 5, in L2(0, T; H), defined by

(1.6)
50[u] u" A(t)u, 0 < < T,

u(O) u(T) O,

could be shown to have an inverse which is bounded on the ,whole space. However,
even if it were possible, such a reduction would still necessitate proving the
existence of solutions of certain initial value problems for u" A(t)u 0, with
the domain of A(t) variable. Thus our method is more direct and more elemen-
tary. In the case where we have uniqueness, it is also constructive. Finally, if
A(t) represents a differential operator in the space variables, our method of proof
can form the basis for a numerical computation of the solution. It is only necessary
to do the space-differencing in such a way that the discretized operator A(Ax, t)
has nonnegative eigenvalues, Moreover, our analysis makes it clear that the
"block tridiagonal algorithm" can then be used to solve the resulting system of
finite difference equations.

2. Notation. Let At-- T/(N + 1) where N is a positive integer and let
HN(At) be the complex vector space of all N-tuples {v 1, v2, vn} where vk H
for each k 1,..., N. Elements of H will be denoted by capital letters and
represented as column vectors, i.e., as

(2.1) V

We equip H with the scalar product

)1

U2

N

(2.2) (V, W) At
n=l

and we write

(2.3) v II,, (v, v)’/2.

Evidently, Hu is also a separable Hilbert space under (2.3). We also consider
N N matrices whose entries will be linear operators in H. Such matrices
define linear operators in Hu and we write

(2.4) P n, sup {
IIvIIH=

the supremum being taken over all V in the domain of P.

3. Discrete approximation to the near problem. In this section we examine
the case where f(t, u) is independent of u. The results obtained here form the
basis for a discussion of the nonlinear problem in 5.
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With T (N + 1)At consider the system of linear equations

vn+l 2V -F- V
-A"v"=f", n= 1,2,..., N,

At2

(3.1) oV gl, /)N+I g2,

where we use the notation A", f for A(nAt) and f(nAt). The above system is an
approximation to A(t)u f(t) 0 < < T,
(3.2)

u,,
u(0) u(7")

in the following sense: If (3.2) has a solution u(t) and if u" denotes u(nAt), then
{u"} satisfies (3.1) provided we add a "truncation error term" z" to the right
of (3.1). In Theorem 4 below we assume that (3.2) has a unique solution smooth
enough that

(3.3) At IIz"llg <-_ KAt,
where K is a constant independent of At and N.

We write the system (3.1) in matrix vector notation as a single linear operator
equation in HN, i.e.,
(3.4) PV F + G,
where V is given by (2.1) and P is the tridiagonal N x N matrix

-(2+A1At2) -I

I (2 + A2At2) I

-I

0

where I is the identity operator on H. F and G are defined as follows:

-f
_f2(3.6) V

0

-I

(2 + ANAt2)_
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(3.7)

Clearly V HN is in the domain of P if and only if its jth component v is in the
domain of A(jAt). We now show the following theorem.

THEOREM 1. P-1 exists and is a bounded operator defined on all of HN; hence
(3.4) has a unique solution Vfor arbitrary F, G H. Moreover, one can solve (3.4)
by Gaussian elimination.

Remark. We show later that in fact P- is bounded uniformly in At as At ---, 0.
It is convenient to break up the proof of Theorem 1 into several steps by

means of the following lemmas.
b be a sequence of nonnegative real numbers such thatLEMMA 1. Let { k k=

1 1
b =< - and bk + 2 bk

< k= 1,2,....

Then b <= m/(m + 1) for each m 1, 2,....
Proof Use induction on m.
LEMMA 2. Let T and B be linear operators in H with T closed and B bounded.

Let T-1 exist and be a bounded operator with domain H. Then, if
(3.8) IIBIIIIT-II < 1,

S T + B is closed, invertible, and S-1 is bounded with domain H. Moreover,

(3.9) S- 111 n < 1 BI]/11 T-
and S-1 is compact if T-a is.

Proof See [5, p. 196].
LEMMA 3. Let A1 [2/At2 + All and

3,..., N define
(3.10) A= -+A
where

I-’ ---(A1)-1. For each n 2,

(3.11) F, -(A,)-I, n 2, 3,..., N.

Then, for each n 1, 2,..., N, F, exists and is a bounded operator with domain
H and

n
(3.12) AtE r.lln <=n+l

Proof By our hypothesis (1.1) concerning A(t), [2/At2 + A"] is a closed
invertible operator whose inverse has domain H and

+ __< n=l 2,... N.
2
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Consequently
1 1

(3.14) At2 Fllu =2
<

Now suppose that for a positive integer k < N, F exists and is bounded with

(3.15) At IFk n < 2.

In that case, since then

(3.16) At4 rkll +
-1

<1,

we obtain from Lemma 2 that Fk+ exists and is a bounded operator on H,
and from (3.9),

1 1
(3.17) Ate Fk + 111 u <

2 IFlln/Atz"

Since IF1 u/At2 <= 1/2, the conclusion of Lemma 3 now follows from Lemma 1.
LEMMA 4. Let Ak, Fk be as in Lemma 3 and let Z {z"} be a given vector in

HN. Then X {x"} H is a solution ofPX Z if and only if

(3.18)

XN WN

x- + -F_x

2x+S-Fx =w

where the {w} are defined by

WN-

A1wl z

A2w2 z2 -k- -W
(3.19)

NANwN= zN + AtE

Proof The system (3.19)always has a unique solution {w".} since the {A,}
are invertible and their inverses are bounded operators on H. Let X be a solution
of PX Z. We shall show that if the {wJ} are defined by (3.18) then each w
is in the domain of Aj and the equations of (3.19) are satisfied. Indeed, X is a
solution of PX Z only if each x is in the domain of Aj. On the other hand,
xj+ is in the domain of Fj since Fj is defined everywhere. Hence x is in the
domain of Aj. Also Fixj+ is in the domain of A since F -(AJ) 1, and there-
fore from (3.18) it follows that w is in the domain of Aj. To verify (3.19), define
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NO W0 XN+ 0 and note that, for each j 1,

1
Ajw Ajx -x +

2
+A

Wj-----zJq_
At2

1 1
x .ql._ --rj_ X --Xj+

X
(Xj+ ..[_ Xj- 1) Wj-

At2 At2

Conversely, let the {w"} be the solution of (3.19) and define the {#} by (3.18).
Then each x is seen to be in the domain of Aj and hence of A. Applying A to
the jth equation in (3.18) for each j now shows that PX Z.

Proof of Theorem 1. Since each A", n 1,..., N, is closed in H, it easily
follows that P is closed in HN. On the other hand, Lemma 4 shows that given any
Z e HN there exists a unique X in the domain of P such that PX Z. Hence
P is invertible and the range of P is all of HN so that P- is a closed operator on
H. This implies that P-1 is bounded in view of the closed-graph theorem.

THEOREM 2. In addition, to hypothesis (1.1) let [A(t) + 2]-1 be compact for
Re 2 > 0; then P-1 is compact on HN.

Proof In that case it follows from Lemma 2 that the F, in Lemma 3 are
compact operators on H. Let {Zk}=l be a bounded sequence in H and let

(3.20) Xk P-1Z, k 1,2,

We claim that {X}= contains a convergent subsequence. A glance at the
system (3.19) of Lemma 4 shows that there exists a sequence of positive integers
{kp} tending to infinity and such that {w,} converges for every n. Using the con-
tinuity of the F, in (3.18) it then follows that {x,p} converges for each n.

LEMMA 5. Let T (N + 1)At and let ill be the tridiagonal N x N matrix

of real numbers given by

Let

Yl

2 -1

-1
0

0
-12

be an arbitrary N-component column vector of complex numbers
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and let * be the conjugate transpose of . Then with yO, yN+l defined to be zero
we have

N +1 2 4
(3.21) {*{ lyk yk] > *

Proof It is easily verified that the first equality in (3.21) is true. To show that

4

we need only observe that is real symmetric and that its smallest eigenvalue is
given by

4
(3.22) 2 sinE

2(S + 1)"
The result now follows from the inequality

sin 2 0 4
02 2, 00,

on putting T (N + 1)At.
LEMMA 6. Let M be the linear operator on Hs defined by the tridiagonal

N x N matrix

(3.23) M

21 -I

-I

-I

-I 21.

Let V6 Hu and let v, vN+ be the zero vector in H; then
N [Vk+l vkl >

4
(3.24) (V, MV)= At

At2 --2(V, V).
k=O

Proof It is easily verified that

Iv 11 (3.25) (V, MV) At
At2

k=O

Since H is separable there exists an orthonormal basis {bm}= for H. Consider
the Fourier expansion of the vector vJe H with respect to this basis, i.e., let

(3.26) vj= CJmqbm, j=0,1,’" ,N+ 1,
m--1

where

(3.27) c



ABSTRACT BACKWARD BEAM EQUATION 201

Then by Parseval’s relation,

(3.28) IIv/x

and hence

k+l

m--1

N vk+ Vk 2 N k+
H(3.29) At

m=l k=0

By Lemma 5, we have, for each m 1, 2, ...,
N +1 4ICm(3.30) At > zXt IC ml 2

k=o At2 - k

and thus (3.24) follows upon inserting (3.30) into (3.29).
LEMMA 7. Let G H be the vector

gx

0
1

(3.31) G= 0

g2

and let {x"} _-- X P-1G; then for each n 1, 2,..., N we have

n N+l-n
(3.32) Ilx"ll < Ilg2lln / Ilgxll.=N+I N+I

Proof By Lemma 4, PX G if and only if

(3.33)

XN wN

wNx- + -s-F- x

X2x +-AF w

where the w are given by

(3.34)

mlw

m2w

Aw

1

2 0 t_W
At2

1
0 + -A-wJ-
1 1

ANwN -g2 + --wN-
At
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By (3.12), we have IIFkl n A-111 n kAt2/(k + 1), and hence it follows from.
(3.34) that

1
(3.35) Ilwkl < Ilgxll, k-- 1 N-

=k+l

(3.36) IIwNI n < 1 N
N +-----5 Igll/ / g /a I8211.

If these estimates are inserted into (3.33) it follows by induction that, for
k=O, 1,...,N-1,

k+l N-k
(3.37) xN-III < llgx H / 82 I.=N+I N+I

which is equivalent to (3.32).
The next theorem gives an a priori estimate which will be used in establishing

the existence of weak solutions.
THEOREM 3. P-1 is bounded uniformly as At - 0; we have

Tz
(3.38) liP- II.,, <

4

Moreover,/f V {v"} is the solution of (3.4), we have, independently of At,

T3/2
(3.39) max v" In _-<

2

Proof. Let M be the matrix (3.23) of Lemma 6; then for W in the domain
of P we have

N

(3.40) (PW, W) (MW, W) + At
n=l

By (1.2),

(3.41)

and hence

Re (A"w", w") _> 0

4
(3.42) Re (PW, W) Re (MW, W) (MW, W) >= --(W, W)

on using (3.24) since (MW, W) is real. Hence

I(PW, W)l __> Re (PW, W) _>_ v4(W, W)(3.43)
1-

and so

T2

(3.44) liP- lln 4

Now let PV G + F with F and G given by (3.6), (3.7). Then, defining

(3.45) W V P- G,
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we have

(3.46)

and

PW=F

T2

(3.47) WII IlFII ,
On the other hand, since

(3.48) WII,,II/’W I,, ->_ I(PW, W)[ _> (MW, W),

it follows from (3.24), (3.46) and (3.47) that
N Wk + Wk Z2

(3.49) At < llFIl
k= 0 At2 4

Now for any n with 1 =< n =< N, we have, (w+ w)
(3.50) w"= At

k=o At

and, on using Schwarz’s inequality,

At n IlWk+l wklln

(3.51)
k=O At

N At
k=0

so that

T3/2
(3.52) max. Ilwnlln <__--IIFll.
Since V W + P-1G, we have from Lemma 7,

(3.53) max Ilv In <= 1/2 T3/2IIF[ n -+- Igx n q- g2 lB.

THEOREM 4 (Corollary). Let the problem (3.2) have a solution u(t) smooth
enough that (3.3) is satisfied, and let U HN be the vector {u" Let V be the
unique solution of (3.4). Then with K defined as in (3.3),

(3.54) max IIv"- u"lln _-< 1/2KT3/2At2.

Proof Let W V- U" then with z {z"}u we have

(3.) ,w ,
and the conclusion follows from (3.3) and the a priori estimate (3.52) for the
solution of (3.46).

4. Weak solutions of the linear problem. In this section we demonstrate
the existence of solutions to a weak two-point problem associated with the
equation utt- A(t)u f(t), 0 < < T, making use of the a priori estimates
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of 3. We assume f(t) to be a continuous function from [0, T] to H, and we
phrase our regularity assumptions on A(t) in terms of the smoothness in of the
adjoint family A*(t). In posing the weak problem we follow Lions [10, Chap. I].
It will be necessary to operate within the framework of an LZ-space of H-valued
functions on [0, T]. We summarize below certain results that will be needed
referring the reader to [4] and [10] for details and proofs. Since H is assumed
to be separable, weak and strong measurability are equivalent.

DEFINITION. Let 1 <= p < oo. LP(O, T;H) is the vector space of weakly
measurable functions f(t) from [0, T] to H (i.e., for every h e H, the scalar function
(f(t),h) is Lebesgue measurable on [0, T]) for which

(4.1) IIf(t)lli dt < c.

LP(O, T; H) is a Banach space under the norm

(4.2) [[[f[[lp [[f(t)[[ dt

and L(0, T; H) is a Hilbert space with scalar product

(4.3) If, g <f(t), g(t)) dr.

L(O, T;H) is the space of weakly measurable functions for which IIf(t)ll is
bounded except on a set of measure zero. It is a Banach space with the norm

(4.4)
[0, T]

LEMMA 8. Let 1 < p < . Then LP(O, T; H) is reflexive and its conjugate
space is Lq(0, T; H), where 1/p + 1/q 1.

Proof See [11, Theorem 5.7].
DEFINITION (Weak LZ-derivatives). Let eL2(0, T;H); then u’= du/dt

exists and belongs to L2(0, T; H) if and only if there exists a (unique) v L2(0, T; H)
such that

|(4.5) <u(t), q,’(t)> <v(t), (t)> dt
0

for every strongly once continuously differentiable function ,(t) from [0, T]
to H such that ,(0)= ,(T)= 0.

LEMMA 9. Let u and u’ belong to L2(0, T; H); then (if necessary after modi-

fication on a set of measure zero) u is a continuous function from [0, T] to H.
Proof See [10, Chap.
The weak problem. Let f be the family of functions b(t) from [0, T] which

satisfy the following conditions:
(a) (t) is four times strongly continuously differentiable from [0, T] to H;
(b) b(0) O(T) 0;
(c) for each e [0, T], (t) belongs to the domain of A*(t)
(d) the function A*(t)O(t) is continuous from [0, T] to H.
Without any assumptions on A(t), need contain only the identically zero

function. We assume that the family {A*(t)) is smooth enough that is dense
in L2(0, T; H)and we pose the following problem.
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Given f(t), continuous from [0, T] to H, and given g l, g2 arbitrary vectors
in H, find a function u(t) L2(0, T; H) such that

r
"(t)) dt fro(u(t), (u(t), A*c/)(t)) dt

0
(4.6) rr

J, (f(t), c(t)) dt + (g2, t’(r)) (gl, t’(0))

for every 4(t)
Remark. If we assume further that the collection of functions 0(t) of the form

q/(t) "(t)- A*cb(t) for b e f

is dense in L2(0, T; H), then clearly there is at most one solution to (4.6).
We now show the following theorem.
THEOREM 5. There exists a solution to problem (4.6) which is a limit as At -+ 0

of solutions of the finite difference equations (3.4). Moreover, this solution belongs
to L(O, T;H) and satisfies the estimate

(4.7) []u [[__< 2(-
Proof We need to refer to 3. Let I.(l)kl’N)k=l --Ve HN(At) be the unique

solution of (3.4) and define the continuous function v(t;At) by means of

(t- kAt)
(4.8) v(t At) o %- [1) +

At
kAt <= (k + 1)At,

for k 0, 1,..., N + with v, vN+I respectively defined to be gl and g2.
For each At > 0, clearly v(t;At) L2(0, T; H); and, in fact, using (3.39) in

(4.8), we have

max [Iv(t; At)lln _-< max {[[vk[[H %- [[)k+ 1110}
(4.9) ,[o.rl

T3/2

where F is defined in (3.6).
Moreover, since Ilf(t)lln is continuous on [0, T],

(4.10) IIf(t)[l2 dt f Ig / o() as/Xt --, 0

(weaker assumptions on f(t) would clearly suffice for (4.10)), so that for all suffi-
ciently small At,

(4.11) ]lfll n,tAt) _-< const.

Hence the family of continuous functions {v(t;At)}, indexed by At, is uniformly
bounded in L(0, T; H) and we have

(4.12) [[[v(At) 11[oo 2(T3/2 ’[’f ’[’2 %- [[gl [[H %- [[g2 [[] + 0(1).



206 ALFRED CARASSO

By Lemma 8, each LP(O, T;H), 1 < p < , is a reflexive Banach space and hence
[3, p. 68] the family {v(t; At)} is weakly compact in any given LP(O, T; H). Choosing
p 2, it follows that there exists a sequence {At",} tending to zero as m
such that

(4.13) v(t;At",) weakly w(t) 6 L2(0, T; H).

Next fix a Po > 2. Then there exists a subsequence {At",} of {At,,} such that

(4.14) v(t;At",) weakly h(t)eLP(O, T;H);

it then follows that h(t)= w(t). Indeed, since the conjugate of LP(O, T; H) is
Lq(o, T; H), where qo < 2, and since L2 gq, it follows that

(4.15) v(t Atmk weakly h(t) e L2(0, T; H)

and therefore h(t)= w(t). Moreover, the entire sequence v(t;Atm) converges
weakly to w(t) in each LP(O, T; H) with 2 __< p < . Furthermore, according to
[3, p. 68],

IIIwlll =< lim inf
(4.16) m

< 2r/p Ill f Ill 2 + g , / g2

on using (4.12). Since IIIwll limp_ IIIwlll, it follows that w(t) L(O, T;H)
and

(4.17) ’]wll’ < 2I-[f 11’2 + Ilgl IIH-k-IIg2

We now show that w(t) satisfies (4.6) for every qS(t) f. Write v",(t) for
By (4.13),

(4.18) | (w(t), 4"(0) dt (Vm(t), C"(t)) dt + o(1)
d 0

as At", 0; and since the integrand on the right of (4.18) is continuous on [0, T],
/

(4.19) [ (v",(t), dp"(t)) dt (V",, 0") + o(1),
d 0

where V",, " denote the vectors e Hn(At",) obtained by evaluating the continuous
functions v",(t),O"(t) at the "mesh points" kAt",, k 1,2, ,N, with
T (N + 1)At",. As in 3, (., .) denotes the scalar product in

Now, by hypothesis, 4(t) has four strong continuous derivatives on [0, T],
and hence

(4.20) (V",, *")= -(V",,M*) + o(1),

where M is the matrix of (3.23).
Furthermore, by our construction, V", is the unique solution in HN(At",) of

(4.21) PV F + G,

where P is the matrix in (3.5).
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(4.24) f:
Finally,

Since (t)6 DA,(t), we have

(PV,., 4)) (Vm, P*)
(4.22)

N , A*)(Vm,Mgp) + At (v
k=l

and, since the scalar function (v,.(t),A*(t)c(t)) is continuous on [0, T],

(4.23) (PVm,) (Vm,M) + (v,,(t),A*(t)dp(t)) dt + o(1).

Putting together (4.19), (4.20), (4.21) and (4.22) we now see that

(Vm(t), dp"(t)) dt (Vm(t), A*(t)dp(t)) dt + o(l) + (F, I)) (G, ).

(4.25)

since 4)(T) c(0) 0 for 4)e ft. On using the continuity of f(t) it follows from
(4.24), (4.25)that

(Vm(t), "(t)5 dt (Vm(t), A*dp(t)5 dt
0

(4.26) f[ (f(t), c])(t)5 dt (gl, ’(0)) + (g2, ’(T))

and the theorem follows by letting m in (4.26).
Remark 1. In the case where we have uniqueness in the weak problem,

the entire family {v(t; At)} defined by (4.8) must converge alld we may dispense
with the selection of subsequences. In that case Theorem 5 and the results of
3 amount to a "constructive" proof of existence.

Remark 2. If g g 0, then the unique solution of (3.4) satisfies the esti-
mate (3.49) for the solution of (3.46). In that case the family {v(t; At)} of (4.8) has
a weak derivative in L(0, T; H), bounded uniformly in At in the L2(0, T; H)-
norm. It follows that a w(t) can be obtained as in (4.13) with w(t) having a weak
derivative in L2(0, T; H). Then, using Lemma 9, w(t) is a continuous function on
[0, T], which satisfies the estimate (4.7) and equation (4.6) with g g2 0.

5. The nonlinear problem. We consider now the problem utt- A(t)u
f(t, u(t)) under the following assumptions"

(a) in addition to (1.1), [A(t) + 2]-1 is compact for Re 2 > 0;
(b) f(t, w) is a continuous function from [0, T] x H into H;
(c) f(t, w) is monotone, i.e., for all u, v e H, e [0, T],

(5.1) Re (f(t, u) f(t, v), u v) > 0;
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(d) if {Vm(t)} is a sequence of continuous functions from [0, T] to H such that
Vm(t) weakly v(t) in L2(0, T; H), then also f(t, Vm(t)) weaklyf(t, v(t)) in
L2(O, T; H);

(e) given any p > 0, there exists a continuous, monotone in the sense of
(c) above, and bounded function fo(t, w) from [0, T] H into H such that

(5.2) fo(t, v(t)) f(t, v(t))
whenever v(t) is a continuous function from [0, T] to H satisfying

(5.3) lv(t)l nz dt <= p.

In the notation of 3, let V be a vector {v"} e Hu(At) and define F(V) by

f(v)
(5.4) F(V)=- fZ(v2)["

/()J
where f"(v") denotes f(nAt, v").

As a discrete analogue of the problem

(5.5)
u,- A(t)u f(t, u(t)), 0 < < T,

u(O) 51, u( y) g
we consider the equation
(5.6) PV F(V) + 6
with P and G as in (3.5), (3.7).

Using only the monotonicity of f(t, w) we have the following lemma.
LEMMA 10. There is at most one solution to the discrete problem (5.6).
Proof Let U, V be any two solutions. Then,

(5.7) (P P v, v) (F(C) F(V), V).
From Lemma 6, it then follows that

4(5.8) T2
U- VIRe(F(U)-F(V),U- V)O,

and hence U E
LEMMA 11. Let Q(W) be a continuous function from HS(At) into itse and let

Q(W) be bounded, i.e., let there exist Mo < such that

(5.9) IIQ(W)ll, Mo r all We n(At);
then there exists a solution to

(5.o) Pv Q(V).

Proof Let F = H be the closed ball

(5,11) r wegl IIWII. Mo
and let :Hu Hu be the map

(5.2) 4(V) e-Q(V).
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By Theorem 2, P-1 is compact, and by Theorem 3, P-11 n,, =< T2/4. Hence
b is a continuous function which maps the closed convex set F into a precompact
subset Fo c F, and so b has a fixed point by the Schauder fixed-point theorem.

THEOREM 6. There exists a unique solution to the discrete problem

Moreover,

(5.14)

Proof. Let

p>= {-I,F(P-
and let So

PV= F(V)+ G.

1G)IIHN ’Jr- liP-1GIIHV}
c HN(At) be the ball

so {z
For any given Z e So, let z(t) be the continuous function on [0, T] obtained
from Z by linear interpolation of the components {z"} of Z. For fixed At suffi-
ciently small,

{foT }1/2(5.16) z(t)ll at

By hypothesis (e) there exists a bounded monotone and continuous function

fo,(t, w) such that

(5.17) fo, (t, z(t)) f(t, z(t))

for every z(t) satisfying (5.16).
Hence if Fo,(W is the vector in H whose components are fo,(nAt, w"),

n 1, ..., N, we have that Fo, is a bounded continuous and monotone function
from/-/N(At) into itself. Moreover,

(5.18) F,(Z) F(Z) for all Z e So.

Define o,(W)= Fo,(W + P-1G) for every We H. Then from Lemma 11 it
follows that there exists a solution Wo to the equation

(5.19) nw- p,(W)= Fm(W + P-1G).
We cla that Wo is also a solution of

PW= F(W + P-1G).(5.20)

Indeed,

(5.21)
(P Wo, Wo) (F,,(Wo + P- 1G), Wo)

(Fo,(Wo + P-1G)- Fo,(P-1G), Wo) q- (F,(P-1G), Wo).

Hence taking the real part of both sides of (5.21) and using Lemma 6 and the
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monotonicity of F, we obtain

4
(5.22)

T2 Woll,, _-< Ilfp,(P-aG)lln,,ll Wollm,,

T2

(5.23) Wollu IIFo,(P-G)IIH,

Since liP-GIIm, _-< p, we have Fp,(P-G)= F(P-G); furthermore, from (5.23),

(5.24)

and hence Fo,(Wo + P-G)= F(Wo + P-G). Therefore

(5.25) PWo F(Wo + P-’G).

Now define Vo Wo + P-1G. Then Vo is in the domain of P and, from (5.25),

(5.26) PVo F(Vo) + G.

This proves the existence of a solution to the discrete problem; the uniqueness
follows from Lemma 10. We now establish the estimate (5.14). First consider the
vector Wo defined above. We have, from (5.23),

T2

(5.27) Wo lIE(P-1G) H-

Since by Lemma 6,

IIw+l w( 112H < Re (PW, W)(5.28) At At:k=O

we have, from (5.21) and (5.27),
N W+ T2

(5.29) At -w <_ IIE(P-
k=o At2 4

and hence, by the same device as in (3.51),

T3/2
(5.30) max IIw n < lIE(P-G)

Finally, putting V Wo + P- XG and using Lemma 7 we obtain (5.14) from (5.30).
Existence of solutions in the weak problem. Let 2 be the family of functions

described in 4, and consider the following problem:
Find u(t) L2(0, T; H) such that

(u(t), #’(t)) dt (u(t), A*(t)dp(t)) dt

(f(t, u(t)), (t)) dt + (g2, ’(T)) (gx, ’(0))

for every (t)
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Let X P-1G e HN(At) and let {x"} be the components of X. Define the
continuous function x(t) from [0, T] to H by linear interpolation of the x". Then
for all sufficiently small At,

(5.32) IF(P-a)ll2 f:
Put

f(t, x(O)II dt + o(1),

(5.33) co f(t, x(t))ll 2 dt

and note that 09 can be estimated in terms of Ilgxlln, Ilg21ln, by Lemma 7, whenever
f is given explicitly. Using the a priori estimate (5.14) and hypothesis (d) we have
the following theorem, whose proof is essentially the same as that of Theorem 5
of4.

THEOREM 7. There exists a solution to problem (5.31) which is a limit as
At 0 of solutions of the finite difference equations (5.6). Moreover, this solution
belongs to L(0, T; H) and satisfies the estimate

(5.34) lu <= 2( cT3/22
+ gl n / g2llH

Convergence to a smooth solution of the strong problem. Let us define a strong
solution of the problem (5.5) to be a function u(t) which is continuous on [0, T],
twice continuously differentiable, with u(t)e Da(t on (0, T), and which satisfies
the differential equation and boundary conditions in (5.5). It is easily seen that
strong solutions are unique" if u(t), v(t) are any two strong solutions and if w(t)

u(t)- v(t), we then have w(0)= w(T)= 0 and

(5.35) w, A(t)w f(t, u) f(t, v),

and hence

(5.36) (w,, w) (A(t)w, w) (f(t, u) f(t, v), u v).

Since Re (A(t)w, w) >= 0 and Re (f(t, u) f(t, v), u v) > O, we have

;o(5.37) Re (w,, w)dt >__ O.

Hence on integrating by parts,
T

(5.38) | Iw’(t)ll at <= o,
d 0

and therefore w(t) 0 since w(0) 0.
Suppose now that (5.5) has a strong solution smooth enough that if U is

the vector in HN(At) obtained from evaluating u(t) at the mesh points nat,
n-- 1,..., N, then

(5.39) PU F(U) + G + r,
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where satisfies

(5.40) "][ n __< KAt2

for some positive constant K independent of At and N. We then have the following
convergence theorem, which is analogous to Theorem 4 of 3.

THEOREM 8. Let V be the unique solution of (5.6) and let u(t) be a solution of
(5.5) satisfying (5.40). Then with K as in (5.40),

(5.41) max Iv unllH < 1/2KT3/2At2.

Proof We have

(5.42) (PU- PV, U V)= (F(U) F(V), U V) + (, U V).

Using Lemma 6 and the monotonicity of F(W), taking real parts in (5.42), we have

4
(5.43)

T2
u- VII H I111

and in the usual way, if wk uk v,
T2

(5.44) At
k=O

The last inequality implies (5.41).
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SOME INEQUALITIES CONCERNING JACOBI POLYNOMIALS*

MERRELL L. PATRICK,-

Abstract. For polynomials P(z) c 1-I,= (z ak) with al, a2, a, real, we write ]P(x + iy)[2
"=o L,(P;x)y2’, where

2o 2k) p(J’(x)p(2’- 2’(x).L(P" x)
(- 1)+’

j= (2k)! j

We show for k 1, 2 and 3 that the functions L,(P(’)" x), rn O, for Jacobi polynomials
P(x) P"t)(x) and their derivatives satisfy the inequalities L,(P(m)’x) < L,(P(m)’I) for -1 =< x __<
and -1 < a fl" L,(P’’x) <= L,(P’)’1) for 0 =< x < and -1 < fl < a" and L,(Pm)’x)
<=L,(P(’)" -l) for -1 =< x =< 0 and -1 < a<fl.

1. Introduction. Suppose P(x) is a polynomial of degree n of the form
c 1-= (x a), where a, a, aa, ..., a are real numbers. It can be shown that

]P(x + iy)]2 Lk(P x)y2k,
k=0

where

LI,(P x) o (- 1 2k
p(j)(x)p(21, J)(x)

j= (2k)! j
with Pa)(x) denoting the/th derivative of P(x). In this paper we consider L,(P;x)
when P(x)= P,’)(x), a > -1, fl > -1, -1 _< x =< 1, is the Jacobi polynomial
of degree n. It is a consequence of[15, Theorem 7.32.1] by Szeg6 that if -1/2 _<_ fl =< 0

then Lo(P;x <=Lo(P;1 for -1 =<x<_ 1, and if -1/2<=<fi then Lo(P;x)
_< Lo(P;- 1) for -1 _<_ x <= 1. Note that Pt)(x)= P(x) and Lo(P;x)= [P(x)]2.
In 3 we show that in the case -1 < a fl, -1 =< x =< 1, L,(P;x) <_ L(P;1)
for k 1, 2 and 3. We also show that if 1 < fl < 0, 0 _<_ x =< 1, L,(P;x) <= L,(P; 1),
and if-1 <o<fl,-1 <=x<=O,L,(P;x)<=L,(P;-1)fork= 1,2and3.

R. J. Duflin and A. C. Schaeffer [6] showed that the Chebyshev polynomials,
T,(z), satisfy the inequality ]T,(x + iy)] <= IT,(1 + iy)], -1 <= x <_ i, -oo < y
< . They then use this inequality to prove W. Markoff’s theorem under a
weaker hypothesis than that used by Markoff [9]. Markoff’s theorem gives the
best possible bounds for the higher derivatives of a polynomial f(x) of degree n
such that If(x)] =< 1 in the interval (-1, 1). Dufftn and Schaeffer’s proof requires
that f(x) be bounded by 1 only at the n + 1 points x cos (wc/n), v O, 1, 2, ..., n.

The function L,(P;x) arose while we were attempting to obtain inequalities
similar to those for Chebyshev polynomials for other Jacobi polynomials, in
particular, for ultraspherical polynomials. In 2 ofthis paper we obtain inequalities
of the Duffin and Schaeffer type with restricted values of y for polynomials with
real roots which are symmetric about the origin.

We note that the function L(P; x)= [P’(x)] 2 P(x)P"(x) and, more gen-
erally,

L(p(,n);x) [p(m+ a)(X)]2 p(m)(x)p(m+ 2)(X)
have been studied for many different functions. In [2] it is shown that the Laguerre
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inequality

Ll(pm);z) [pm+ 1)(Z)]2 pm)(z)pm+ 2)(z > 0, --o<z<, m>0,=

holds when P(z) is an entire function of a special type. Skovgaard [13] shows that
the Laguerre inequality for a certain type P(z) can be used to show that the Turfin
inequality [u,(x)] 2 u,_ (x)u,+ (x) >= 0, n >= 1, holds for functions u, u,(x)
which have P(z) as a generating function. The Turfin inequality and other Turfin-
like expressions for various special functions have been studied by Szeg6 [14];
Karlin and Szeg6 [8]; Carlitz [3]; Forsythe [7]; Beckenbach, Seidel and Szfisz
[1]; Danese [4], [5]; Szfisz [11], [12]; Nanjundiah [10]; Thiruvenkatachar and
Nanjundiah [16] and Venkatachaliengar and Rao [17]. Webster [18] develops
relations between the Laguerre expression [P’n(x)]2- Pn(x)P(x) and the Turfin
expression [P,(x)] 2 P,_ (x)P,+ (x) for ultraspherical, Hermite, and generalized
Laguerre polynomials and the Bessel functions of the first kind.

We show that the Laguerre expression

L(pm);x) [p(m+ 1)(x)]2 p(m)(x)p(m+2)(x),

P(x) P’I)(x)

m>_O,

(P(m)" 1) for --1 < x < 1 and -1 < esatisfies the inequalities La(pcm). x) =< L
fl; La(ptm);x) <= LI(p(m); 1) for 0 =< x =< 1 and -1 < fl < e; and LI(p(m);x)

<: L(ptm);- 1) for -1 _<_ x =< 0 and -1 < e < ft. In addition, we show that
similar inequalities hold for the functions Lz(p(m);x) and L3(Ptm);x).

2. Some properties of polynomials with real roots. In this section we consider
polynomials of degree n in the complex plane with n real roots.

A polynomial of this type can be written in the factored form

P(z) c fi (z ak),
k=l

where c is a constant and ak, k 1, 2, ..-, n, are real and not necessarily distinct.
THEOREM 2.1. Let P(z) c I-["= (z ak) be a polynomial with real roots only.

Then we can write

(2.1) ]P(x + iy)[ 2 Lk(P; x)Y2k,
k=0

where

(2.2)
2k )j/k

Lk(P;x) 0(-1
j= (2k)! 2k) ptj)(x)pt2k_ J)(x).

J
Proof. This theorem may be proved by using induction on the degree of P.

The details of the proof are omitted here.
THEOREM 2.2. Let P(z)= P(x + iy) be a polynomial of degree n with n real

roots. Then for all x, Lk(P x) -> O, k O, 1,... n.

Proof. We have that

P(z) P(x + iy)= c (-[ (z-
k=l
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and it follows that

IP(x + iy)12 Icl 2 [(x a,)z + y23.
k=l

This can be written in the form

(2.3) IP(x + iy)l 2 Icl 2 C(x)y,
k=O

where the Ck(x) are products and sums of products of the (x- ak)2. Therefore
each C(x) >= 0 for all x, and since (2.1) and (2.3) are identically equal we have
that each L(P;x) >= 0 for all x.

THEOREM 2.3. Let P(z) be a polynomial of degree n with all real roots which
are symmetric about the origin in the interval -1 <= x <= 1. Then for -1 <= x <=
and y with X2 -[- y2 >= max {a2},

]P(x + iy)I IP(1 + iy)l,

where a, k 1, 2, l, are the positive roots (not necessarily distinct) of P(z).
Proof. If l= 0, i.e., if P(z) has no positive roots, then P(z)= cz" and

[P(x + iy)l 2= c(x2 + y2)n. In this case it is easy to see that the theorem holds,
i.e., P(x + iy)l < P(1 + iy)l for -1 < x _<_ and y with x2 + 2

2 0.
If > 0, then since P(z) has real roots which are symmetric about the origin

we can write

P(z) cz l-I (z ak)(z + a),
k=l

where r + 21 n and a, k 1, 2,..., l, are the positive roots of P(z) and c is a
constant. From this we have, for z x + iy,

IP(x + iy)l 2 icl2(x2 + yZy 1--[ U(x a)2 + yZ3U(x + a)2 + y23
k=l

icl2(x2 + yZy 1-I [(x2. a)2 + 2(x2 + a)Y2 + Y43"
k=l

For a fixed y 4:0 let f(x) ]P(x + iy)12. Then for 0 < x =< 1,

f’(x) 2rx

f(x) xz + y2
X2 a ++ 4x

[(x- a) + y2] (x + a)2 + y2]

X2 2a + Y24X z.= [(x a) + y3[(x + a) + y"

Since f(x) f(-x) we need only consider the functions for 0 =< x <= 1. It is easy
to see that if 0 =< x < 1 and x2 + y2 >= maxk {a2} then f’(x)/(4f(x)) >= O. But for
fixed y :/= O, f(x) > 0, which means that f’(x) > 0 for 0 =< x <_ and xz + yZ
>= max {a}. In other words, in this case, f(x) is a nondecreasing function of x
in 0_<x< 1. Since f(x)=f(-x) and f(x)=lP(x+iy)[2, it follows that
IP(x + iy)[ <= [P(1 + iy)[ for <= x =< and y with x2 -[- y2 >= max {a}.
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3. Some inequalities for functions derived from Jacobi polynomials. We recall
some ofthe basic properties ofJacobi polynomials which are found in 15, Chap.4].

The Jacobi polynomials P(x)= P<d’’(x) are orthogonal on the interval

I- 1, 1 with respect to the weight function w(x) (1 x)(1 + x)’, where > 1,
fi > 1. The normalization of P<,")(x) is effected by

n+z)(3.) e,’()

Combining this identity with

P=’)(x) (- 1)nP(,t’=)( x),

we have

(3.2) P(,’)(- 1) (- 1)"

The Jacobi polynomials satisfy the linear homogeneous differential equation
of the second order

(3.3) (1 -x2)p +[fl-a-(a+fl+2)x]P’+ n(n+a+fl+ 1)P= 0.

They also have the property that

d P+ ’+ )(x)(3.4) dx(P’)(x)) 1/2(n + z + fl + ,-,-

From this it follows by induction that

dk

dxk(P’)(x)) =-(n + z + fl + 1)(n + a + fl + 2)...
(3.5)

(n + o + fl + k)P%+k’+k)(x).
p(a + k,fl +Writing (3.3) for -,-k k)(x) and substituting from (3.5) we have the following

equation for P(x) P(,’t)(x)"

(1 x2)p(k+2) q_ [fl O (0 3- fl -f- 2k + 2)x]e(k+ )
(3.6)

+ [n(n + o + fl + 1) k( + fl + k + 1)]Pk)= O.

We now consider the function

(3.7) Ll(n;x) [P’(x)] 2 n(x)P"(x)

defined by (2.1), where

P(x)= P(,’)(x), > -1, fl > -1, -1 <= x <= 1,

and prove the following theorems.
THEOREM 3.1. Let P(x) P(,’t)(x), fl > -1, n >__ 1, -1 <= x <= 1, and let

L I(P x) [P’(x)] P(x)P"(x). Then 0 <= L I(P x) <= L(P 1).
Proof. For the proof we need the function

(3.8) F,(x) L,(P;x) + a,(1 x2)Ll(P’;x),
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where

z+fl+2
a-(z+fl +4)n(n+z +fl+ 1)’

l__<x=<l, z>-l, fl>-l,

and LI(P’;x) [P"(x)] 2

have
P’(x)P"(x). Differentiating (3.8) with respect to x we

(3.9)
F(x) P’P"- PP" + a,(1 x2)[P"P’’- p,p(4)j

2a 1x[P"] 2 + 2a xP’P".
Using (3.6) with k 1 and k 2 and substituting for (1 x2)P’’’, (1 x2)P(4)

and a gives

(3.10)

n(n + a + fl + 1)-(a+fl+2) p,p,, pp,,,
n(n + o + fl + l

(a + fl + 2)
+
(a+fl+4)n(n+a+fl+ 1)

(a + fl + 2)
(a+fl+4)n(n+0+fi+ 1)

F(x)

[fl o (z + fl + 4)x]P’P"

[/3 a -(a + fl + 2)x] [p,,]2.

By using (3.3) the second and third terms of (3.10) yield

(1-x2)p"P" {+fl+[fl-o-(o+fl+4)x]n(n+a+fl+ 1) +
+fl+

+[fl-e-(o+fl+2)x]
n(n + o + + l)"

The first term of this expression can then be combined with the first term of
(3.10) by using (3.6) with k to yield

[z fl + (o + fl + 4)x] [p,,]2.
n(n+a+ fl+ l)

Using these two expressions to rewrite (3.10) we have

Fi(x)
4x

Lo(P";x)
(a+fl+4)n(n+afl+ 1)

(3.11)
E(z fl)(a + fl + 3) + (z + fl + 2)(z + fl + 4)x-]

+2 L(P’;x),
(e+fl+4)n(n+o++l)

where Lo[P";x] [P"(x)]a as defined by (2.2).
When e we have from (3.11) that

2xLo(P" x
Fi(x)

(o + 2)n(n + 2a + 1)
(3.12)

4(a + 1)(o + 2)xLi(P’;x)
( + 2)n(n + 2c + 1)
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Again by Theorem 2.2, Lo(P" x) >= 0 and L(P’;x) >= O. Since 0 > 1 and n >= 1
the coefficients in (3.12) involving 0 and n are positive. Therefore the sign of F[(x)
depends only on x. It follows then that for -1 <= x < O, F’(x)<= O, and for
0 <= x < 1, F(x) >= O. This means that F(x) is a nonincreasing function on
[- 1, 0] and a nondecreasing function on [0, 1].

By Theorem 2.2, Lx(P;x)>= 0 and L(P’;x)_>_ 0 for all x since the zeros
of Jacobi polynomials are real. With -1 < fl and n _>_ 1 it follows that
a > 0 in (3.8). Therefore, for 1 =< x _< 1, 0 =< L(P;x) <= El(X) with L(P; 4-1)
F(+ 1). It follows now that L(P; x) takes its absolute maximum at x 1 or

x -1. Since P is either odd or even, it follows that L(P; 1)= L(P;-1).
Hence LI(P;x) <= L(P; 1) for =< x =< 1 which proves the theorem.

COROLLARY 3.1. Let P(x) Pt,’a)(x), 1 < fl , n >= 1, and

Lx(P(m);x) [p(m+ 1)(X)]2 p(m)(x)p(m+ 2)(x).

Then for -1 _< x <= and rn-- 1,..., n- 1,

0 < L(P(m)" x) < L(p(m). 1).

Proof. From (3.5),

LI(Pm);x)--m(n + 4- fl -k- 1)2(n + a + fl + 2}2’’’ (n + a + fl + m)2

(3.13)
{[P’(x)] p(x)p"(x)},

where P(x) P(,%+m’t+m)(x). Letting a fl and applying Theorem 3.1 to P(x) we
have

o <_ [P’(x)] z P(x)P"(x) <_ [P’()] P()P"().

Using this inequality with (3.13) we have 0 _< L(pm);x)<= L(pm); 1) which
proves the corollary.

THeOReM 3.2. Let P(x)= P,’t)(x), -1 < fl < a, n >= 1, and let L(P; x) be
defined as in Theorem 3.1. Then for 0 <= x _< 1, 0 <= L(P;x) <= L x(P; 1).

Proof. Consider F(x) defined previously. Evidently the terms in (3.11) are
nonnegative for x _>_ 0, 1 < fl < . Hence the previous considerations are valid
for this interval and the assertion follows.

COROLLARY 3.2. Let P(x) Pt,’t)(x), -1 < fl < a, n 1, and let L l(ptm);x)
be defined as in Corollary 3.1. Then for 0 x and tn 1,-.. n l,

L(p(m) x) =< L I(P() 1)

Proof. The proof is identical to that of Corollary 3.1.
THEOREM 3.3. Let P(x)= P(,’tO(x), -1 < o < , n >__ 1, and let L I(P;x) be

defined as in Theorem 3.1. Then for 1 <= x _< O,

0 <-- LI(P;x <= LI(P;- 1).

Proof. This theorem follows directly from Theorem 3.2 since P(,’)(-x)
(- 1)’P(,f’)(x).
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We obtain a similar set of theorems and corollaries for the functions

[P"(x)] 2 2P’(x)P’(x) 2P(x)P’Ox
(3.14) L2(P;x)

(2 !)2 3! + 4!

and

[P"(x)]z 2P"(x)P4)(x)
L3(P; x)

(3!)2 2!4!
(3.15)

2P’(x)P5)(x) 2P(x)p6)(x)
+ 5! 6!

defined by (2.2), where P(x) P’a)(x), a > -1, fl > -1, -1 __< x =< 1. Because
of the similarity of the proofs of these theorems and corollaries to the previous
ones, we only outline the method of proof.

To obtain the similar set of inequalities for Lz(P; x) we define a new function

where
F2(x) L2(P;x) + a2(1 x2)L2(P’;x),

+/+2
a2 (a +- fl q- 6)n(n + a + fl + 1)

with L2(P’;x) obtained by replacing P with P’ in (3.14). We then show, using the
differential equation (3.6)a number of times, that

Uz(x)
4x

L (P"x)
(a+fl+6)n(n+a+fl+ 1)

[(a-fl)(a+fl+4)+(a+fl+2)(a+fl+V)x]+ 2 L2(P’;x),
(a+fl+6)n(n+a+fl+ 1)

where LI(P";x) is obtained by replacing P by P" in (3.7). We then use the fact
that Lz(P x) >= O, Lz(P’ x) >= O, LI(P" x) >= O, Lz(P x) <= F2(x) and L2(P 1)

F2(1) to obtain inequalities for L2(P;x) similar to those for LI(P;x).
When considering the function L3(P; x) given by (3.15) we define the function

F3(x) L3(P; x) + a3(1 xZ)L3(P’;x), where

+fl+2
a3 --(0 -+- fl q- 8)n(n + e + fi + 1)

with L3(P’;x obtained by replacing P with P’ in (3.15). Again, using the differ-
ential equation (3.6) we show that

F;(x)
4x

L2(P" x)
(0+fl+8)n(n+ + fl+ 1)

2[(a-fl)(a+fl+5)+(a+fl+2)(a+fl+ 10)x]+ L3(P’;x).
(++ 8)n(n+ ++ 1)

As in the other cases, L3(P; x) > 0, L3(P’;x >= O, L2(P";x) >= O, L3(P;x <= F3(x
and L3(P -+-1)--F3(-I-1 so we are able to obtain inequalities for L3(P;x
similar to those for L(P;x) and L2(P;x).
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4. Summary. We have shown for k 1, 2 and 3 that the functions Lk(P(m); x),
m __> 0, defined by (2.2) for Jacobi polynomials P(x) P’a)(x) and their derivatives,

-,tm). 1)for --1 < x < 1 and -1 < /3;satisfy the inequalities Lk(P(m)" x) Lkl,l"
Lk(Pt";x) <_ L(ptm);1) for 0__< x =< 1 and -1 < fl < ; and Lk(Ptm);x)
<__ Lk(Ptm); 1) for -1 __< x =< 0 and -1 < </3. We note that Ln(P;x) is a
constant for all polynomials P of degree n, so L,(P; x) <= L,(P; 1) obviously holds
for all x.

We conjecture that similar inequalities hold for Lk(P x), k 4, 5, ..., n 1,
defined by (2.2) with P(x) Pt,’a)(x), 1 <__ x 1, 1 < , 1 < [3. Our method
of proof becomes too unwieldy for k _>_ 4.

Acknowledgment. The author is grateful to Professor R. J. Duffin for his
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ON THE BOUNDEDNESS AND THE STABILITY OF SOME
DIFFERENTIAL EQUATIONS OF THE FOURTH ORDER*

B. S. LALLI AND W. A. SKRAPEK

Abstract. The aim of this paper is to give sufficient conditions (Theorem 1) for the asymptotic
stability (in the large) of the trivial solution x 0 of the differential equation

D(x) x(4) + f(5)2 + f2(2, 5) + g(2) + h(x, 2) O.

A result (Theorem 2) on the boundedness of the solutions of the differential equation D(x) p(t) is
also established.

1. Introduction. In this paper we investigate certain fourth order non-
homogeneous differential equations. Ezeilo [2] established results for the equa-
tion

(1.1) x(4) + f(5)’ff + a25 + g(2) + a4x p(t).

Harrow [3], [4], [5] derived interesting results for the problem

(1.2) x(4) + a2 + f(50 + g(2) + h(x)= p(t).

We establish similar results for

(1.3) x4) + f1(2)2 + fz(2, 5) + g(2) + h(x,2)= p(t).

The real-valued functions fl, f2, g, h and p depend (at most) on the arguments
displayed explicitly. The functions g’(y), c3fz(y,z)/@, ch(x, y)/@ exist and are
continuous along with f and f2 for all values of their arguments. Moreover,
the existence and the uniqueness of the solutions of (1.3) will be assumed. We
write

dx dZx d3x dgx
X(4).

dt
2,

dt2
5,

dt 3 x,
dt4

In what follows we use the following system which is equivalent to (1.3):

(1.4) 2 =y, )=z, = w, = -wf(z)-fz(y,z)-g(y)-h(x,y)+p(t).

THEOREM 1. Assume the following conditions hold:
(i) f2(Y, O)= g(O) h(O, y)= O, and there exist finite positive constants a,

a2, a3, a4, A4 and finite nonnegative constants k, k2, k3, k4 such that

fl(z)>-_al + k for all z,

f2(Y, z)/z >= a2 -F k2 for all z g= O,

g(y)/y >_ a 3 nt- k 3 -+- k4 for all y g= O,

a4 <= h(x, y)/x <= (a4A4) /2 for all x g= O;
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(ii) c3f2(y,z)/c3y <= 0 for all y and z, and for y :A O, z O, the functions
(1/y)c3h(x, y)/cy and f2(Y, z)/z satisfy

[G(x, y,z)] 2 4a3k2k4/A4,
a[f(z)- al] 2 __< 4a3klk3/A4,

where

G(x, y z) fz(Y, z) ff 3h(s, y)
a2 ds

z

(iii) a finite constant Ao exists such that

{ala2 g’(y)}a3 aA4fl(z >_ A0 > 0 for all y and z;

(iv) g’(y)- {g(y)/y} <= 61 for y 0, where the constant 61 is such that
2A,Ao/(a a23);
(v) Oh(x, y)/c3y 0 at y O, Oh(x, y)/c3y < Ao/(3a3) and A 6 3 <-- Oh(x, y)/c3x
A for all x and y, where

63<Do =2A A 1) 2

ala3 2aZxaza3 +

Then every solution of (1.3) with p(t) 0 satisfies
(1.5) x0, -0, 50, 2-0 astoo.

Remark. The conditions of the theorem agree with the Routh-Hurwitz
criterion [1, p. 21] for asymptotic stability in the large for

x4)+a2+b+cy+dx=0.

THEOREM 2. If hypotheses (i) to (v) of Theorem 1 hold and iffurther

ds A

for all >= O, where A is some positive number, then given any finite numbers Xo, Yo,
Zo, Wo there exists a finite constant D D(xo, yo,Zo, Wo) such that the solution
x(t) of (1.3) determined by the initial conditions

x(o) Xo, (o)= yo, (o)= Zo, (o)= Wo
satisfies
(1.6) Ix(t)l D, I(t)l D, I(t)l D, I(t)[ O

for all > O.

2. The function V(x, y, z, w). The proofs of (1.5) and (1.6) depend on prop-
erties of the function V defined by

2V(x, y, z, w) 2d h(s, y) ds + (ad Adl)y

+ 2 g(s) ds + 2d f(y, s) ds daz
(1.7)

+ 2 sf(s) ds + dlw + 2h(x ,y)y

+ 2dh(x, y)z + 2aldyz + 2dlg(y)z

+ 2d2yw + 2zw,
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where dl e + (l/a1), d2 A4/a3 and e is a positive constant.
Defining 7(Y) g(Y)/Y g’(0) for y 0, we obtain the following estimate"

{ h2(x’Y) 1 tx2 +{a2d2_A4d_da}y22V(x,y,z)_> a4d2- x2

+2 g(s) ds yg(y) + {a2d d2 d7(y)}z2

1
+2 sf(s)ds- az + dx +--{w + az + ady}2

al

+ + yy(y) + dzy(y)

The following inequalities can be easily checked"

(1.8) a4d2 h2(x, y)/{x2y(y)} >= O;

(1.9) a2d d2 d’(y) >-
a --3

provided that e < Ao/(aa2a3)

(1.10)

{a2d2 A4d, da,}y2 + 2 g(s)ds yg(y)

=a3 a3 aa2 + s---g’(s) ds

.A_oA A,a a2e _}y2.>-- [ aa a3

By using the above inequalities it is possible to select a positive constant D5 such
that 2V(x, y, Z, W) >= Ds(Y2 nt- z2 -- we),
provided that e is sufficiently small. Since V(0, 0, 0, 0) 0 and 2V(x, O, O, O)
>= a4d2x2, it follows that V(x, y, z, w) is positive definite and V(x, y, z, w) as
x2 + y2 + z2 + w2 . We need the following lemma.

LEMMA. Under the hypotheses (i)-(v) of Theorem 1 there exists a positive
constant D6 such that if (x, y, z, w) is any solution of (1.4) with p(t) O, then

d
(1.11) l)" =_ ttV(x, y,z, w) -D6(z2 + w2).

Proof. A straightforward calculation gives

+ [a2d2yz d2f2(y, z)y] + -yyZ
ch

+
(1.12) _[f2(y,z)z_{dlg,(y)+d_y ald2}z21

-d2[fl(z a,]yw [dlf,(z)- 1]w2

fl Oh(s, y) f; af2(y, s))
nt- d2 --y Z ds + d

c3y
ds.
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To establish (1.11) we consider four cases.
Case 1. y 0 and z 0. We have

d
V(x 0 0 w)= -fl(O)[dldt

Case 2. y 0 and z # O. In this case

dV < -[az dg’(O)- d2f(z)]z2 aew
dt

<= aaa2 e, z alew2.

Case 3. z 0 and y 4- 0. In this case

dV
dt

fO w <__-aw.

Case 4. y :/: 0 and z 4: 0. In this case

y + -Z a le,W
2

-[d2k3y2 + d2{f(z)- a,}yw + d,k,w2]

[d2ka,y2 + d2G(x y, z)yz + k2z2]

a2 d,g’(y) a,d2 - A4 -x d

1 Ao Z2<_ --aew2

12 aa3

A choice of D6 is now obvious.

3. Proofs of Theorem 1 and Theorem 2. By using the function V(x, y, z, w)
and the lemma, a proof of Theorem 1 can be modeled on that of Harrow [3].
Alternatively, a standard theorem of La Salle and Lefschetz [6, Theorem 4, p. 58
could be applied.

For a proof of Theorem 2 let (x, y, z, w) be the solution of (1.4) with x(0) Xo,
y(0) Yo, z(0) Zo and w(0) Wo. With respect to the system (1.4) we have with
V defined as in (1.7)"

dV
T + [dlw + d2y + zip(t),

dt

where T represents the expression on the right-hand side of (1.12). In view of
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(1.11) we note that

dV
_-< De[lwl + lyl + Izl]lp(t)l,

dt

where D6 max(1, d,d2). Since [yl < 1 + y2, Izl < 1 + z and ]wl < 1 + wu, we
have

dV < D6(3 _+_ y2 _+_ z2 nt w2)[p(t)[
dt

3D6lp(t)l + D6(y2 + z2 + wZ)lp(t)l

2D6<-- 3D6IP(t)] +
D5

VlP(t)],

since 2V_> D(y2+ z2+ w2) (D > 0); or dV/dt-OVlp(t)] =< O]p(t)], where
D max (3D6,2D6/D). Now the following inequality can be easily obtained"

V(t) V(x(t), y(t), z(t), w(t)) <= IV(0)+ AO]eA < oe,

where V(0) V(x(0), y(0), z(0), w(0)); hence (1.6) follows.

4. Summary. We have given some sufficient conditions for the asymptotic
stability (in the large) of the trivial solution x 0 of the differential equation (1.2)
with p(t) 0, and for the boundedness of the solutions of (1.2). In each case we
have not been able to determine whether these conditions are also necessary.

The results obtained in Theorem 1 and Theorem 2 reduce to results which
differ slightly from those obtained by Ezeilo [2] and Harrow [3]. The difference
of results lies in the fact that the V functions constructed in each case are not
identical. Also, although the corresponding V functions satisfy certain desirable
properties which are similar in each case, the routes followed in establishing
these properties are somewhat different.
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NONCOMMUTATIVE CONTINUED FRACTIONS*
WYMAN FAIR’

Abstract. A number of theorems are proved concerning the convergence of continued fractions
whose entries are linear operators on a Banach space. These theorems are analogues of some of the
well-known results for ordinary continued fractions.

Introduction. Wynn [1] has discussed formal properties of formal con-
tinued fractions whose elements obey a noncommutative law of multiplication.
He developed a number of identities, pointed out numerous applications and
later gave two theorems concerning convergence of such expressions (see [2]).

This paper contains some new convergence theorems concerning non-
commutative continued fractions, some of which are direct generalizations of
well-known theorems in ordinary continued fractions. The reader is referred
to Wall [3] and Khovanskii [4] and the references therein for these standard
theorems.

1. Definitions and notation. We consider the formal expression

(1.1) Bo + Bo + {B + [B2 + -..] ’A2} ’A1,
A2B+ B2 A- "’.

where the A and B are, unless otherwise specified, bounded linear transforma-
tions on a Banach space X over the complex numbers. As usual, we denote this
Banach space of bounded linear transformations by IX], the identity element of
which we denote by I. Lower-case letters always denote complex numbers.

In order to discuss convergence of (1.1) we associate with (1.1) a sequence
of partial quotients {S} defined by

So Bo,

S B0 + B-( A B-((BBo + A),

S2 S0 + (B, + B’A2)-A, (S2S + A2)-’[(B2B, + A2)B0 + B2A,],

and, in general, S is obtained from (1.1) by setting A/ 0 and rationalizing
the following expression. By induction, it can be shown that

s: Q;’P,

where the expressions Q and P are computed by the recurrence relations

P/ B/IP + A+P_,

Po Bo, P BIBo + A Qo =I, Q B.

* Received by the editors May 20, 1969, and in final revised form June 10, 1970.
Department of Mathematics, Drexel University, Philadelphia, Pennsylvania 19104. This paper
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For future use we record the identity

Q+alPn+ Q; 1Pn (-- 1)n+ 1Q+11An+ 1Q,-1Q; 1AnQn-2
(.3)

Q(- 0)

See 1] for further formal properties of (1.1).
DEFINITION 1.1. Continued fraction (1.1) converges (A) if Q- exists for

all n and the sequence {Q- 1p} converges in the norm of IX].
DEFINITION 1.2. Continued fraction (1.1) converges (B) if the continued frac-

tion

An+B,, + B,+I + "..

converges (A) for some positive integer n. Since B0 in (1.1) does not affect conver-
gence, we omit it from subsequent discussion.

2. Convergence theory. The first theorem is similar to one of Wynn [2].
Since we need some of the techniques and results of this theorem to prove
Theorem 2.2, we outline the proof.

THEOREM 2.1. In (1.1) if B, I and Zn=lan < )(3, where a A, then

(1.1) converges (B).
Proof Without loss of generality, ,la, < m In 2. Let s, i=1 ai.

The sequence { P,[ is bounded, for

P1 A1 < eal eSl,

P2 AI[I < e"+":= e:.

Use of the recurrence relations (1.2) and induction yield

liP, <e"<em=2.

Similarly, Q,[I} is a bounded sequence. Now {P,} is a Cauchy sequence, for

]]Pn+k- Pn <= Z Pn+i- Pn+i-I 2 An+iPn+i-2ll
i=1 i=1

_< a+,l P,,+i-2 <- em 2 an+i <
i=1 i=1

for large n since i ai converges. In the same way, {Q,} is a Cauchy sequence,
so there exist P, Q in IX] such that P, P and Qn Q.

We now show Q-I exists for all n and that Q-1 exists. We have Q1 I,
Q2 I + A2 and Q3 I + A2 + A3, so that

[Q2- II -[[h2 =< es2- 1,

Q-I __<IIA + A __<e-1.

An easy induction argument shows that

Q,-I <e"- 1 <em- <=2- 1,
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so that Q-I exists for all n. Also, since Q, Q,

Q-I lim Q,-I =< lim(es"-!)<em- 1,

and Q- exists. Consequently, Q- P, Q- 1p and (1.1) converges (B).
THEOREM 2.2. If in (1.1), A, I, then a necessary conditionfor the convergence

(B) of (1.1) is that ,=1 b, diverges, where b, B,
Proof Let Q exist for all n and suppose , b, < m In 2. It is an easy

induction argument to show that for all n,

Qzn- III e"- and ]]Q2,+

simultaneously, where s, ZT= b,. In the same way, {IIP } is a bounded se-

quence. Just as in Theorem 2.1, {]]Q 11} is a bounded sequence. Let M be a
positive number such that IIQ.II < m and [Q ]] < m for all n. By (1.3),

D, Q2 xP2n+ QnlPzn Q2 1Qzn- IQLIQzn-2 Q 1QIQ 1B1
Thus, since

Q2zQ QzBQ- + l, ]Q32Q 1 + MZb,
then

liD. 11021 -x BQ2Q Q3Q Q4...

Qn 3Q2n-1Qn 2Q2nQn

Ibm(1 + bb2) Q? XQ3IIIQ 1Q4 Q, 2Q2n Q, 1Q2n+ ]-1

Ibm(1 + bbz)(1 + M2b3)(1 + M2b)... (1 + M2b2,)(1 + M2b2,+)]-l.
Since {s,} converges, the infinite product

(1 + M2b,)
n=3

converges to a finite positive number. Thus, lim, D, 0, so that (1.1) diverges.
Hence {s,} must diverge if (1.1) converges.

Notice that the proofs of Theorems 2.1 and 2.2 involve only elementary
use of the property of norms in a Banach algebra, so that they are true if the
elements of (1.1) are members of a Banach algebra.

In the scalar case (i.e., the A, and B, in (1.1) are complex numbers) in which
A, 1 and B, b, are positive numbers, the divergence of, b, is a necessary
and sufficient condition for the convergence (A) of (1.1). We remark that even
in the case that A, I and B, in (1.1) are positive commuting self-adjoint operators
on a Hilbert space, the condition of Theorem 2.2 is not sufficient for the con-
vergence (B) of (1.1). For example, let

0 0 1/n2

be 2 2 matrices. Now , ]B,] diverges, but since all matrices are diagonal
and commutative, the continued fraction (1.1) in this case is just the 2 2 matrix
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defined by

0

1
1+1+’..

1+

o + ".

in which the continued fraction on the lower right diverges.
THEOREM 2.3. In (1.1) let B I, A kiA, ki complex numbers. Let a(A)

denote the spectrum of A.
(i) If lim,_ k, 0, continued fraction (1.1) converges (B)for all A.

(ii) If lim,_o k, k : O, continued fraction (1.1) converges (B) for all A
such that a(A) CI S where S is the ray [-1/(4k), ) the direction
of which is the direction of the ray (0,- 1/(4k)).

(iii) If lim sup,_,o [k,[ k > 0, then (1.1) converges (B) as long as sup{[2["
26a(A)} <6 <1/4k.

Proof (i) Let A IX] and let V be a compact neighborhood of a(A). By
[3, p. 138] there is an N such that for all n => N,

(2.1)

converges uniformly for 2 V. Let fro(2) be the approximants of (2.1). Then f,n(2)
is analytic on V, m 1, 2, ..., and fro(2) converges uniformly on V to an analytic
(on V) function, say f(2). Then, by Lemma 14 in 5, p. 271] fro(A) converges uni-
formly to f(A) in the uniform topology of operators, and so (1.1) converges (B).

(ii) Let V be a compact neighborhood of a(A) such that V f’l S . Again,
by 3, p. 138] there is an N such that for n => N, (2.1) converges uniformly for
2 V. Following the same argument as in (i), (1.1) converges (B).

(iii) There is a compact neighborhood V of o(A) such that sup{[2[ "2 V}
< p < 1/4k. There is an N such that for all n => N, and 2 V, [k,21 < 1/4k. Thus, for
n > N and 2 V, (2.1) converges uniformly by Worpitzky’s theorem. Again, use
of the argument of (i) insures convergence (B) of (1.1).

The following remarks concern the case where the elements of (1.1) are
positive self-adjoint commuting operators on a Hilbert space. We have, from
(.3),

(2.2) Q2 1Pn Q2-IPn-1 (- 1)n(Qn 1Qn)- ’AIA2 An,

and QIP is a positive self-adjoint operator. If we replace n by 2k + in (2.2)
and add for k 1,2,..., n, we get

QLI+ 1Pzn+1 Q- A1 (QxQ3)-AxAzB3
(2.3)

-(Q2n-lQzn+ I)-1A1A2 AznB2n+l,
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while the same technique gives

QnlPzn Q 1A1B:z nt- (Q2Q4)- IAIA2A3B4 -+-
(2.4) +(Qz,-zQ2,)- 1AA2 A2,-1B2,

Thus Q,IP2, and Q,+ 1P2,+1 are increasing and decreasing sequences, respec-
tively, and Q,L 1P2,-1 > Q,Ip2,,. Now if (1.1) converges (A) in this case, say
to F, then

(2.5) IIF Q- 1Phil _--< [[(Qn- 1Qn)-1AIA2 AnI[.

THEOREM 2.4. In (1.1) let A I and B be commuting positive self-adjoint
operators on a Hilbert space such that B > 6nI > 0 and n= fin diverges. Then
(1.1) converges (A).

Proof Let C=B1 if fl- 1 <0 or C=I if51- >0. Then

Q B _> C,

Qz BzB + I (B2 + I)C >(1 +62)C,

Q3 B3BzB1 + B3 + B1 > (B3B2 + I)C + B3 > (1 + 63)C,

and by induction,

Qzn > (1 + 2 -11- 64 + - (2n)C,

Q2n+l > (1 + 63 qt_ 65 _+_ + 62n+ 1)C,

so that

Hence

Q2nQ2n+I > (1 + 62 -1
l-- 63 -- -Ji- 2n -- 2n+ 1)C2"

C-2
(Q.O.+ )-’ <

+ 62 + 63 qt_ nt_ 62 _1_ 62n+
Making use of (2.2) and the preceding remarks, QL+ 1P2,+1- Q,IP2, 0 so
that (1.1) converges (A).

3. Periodic continued fractions. Here we treat a certain periodic continued
fraction whose entries are elements of a complex Banach algebra. Consider the
quadratic equation

(3.1) y2 YB A O,

where Y- exists. Rewriting we get

y=B+Y-A,

and replacing Y on the right-hand side by B + Y-1A, formally we have

A A
(3.2) Y= B+ B+

B+ y-1A A
B+

Thus, the periodic continued fraction (3.2) arises quite naturally in the search
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for solutions of (3.1). Notice that if U is a solution to (3.1) then U B is a solu-
tion to

(3.3)

so that formally

(3.4)

y2+BY-A=O,

B+

is connected with a solution of (3.3). Convergence of either (3.2) or (3.4) implies
convergence of the other.

The next theorem is similar to a theorem of McFarland [6], but, since the
setting and the proof are different, we include it in this paper.

THEOREM 3.1. If (3.2) converges (A), then it converges to a solution of (3.1).
Proof Let (3.2) converge (A), Q-1p, be the nth approximant to (3.2) and

S-1R, be the nth approximant to (3.4). It is easily verified that S,/1 P, and
R,+ Q,A, so that

lim QlPnSlR. lim Q-Ip,s+IR,+I A.

Thus if Q-IP, F, then S-IR, F B; that is, F(F B) A 0 or F is a
solution to (3.1).

We define the formal transformation

A
(3.5) S S(W)= (B + W)-IA.

B+W

Y is called a fixed point of (3.5) if S(Y) Y, that is,

y2 +BY-A--O.

We can form a convergence criterion for (3.4) in terms of the fixed points of (3.5).
The proof of the following theorem is patterned after a proof in Wall [3, p. 36].
We assume existence of required inverses, including those of the denominators
of the approximants to (3.4).

THEOREM 3.2. Let there be at least two distinct fixed points of (3.5) and let
U be one such that V-"U"[[ 0 for any fixed point V of (3.5), V # U. Further,
suppose v-"w"ll + 0 for any distinct fixed points V, W of (3.5), V 4: U W.
Then (3.4) converges (A) to U.

Proof Let V 4: U be a fixed point of (3.5). Then [[V-"U"[[ 0 and it is
easily verified that if S S"(W),

(3.6) (S- V)-l(S- U)-- v-n(w- V)-I(W- U)On.

Let F, Q-1p, be the nth approximant of (3.4). Then F, S"(0); that is, S(W)
is iterated n times and then W is set equal to zero. Thus by (3.6) with W 0,

(F. V)- (F. U) V-"(V- U)U" V U"+’.
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Since v-"U"ll - 0,

F.- u (F.- V)e.,

where F. --, O, or

F.(I- E,,)= U- VE,,, (F,,- U)(I- E.)- UE -VE..
Finally, for large n, F,,- U (U- V)E,,(I- E.), so that IIF U]I 0; that
is, F. Q-1p. converges (A) to U.

Conclusion. The applications of noncommutative continued fractions to
problems in analysis, though numerous, have not yet been exhausted. Of course,
the success with which these formal expressions may be used depends a great
deal upon the state of development of convergence theory of such fractions.
Thus the development of a sufficiently general convergence theory is of prime
importance at this time.
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GEOMETRIC THEORY OF DIFFERENTIAL EQUATIONS.
I" SECOND ORDER LINEAR EQUATIONS*

H. GUGGENHEIMER"

Abstract. In the first part of the paper, we develop a geometric theory of the equation x" + px 0
for p a generalized derivative and, simultaneously, the SL(2) differential geometry of curves with
countably many cusps. After a discussion of Borfivka’s dispersion function for generalized p we use
the dispersion function to obtain majorizations of the Lyapunov integral (b a)f p dt on intervals
of disconjugacy. As an application we obtain that the lower endpoint 21 of the first interval of instability
of a Hill equation x" + 2px 0 and period T is bounded above by rc2(ToT p dt)-1. No other eigen-
value of the stability problem admits a similar upper bound.

In this note, we study several applications of the plane differential geometry
of SL(2).

First, we give a geometric theory of the equation

(1) x" + Q’x O, a <_ <= b,
where Q’ is the generalized derivative, in the sense of distributions, of a function
defined on a __< b. Such equations have been considered at least since 1892 [8].
If Q is of bounded variation, the differential operator defined by the left-hand
side of (1) is a special case of the generalized second order operators whose theory
has been developed by W. Feller [3]. Our standard assumption will be that Q
is right (or left) continuous but not necessarily of bounded variation.

In a second part, we derive some upper bounds (mainly in terms of Borflvka’s
dispersion function) for

(b a)(Q(b) Q(a)) (b a) Q’ dt

if a __< __< b is an interval of disconjugacy of (1). There exists an extensive litera-
ture about lower bounds for that expression but very little is known about upper
bounds in special situations. We derive a universal upper bound for the first
eigenvalue of the stability problem of a Hill equation.

1. We can give a sense to equation (1) for integrable Q by asking that x(t)
be absolutely continuous and

fi’(D2x + (DQ)x)f dt 0

for all C-functions f defined on a =< =< b with f(a) f(b) O. Since

D(Qx) (DQ)x + QDx

it is easily seen that y x’ + Qx is an a.e. defined function and that (1) is equivalent
to

(2)
Y QZ Q y

a.e.
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By Carathodory’s existence theorem we are assured of the existence and unique-
ness of absolutely continuous solutions of (2). The information obtained in this
way is not sufficient for many applications. We develop a theory in which (2) will
be assumed to hold everywhere in the sense of one-sided derivatives.

2. Let x(u) (Xl(U), X2(U)) be a vector function

X’I--[2-- 0

defined on some interval I of the real number line. We assume that x(u) has every-
where a forward derivative x’ and a backward derivative x’_ that are bounded
in length by an L 1- and LE-function re(u) and also that the forward derivative is
everywhere linearly independent of x(u). We fix an orthonormal frame in RE and
express x in polar coordinates relative to this base,

x(u) r(u)c(u),

where c(u)= (cos e(u),sin e(u)). The vector c(u) forms an orthonormal base
together with n(u)= (-sin e(u), cos e(u)). By Beppo Levi’s theorem, the deriva-
tive x’ exists except possibly at a countable set of points.

The determinant of two vectors a, b is denoted by [a, b]. The scalar product
relative to the given basis is denoted by the usual dot.

The one-sided derivatives of r(u) and e(u) exist"

r+_ r- x.x’+_,

e y-e[x,x].
It follows that r and e are differentiable except at most at a countable set, con-
tinuous, and that

Ir’+_l <= re(u), I’+_1 <= r- (u)m(u).
As long as r(u) is bounded away from zero, e(u) is of bounded variation. Therefore,
we may define the area function by

Then

-}t(u) 1/2 I[x, x’]l du + to

r21=’l du + 1/2to.

t’+_ (u) rZlo(+_(u)l
and the polar angle e is differentiable as a function of the parameter except at
points of discontinuity of sgn e’+

g+r-2d[ e+ sgne+.

From now on we shall use as a parameter. This is admissible since (dt/du)+ > O.
In particular, the "prime" symbol will be reserved for differentiation with respect
tot.
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We now add the requirement that + be constant. The reason for this
condition is that the frame which we shall construct for x(t) will be discontinuous
at points of discontinuity of e+. We choose e+ (= e_) for definiteness.

The definition of amounts to

(3) x(t), x’+ (t) 1,

or that the hodograph curve x’+ (t) is the envelope of the lines

r- l(t)n(t) + 2c(t), < 2 < + .
The envelope is the image, in the rotation of center 0 and angle rt/2, of the polar
reciprocal of x(t) with respect to the unit circle. If x’+(t) is differentiable, then
x’+ (t) x’(t) everywhere and (3) implies Ix, x"] 0 or

x" + q(t)x O,

where q(t)dt Ix’, x"] dt is twice the area element of the polar reciprocal (with
an appropriate sign). In the general case, a cusp of x(t) will appear as a straight
segment on the polar reciprocal. It follows from our formulas that

(4) x’___ r’+_c + r-In.
The area of the triangle formed by the origin and the straight segment x’+x’_ is
one half of

(5) Ix’_ (t), x’+ (t)] _1 (r’_ r’,).
r

The differential geometry of curves is dominated by the Frenet equations.
These differential equations determine a moving frame by functions ("curva-
tures") that are invariant under some transformation group. The determination
of the curvatures always presupposes an elevated order of differentiability. We
want to find a replacement of the Frenet equations of the geometry of SL(2)
(area preserving linear transformations in the plane) adapted to our differentia-
bility hypotheses. To this effect we have to find a frame (a column of vectors)
that contains x(t) as its first vector, is differentiable at least in the forward sense
and whose forward derivatives satisfy an equation depending on integral in-
variants of x.

We assume without loss of generality that x(t) is differentiable for 0.
Since x+ (t) is linearly independent of x(t), the second vector of our frame can be
sought as

y(t) x’+ (t) + Q(t)x(t).

The preceding argument suggests that Q should be the area function of the polar
reciprocal, including the area generated by jumps, multiplied by a factor of 2.
We write x’+(t)= p(t)c(O(t)) and should obtain for Q a representation by some
kind of Stieltjes integral

Q(t) p2(:) dO(r,)

(r + r- ) d((r) + arc cot rr’+).
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Since our argument here is heuristic, we do not determine the sense in which the
latter integral exists, nor do we investigate the validity of integration by parts.
We only note that a formal manipulation by partial integration leads to the
definition

r’(O) r’+ t) fO(6) Q(t)
r(O) r(t) + (r-’ r’2r- 2) dr"

With this definition, we have

Jr(O)
+ o(r-"-

and
y’+ (t) Qx’+ QZx + Qy.

The Frenet equation becomes

’) at} 40 + r(t)- n(t)

and

where

is invariant under nonsingular linear transformations.
The constant in (6) can be replaced by an arbitrary one. The substitution

y(t) y(t) ax(t) induces one Q(t) Q(t) a.
Since the integral in (6) depends only on the a.e. defined function r’, it follows

that y depends on x but not on the direction of the differentiation:

(8)
dr_

r’(O) r’_ (t) flQ_(t)
r(O) r(t) - (r-4 (r’/r)2)

Q(t)- Q_(t) y(r’_ r’+)

is the quantity predicted by (5). We also see that the forward and backward
derivatives of x(t) are connected by

(9) x’+(t) x’_(t)- {Q(t)- Q_(t)}x(t).
The matrix in (7) is of trace zero and therefore in the Lie algebra of SL(2).

Hence, two admissible curves are images of one another in a unimodular linear
map if and only if their functions Q differ at most by a constant.

(t- to)(Q(t Q(to)

The integral curvature Q is defined up to an additive constant and is invariant
under the area preserving linear transformations of the plane. For monotone
increasing Q the graph of x is convex, the polar reciprocal is convex and Q is
the area function of the polar reciprocal. In general, it follows from the invariance
under SL(2) and the homogeneity of degree zero that the product
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For any solution vector x of the first row of (7), the Wronskian of the co-
ordinate functions xl(t), x2(t) has an everywhere vanishing right derivative. By
(8), it also has an everywhere vanishing left derivative. Hence, the Wronskian.
is constant and there always exists a pair of solutions of unit Wronskian. The
condition (3) can be satisfied and the curves that we have studied in this section
are the curves obtained as solutions of systems (7). We formulate this as a theorem
on differential equations.

THEOREM. If Q(t) is right continuous for a <= <__ b, then

Y + Q y

has solutions in a <_ _<_ b that are uniquely determined by initial conditions and
satisfy the equation for every value of t. In addition, for any pair x(t), Xz(t of co-
ordinate functions of a solution vector x of unit Wronskian,

Q(t) c r’ (t)r-(t) + (r -4+

where r(t) (x(t)2 + x2(t)2) /2.

r,2r- 2) dr,

3. It is reasonable to say that (1) has a periodic coefficient if

O(t) 2(t- to)- P(t)
with periodic P. For a study of equations with periodic coefficients one best
uses the unimodular flame (x, z) defined by

Then z remains bounded when x does and one easily proves all the usual theorems
on Hill equations.

From the result of 2 we may easily construct all equations (1) with periodic
coefficients of period T and only periodic (i.e., x(t + Y) x(t)) or semi-periodic
(x(t + T) -x(t)) solutions. For such an equation we have

a(t + T)= a(t) + krc, k integer,

and, hence, the equation (1) has all periodic solutions if and only if there exists a
positive, periodic function r(t) of period T that has square integrable one-sided
derivatives everywhere for which

f r- 2 dt= kc,

Q c r’+ t__A) for(t)
t- (r-4-r-2r’2)dt.

For continuous Q’(t), an equivalent result is contained in the author’s paper [4].
In the meantime, the author found that the same result is contained, in the form
of a stability criterion, in the paper [5] by V. A. Jakubovi6, whose priority is
herewith acknowledged.
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4. Following Borflvka [2], we define the dispersion function q(t) of a homo-
geneous linear differential equation L[x] 0 defined on the real axis as the
location of the zero following of any solution of L[x] 0 that vanishes at
but does not vanish identically. An alternative definition is

qg(a) sup{bla __< __< b is an interval of disconjugacy for L[x] 0}.
If q(t) < oo for all t, L[x] 0 is oscillatory.

For a solution curve of (1) of unit Wronskian, ’(t) > 0. Hence, a third defini-
tion of the dispersion function is via the Abelian functional equation

O(t) q(t) dr
rc d(r) r2(rt

since the vector x. q)(t) x(q)(t)) points to the direction of -x(t). From here we
see that

(o) (r .oft))
dt r(t)2

By projection into the coordinate axes we obtain for any scalar solution x(t)
that does not vanish at t,

do x q0(t)2

dt X(t)2

In any case, the dispersion function of an oscillatory equation defined by the
generalized derivative of a right continuous function is differentiable.

The second derivative does not exist in general; a simple computation shows
that

q0’_ (t) q)"_ (t) 2q’(t) Q(t) Q_(t) q’(t)[Qo q(t) Q_ q(t)]}.
A necessary and sufficient condition for the existence of q"(t) is therefore

r(t) {r’+ (t) r’_ (t)} ro (p(t){r’+o (p(t) r’_ (p(t)}
5. The notion of dispersion is useful, for example, in some integral estimates.

In order to follow the generally adopted notations, we consider an equation

(11) x" + p(t)x O, -o < <

where either p is a positive function, p(t) > 0, or p is the generalized derivative
of an increasing one-sided continuous function. From Lyapunov’s inequality it
is known that

(12) 4 =< ((p(t)- t) p(r) dr

is best possible. It is also easy to construct oscillatory equations for which the
right-hand side of (12) is arbitrarily big. In this framework, we prove the following
theorem.

THEOREM. If q)’ is a nondecreasing function at to, then
o(to)

(i) ((p(to)- to) p(r) dr < 2(1 + qg’(to)’/2)a(p’(to)’,
tO

where 7 jbr (p’(to) < and 7 1/2 for (p’(to) > 1
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(ii) if either qg’(to) 1 or fo(to) xl dt 0 for a solution X of (11) that does not
vanish identically but whose forward derivative vanishes at o then

o(to)

(O(to)- to) p() d _<_ .
to

The only known case ofthese inequalities seems to be inequality (ii) for q(t) 1
(Petty and Barry [7]). The inequality (i) is not best possible since it results from
the combination of two inequalities with contradicting extremal cases.

We denote by It (or It+, It_) the unoriented angle between the vectors x
and x’ (or x’+, x’_) for a solution vector x of unit Wronskian of (11). From (10)
we have

qg’_(t) 2qg’(t)r-2(t) {cot It+ o99(0 cot It+(t)}.
By our hypotheses, the curve x(t) is convex for o _<_t_< q(to) and It+ q(to)
__< It+(to). We fix x(t) by the initial conditions

X(to) (, 0), x’+(to) (0, ).

Then xoq(to)= (-,0) and x’+ q(to) points into the third quadrant
(including the x2-axis).

If q’(to) 1, the curve together with its image in the reflection in the origin
is a convex, closed curve. By a theorem of Blaschke [1], the product of the surface
area of a plane convex set and the surface area of the polar reciprocal with respect
to the centroid of the set is _<_ 2. In our case the centroid is at the origin and the
product of the surface areas for the closed curve is the left-hand side of the in-
equality (ii). This proves (ii) in the first case. In the second case, we consider the
curve x(t) on to _-< __< 0(to) and its reflection in the xl-axis. The integral condition
means that the centroid is at the origin and Blaschke’s theorem applies again.
Equality holds only for the solutions of x" + cZx O.

In the general case (i), put r/= max Xz(t), o <_ < (p(to). Let (,r/) be a
point x(t) of ordinate r/. The curve is contained in the rectangle of vertices (1, 0),
(1, r/), (-x/-o), r/), (-w/qg’(to), 0)and qg(to)- to _-< 2r/(1 + qg’(to)l/2). The curve
contains the triangle of vertices (1, 0), (, r/), (-w/qg’(to), 0) and its polar reciprocal
is contained in the polar reciprocal of the triangle. In order to avoid difficulties
of definition, we consider the closed curve generated by reflection of x(t) in the
x-axis and the kite obtained by reflection of the triangle. The polar reciprocal
of the kite has vertices

The surface area of the quadrilateral of the above vertices is

(3) + v/’(t){l + v/o’(to)l + v/c,’(to)l- 1}o’(to)

and this majorizes to) p dt. The maximum of (13) on the interval

< <

is attained at the right endpoint for q’(to) < 1 and at the left endpoint for q’(to) > 1.
The inequality (i) is obtained by multiplication of the estimates of the areas of
the curve and its polar reciprocal.
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The general condition"

q’(t) nondecreasing for to
is necessary. If r q(t)/r(t) is decreasing in some interval t* __< __< to, the convex
curve x(t) may have small surface area but points at great distance r(t*) from the
origin. The curve then may have a given area even though it passes very near the
origin and the surface area of its polar reciprocal is very big. For instance, for

{(t )+(t ( ))},P--e
x(t) is the polygon of vertices

(1,0), (1,e), (-e-l+ 1,e), (-1,0).

We put a e-2 2-. Then

0<t<e,q(t) - 1 + at’

and q"(0) -20 < 0. We have q’(0) 1 but

e(o) 2
((p(0) O) p dt

is arbitrarily big for suitably small e.

6. We use the inequalities obtained in the preceding section to obtain a
majorization in a more familiar setting. We consider a Hill equation

x" + 2p(t)x O, -oo < <
(14) p(t + W) p(t) > O, pL(O, r).

The dispersion function of this equation will be denoted by cp(t,/t). Define 2(u)
as the first eigenvalue of the problem

x"+2px=O, u<__t<=u+ T,

x(u) x(u + T)= O,

i.e., q(u, 2(u)) u + T. One shows in the theory of Hill equations [6] that

21 min 2(0
u<_t<_u+ T

is the lower limit point of the first interval of instability of (14) and, therefore,
there exist solutions of unit Wronskian that satisfy

x(t + T) xi(t),

x2(t 4" T)= -x2(t + x(t).

Let u* bea zero ofxa(t). Then x(u* + T) x(u*), where we have put x (x, x2)
as always. This means that

(Dr(u:,/1) 1.
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By the minimum property of/1,

the function qg(u, 21) has a minimum at u* and the differentiable function qg’(u, 21)
is nondecreasing at u*. (With a little more work the same result can be obtained
for p Q’.)

By inequality (ii),
T

(4__<) 21T p dt < 7r, 2,
/u*

or the lower limit 21 of the first interval of instability of the Hill equation (14)
satisfies

72

Tfo pdt

Similar necessary inequalities do not exist for higher eigenvalues. Counter-
examples can be constructed as in 6.
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SMOOTHNESS OF SOLUTIONS OF VOLTERRA
INTEGRAL EQUATIONS WITH WEAKLY SINGULAR KERNELS*

RICHARD K. MILLER" AND ALAN FELDSTEIN

Abstract. The purpose of this paper is to obtain results on the differentiability properties of
solutions of nonlinear Volterra integral equations of the second kind with convolution kernels a(t s).
It is assumed that a(t) is continuous for > 0 and integrable at the origin although a(t) may become
unbounded at 0. Solutions are known to be continuous for all >= 0. The results in this paper
prove that the solution x(t) is smooth for > 0. The existence and the possible nature of singularities
in x’(t) at 0 are studied for a large class of kernels. The special case a(t) -p, 0 < p < 1, is studied
in particular detail.

1. Introduction. The purpose of this paper is to obtain some results on the
differentiability properties of solutions of nonlinear integral equations of the form

(1) x(t) f(t) + a(t- s)g(s,x(s))ds, 0 <= _< T,

when f(t) and g(t, x) are smooth functions, a(t)e C(O, T] (-] L I(O, T) but a(t) may
become unbounded as - 0. Such results are necessary in order to estimate the
error in numerical approximations of the solution of (1) (for example, see Linz
[1, II]). This type of result is also useful in proving the equivalence of certain
nonlinear boundary value problems for the heat equation with a corresponding
Volterra system (see [2, Theorem 3 and its proof]).

The general problem of determining the smoothness of solutions of (1) is
rather complex. Suppose we fix a function g and a kernel a(t) LI(O, T). Then as

f varies over the set C[0, T] the solution x(t)= x(t;f) will also vary over all
possible functions in C[0, T]. To see this one has only to fix any x*(t) C[0, T]
and then define

f*(t) x*(t) a(t s)g(s, x*(s)) ds

on 0 < =< T. Then x* is the solution of (1) corresponding to f* e C[0, T].
This overabundance of solutions is caused by the overabundance of forcing

functions (f can be any continuous function). One would expect that as f and
g become smoother the solution of (1) must become smoother. This is true to
some extent but intuition should not be trusted too far. To see this consider the
equation

(2) x(t) f(t) (t S)-1/2X(S) ds.

If f(t) (an entire function), then a Laplace transform argument may be used
to see that

x(t) exp (ct)erfc (xfl),
Received by the editors June 1, 1970, and in revised form September 29, 1970. This research was
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where

erfc (x) (2/x/) exp (-r2) dr

is the complementary error function. On the other hand, if f(t) + 2w/, then
it is easy to verify that x(t) 1 (entire). In particular this shows that fortuitous
choices of the function f yield smoothness properties at 0 which are the
opposite of what one intuitively expects.

Since (2) is a linear equation of convolution type, then it is possible to analyze
the behavior of solutions in some detail. Given any fixed continuous function f,
let Xo(t, f) be the corresponding solution of (2). Integration in (2) from zero to
and rearrangement of the double integral yields

x(t,f) Xo(z,f) dz

f(r) dr (t s)- 1/2 X0(r f) dr ds

or

xl(t,f) f(rl)dr (t- s)-l/2Xl(S,f)ds.

This integration process can be continued indefinitely"

x,+ l(t, f) x,(r, f) dr

or

f(r,+ 1) drn+

{f(r)(t r)"/n!} dr flXn+ l(t’ f) fl

(t S)- 1/2Xn+ 1(S, f) ds

{f(u + 1)(r)( r)N/N !} dr.

Let uj(t) xj(t, f) for the special choice f(t) 1. Then the solution of (2) may be
written in the form

N

Xo(t, f) fJ)(O)uj(t)/j! + xN+ l(t, feN+ 1)).
j=O

The functions uj can be computed explicitly. They are of class CJ[O, T], indeed
analytic in the complex plane cut by the negative real axis. The function

x+ l(t, f(N+ 1)) is at least of class C + 110, T].
The foregoing analysis of (2) shows that as f becomes smoother, then x(t, f)

also becomes smoother but only for > 0. In general there will be no increase in
smoothness of the solution at 0. At the same time, very special choices of f

f(t) fJ)(O)tJ/j! +
j=O

Given a function f e C + 110, T], write f in the form

(t s)- 1/2x,+ l(s, f) ds.



244 RICHARD K. MILLER AND ALAN FELDSTEIN

(for example, f(0) 0 or f(0) f’(0) 0) may force smoother behavior at the
origin. This general type of behavior seems to be typical of solutions of (1).

In (2) let uo(t) be the solution when f(t) 1. Then one can easily and explicitly
compute fro(t) t-1/2 + nUo(t)" In the more general case where f e CN +1 N >
then

N

X’o(t, f) f(J)(O)u)(t)/j! + X’N + l(t, f(N + 1))
j=0

f(O) {t- 1/2 + nUo(t)} + continuous terms.

More generally one could rewrite (1) in the form

(1’) x(t) f(t) + a(s)g(t- s, x(t- s)) ds

and then formally differentiate to obtain

x’(t) f’(t) + a(t)g(O,x(O)) + a(s){gl(t s,x(t- s))
()

+ g(t- s, x(t- s))x’(t- s)}
where g cg/ct and g2 c3g/cx. One might expect that if g(0, x(0)) - 0, then
x’(t) O(a(t)) as --* oe. We shall show that this is the case for a large class of
kernels a(t). In general, the nature of the singularity at 0 is hard to analyze
in detail since the integral

fla(s)g2(t- s, x(t- s))x’(t- s) ds

may also be singular at 0.
The remainder of this paper is organized in the following way. Section 2

contains preliminary definitions, lemmas and estimates. Section 3 contains the
basic results on differentiability of the solution x(t) of (1). The necessary hypotheses
have been collected at the beginning of this section and have been labeled as
assumptions (AI-A6). In Theorem we show that if a(t) is of class C(0, T]
(’l L 1(0, T) and if a, f and g satisfy certain other mild hypotheses, then x(t) has a
continuous first derivative which satisfies (3) on the half-open interval 0 < __< T.
Theorem 3 covers the case where a(t) e C 110, r] ff C(0, r] and a)(t) e LI(O, r).
If v >= 1, then we show that x(t) C[0, T] C+ 1(0, T] with x(+ )(t) of class L
near 0. Moreover, x’(t) satisfies (3) while higher derivatives of x(t) satisfy the
appropriate equations obtained from (3) by formal differentiation.

The results in 3 guarantee that for some integer v => 0 the solution x(t)
C[0, T] (’1 C+ 1(0, T]. The function x+ )(t) is continuous when > 0 and is

L1 near 0 but may become unbounded or may oscillate wildly as approaches
zero. The purpose of 4 is to provide a partial answer to the question of whether
or not x(+ )(t) has any further derivatives when > 0 and also to the question
of the possible nature of the singularity in x+ a)(t) at 0. We shall assume that
the kernel a(t) is a weakly singular function (Definition 1 below). Intuitively this
means that for some integer v __> 0 one has a(t)6C-l[O, T] (’l C+1(0, T],
a()(t) L in a neighborhood of 0 and a(+ l)(t) does not oscillate too wildly.
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We seek sufficient conditions so that the solution x(t) will be weakly singular of
order v + 1. The case v 0 is somewhat delicate. It is treated in Theorem 4 and
Corollaries 2 and 3. When v => the analysis is straightforward. This case is
discussed in Theorem 5.

Section 5 contains a detailed analysis of x(t) in the special case where a(t)
-p, 0 < p < 1 and v _> 0 is an integer. The functions f and g are assumed to

be real analytic functions of their arguments. Under these very special hypotheses
the solution can be analyzed in greater detail. Earlier results in 4 imply that
x+ 1)(0 O(t -p) as --, 0. Here we show that there exists a computable constant
K such that xtv+l)(t)--ft’+l)(0)+ Kt-P+ o(tl-P). In Theorem 6 we show
that x(t) is an analytic function in a neighborhood of the set 0 < __< T. Moreover
Corollary 4 asserts that if p r/q is a rational number, then the singularity in
x(t) at 0 is a branch point.

2. Preliminary lemmas. Consider a linear Volterra integral equation of the
form
(4) X(t) F(t) + a(t- s)h(s)X(s) ds.

o

LEMMA 1. For some T > 0 assume F and a are of class L 1(0, T) and h L(O, T).
Then (3) has a unique solution X LI(O, T). If in addition h, F and a are scalars
and are a.e. nonnegative, then X(t) >= 0 a.e.

Proof. The usual contraction map and translation argument is applicable.
Let ho be the essential supremum (ess sup) of Ih(t)] on 0 =< <_ T. Pick an integer J
such that if S T/J, then

ho [a(t)[ dt o < 1.

Then existence of X(t) on 0 =< =< S follows immediately by the principle of
contraction mappings on La(0, S).

Replacing by + S in (4) one obtains

Xl(t Fl(t + a(t- s)h(s + S)X(s)ds,

where Xx(t X(t + S)and

Fl(t) F(t + S) + a(t + S- s)h(s)X(s) ds.

Since X LI(O,S) is known and F LI(O,S) is known, then the contraction
mapping argument yields X(t)eL(O,S). Define X(t + S)= Xt(t) a.e. on
0 < < S. Continue by induction on the intervals jS < < (j + 1)S.

If h, F and a are nonnegative, then the argument is the same except that the
contraction, mappings are defined on the set {q)eLl(O,S)’q)(t)>__ 0a.e.}. This
completes the proof.

LFMMA 2. Suppose F and a e L(O, T), he L(O, T) and ho >= esssup
Suppose there exist r > 0 and a function e L(0, r) such that

IF(t)] 4- ho [a(t s)lfl(s) ds <__ fl(t), 0 <= <= r.

Then there exists ro <= min {r, T} such that the unique L solution of (4) satisfies
the estimate IX(t)] __< fl(t) a.e. on 0 < < to.
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Proof. Let S be the number given in the proof of Lemma and let
ro min {r, S}. Define

A {q9 L1(0, ro)’lqg(t)l <= fl(t) a.e.}.
Apply a contraction mapping on A.

COROLLARY 1. Suppose the hypotheses of Lemma 1 are satisfied. Assume IF(t)l
and la(t)l _-< Kfl(t) a.e. on 0 <= <= r and that"

(H1) for each e > 0 there exists b(e) > 0 such that

fl(t- s)fl(s) _< eft(t) a.e. on < <ds 0

Then there exists ro <= min {T, r} such that the unique L solution of (4)
satisfies the estimate Ix(t)l =< (K + 1)fl(t) a.e. on 0 < < to.

Proof. Pick e > 0 so small that ehoK(K + 1) < 1, where ho => ess sup
Then pick 6 6(e) using (HI). Let ro min {6, r, T}. For almost all in 0 < < ro
one has

[F(t)[ + ho [a(t- s)[(K + 1)fl(s)ds <= Kfl(t) + hoK(K + 1) fl(t- s)fl(s)ds

<= (K + )(t).

Now apply Lemma 2 to complete the proof.
It is easy to find examples of functions which satisfy hypotheses (HI). For

example, if 0 < p < 1, then

(t- s)-Ps -p dS Ktl-2P= (Ktl-P)t-P= o(t-P),

where K F(1 p)2/F(2 p) and F(z) is the gamma function. If fl(t) -log
and0<t__< 1, then

0 =< log (t s) log s ds log (t s) log s ds + log (t s) log s ds
0 t/2

t/2

ftt f
t/2

log (t s) ds 2 log log s ds_<log.,o logsds+log
/ .,o

log (t/2)[log (t/2) 1] o(log t),

If fl(t) 2=1 e-"2t, then

fl(t s)fl(s) ds 2
e e

m2 n2 + C
-n2t

n=l

where y(t) is defined by

,(t)= E E
mmn+

=e

n,m
:/:

2y(t) + tfl(t),

-n2t --m2t

m2 n2
e- n2t e- (m + n)2t

ggl
2 + 2mn

1 e- tin2 + 2nm)t
n2t E m2 + 2nm
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Clearly tfl(t) o(fl(t)) as 0. To see that 7(t) o(fl(t)), fix any e > 0 and then
pick M so large that for m >_ M,

2m-2 <el2, (mz +2nm)-1 <, n>_m.
m+l m=l

Now pick 6 > 0 so small that if 0 < < , then

Then one has

M

(1 e -(mz+2mn)t) < /2, 1 <_ m <= M.
m=l

0 =< 7(t) =< e -"2’ (1 e -(m2+2mn)t) +
n=l (.m=l

m- 2

M+I

Z e-"’ (mz+2mn)-1

n=M+l m=l

m

=< Z e-"’{e/2 + e/2} + e-"’e eft(t).
n=l n=M+l

Using this result it is easy to show that the function fl(t)= K ,0 e-"t also
satisfies (H 1).

The resolvent R(t) associated with a given kernel function a(t) is defined as
the unique L1 solution of the linear equation

(5) R(t) a(t) + a(t- s)R(s) ds.

It is well known (for example, see Tricomi [3, Chap. 1]) that the solution of a
linear equation

(6) X(t) f(t) + a(t s)X(s) ds

may be represented in terms off and the resolvent"

(7) X(t) f(t) + R(t- s)f(s)ds.

Consider a pair of nonlinear equations

(S) Xj(t) Fj(t) + a(t s)g(s, Xj(s)) ds, j 1,2.

LEMMA 3. Assume"
(i) a, V and F2 e L1(0, T),
(ii) gl(t, x) and g2(t, x) are continuous in (t, x) for 0 <__ <_ r and all x,
(iii) gl(t, x) is Lipschitz continuous in x with Lipschitz constant L (independent

of and x), and
(iv) X and X2 exist a.e. on 0 <= <__ T and are L1.
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Let r(t) be the resolvent of the kernel Lla(t)l and define

Q(t) F(t)- F2(t + a(t- s){g,(s, X2(s))- g2(s, X2(s))} ds.

Then a.e. on 0 < < Tone has

IX l(t)- X2(t)l =< IQ(t)l + r(t- s)lQ(s)l ds.

Proof. Define z(t)= Sx(t X2(t), F(t)= Fl(t F2(t and

G(t) {gl(t, Xl(t)) gl(t, X2(t))}/z(t

when z(t) :/: 0 and G(t) 0 when z(t) 0. Clearly z and F L(0, T), G L(0, T)
and IG(t)l < L a.e. Using (8) and the definitions above it follows that

z(t) F(t) + a(t- S){I(S X2(S))- g2(S, X2(s)) ds

+ a(t s){g,(s, X,(s)) g,(s, X2(s))} ds

Q(t) + a(t- s)G(s)z(s)ds,

so that

Iz(t)l < IO(t)l + L la(t- s)llz(s)l ds.

Let p(t) be a nonnegative function such that

Iz(t)l- {Q(t)- p(t)} + g la(t- s)llz(s) ds.

Since r(t) is the resolvent of Lla(t)[, then (7) implies that

Iz(t)l- Q(t)- p(t) + r(t- s){(s)- p(s)} ds.

Since r and p are nonnegative the lemma follows.
If a(t)-- and both F(t)=_ F and F2(t _= F2 are constants, then r(t)

L exp (Lt). In this case Lemma 3 reduces to a familiar estimate for ordinary
differential equations.

In certain cases the resolvent associated with a kernel a(t) e C(O, T] L 1(0, T)
is not only L 1(0, T) but also continuous for > 0. This is trivial to see if a e L2(0, T).
Another instance is given by the following result.

LEMMA 4. Suppose a(t)e C(O, T] (’l L(O, T). If a(t) is nonnegative and non-
increasing, then its resolvent is continuous on 0 < <= T.

Proof. Let r(t) be the resolvent of a(t). By Lemma 1, r(t)e L(O, T) and
r(t) > 0 a.e. Therefore the function a(6 s)r(s) L(O, 6) for almost all 6 e (0, T).
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Fix any such 6. Then

(9) r(t + c)= a(t + () + a(t + s)r(s)ds + a(t- s)r(s + h) ds.

Note that the function a(t + ) is continuous in [0, T-6. The function E,
defined by the relation

E(t) a(t + (3- s)r(s)ds,

is easily seen to be continuous on 0 < __< T. To see that E(t) is continuous at
0 we must show that for any sequence t, tending monotonically to zero one

has

fo a(t,+6-s)r(s)ds fo a(c-s)r(s)ds.

But a(t) is nonincreasing so that a(t, + s)r(s) a(6- s)r(s) monotonically.
Now apply the dominated convergence theorem.

We have shown that (9) has the form

x(t) f(t) + a(t- s)x(s) ds, x(t) r(t + 6),

where f e C[0, T- 6] and a(t) L 1(0, T- 6). Using an argument similar to the
proof of Lemma it follows that x(t) r(t + 6)e C[0, T- 6]. Since 6 > 0 can
be made arbitrarily small, then the proof of Lemma 4 is complete.

A similar proof establishes the following result.
LEMMA 5. Suppose F, a and fl C(O, T] CI L 1(0,, T), h L(O, T) and la(t)l =<

on 0 < <__ T. If fl is nonincreasing, then the solution X of (4) is continuous on
O<t<_T.

3. Differentiability of solutions. Consider the integral equation

(1’) x(t) f(t) + a(s)g(t- s, x(t- s)) ds

and its formal derivative

(3) x’(t) f’(t) + a(t)g(O,f(O)) + a(t s){gl(s,x(s)) + gz(s,x(s))x’(s)} ds.

This last equation may be written in the form

(10) X(t) F(t) + a(t S)g2(S X(s))X(s) MS,

where X(t) x’(t) and

(11) F(t) f’(t) + a(t)g(0, x(0)) + f
30

a(t S)gl(S, x(s)) ds.

In the sequel we shall need some or all of the following hypotheses.
(A1) f(t) and g(t, x) are of class C in and respectively (t, x) for 0 =< =< T

and for all x.
(A2) The function gz(t, x) cg(t, x)/cx is locally Lipschitz continuous in x.
(A3) a(t)L(O, T)f-I C(O, T] and there exists a nonincreasing function

o(t) e L 1(0, T) CI C(0, T] such that la(t)l _-< o(t).on 0 < < T.
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(A4) The unique continuous solution of (1) exists on the entire interval
O<t<T.

(A5) f(t) and g(t, x) are of class Cv+ for some integer v _> 1.
(A6) a(t) C 0, T] C(O, T] and la)(t)l (t), where is nonincreasing

and integrable on 0 < < T and C(0, T].
THEOREM 1. Suppose (A1-A4) are true. Let X(t) be the solution of (10) with F

defined by (11). Then the solution x(t) of (1) is of class CO, T] (] C1(0, T] and
x’(t) X(t) on the interval 0 < _< T.

Proof. Note that by Lemmas 1 and 5 it follows that X C(0, T] f3 L 1(0, T).
Let M max [x(t)l on 0 __< =< T and let P(x) be a C-function such that P(x) 1
if Ixl _-< m + 1 and P(x) 0 if Ixl >= M + 2. If the function g(t, x) in (1) is replaced
by g(t, x)P(x), then nothing is changed in the range of interest. Therefore we shall
assume that g has compact support. In particular then g, g and g2 are bounded
and gz(t, x) is globally Lipschitz continuous in x.

Fix a number 6 in the range 0 < 6 < T/2. Define

Z(t, h)= {x(t + h)- x(t)}/h
for 0 < h _<_ 6 and 0 < =< T 6. Since x(t) satisfies (1), then Z satisfies an equa-
tion of the form

Z(t, h) R(t, h) + a(t s)g(s, x*(s))Z(s, h) ds,

where x*(s) is between x(t) and x(t + h), 0 < O(h) < h and
+

R(t, h)= (f(t + h)- f(t))/h + h -x a(s)g(t + h- s, x(t + h- s)) ds

+ a(s)g(t + O(h)- s,x(t- s))ds.

Let r(t) be the resolvent of Lla(t)l. By Lemma 3 above,

IX(t, h) X(t)l <= Q(t, h) / r(t s)Q(s, h) ds

onO< t__< T-,where

Q(t, h) IR(t, h) F(t)l + la(t s)l Ig(s, x*(s)) g(s, x(s))l ds.

Let K > 0 be a bound for all of the functions If’(t)l, Ig(t, x)l, Ig(t, x)l and Ig(t, x)l.
Then the definitions of Q, R and F may be used to obtain the bound

IQ(s, h)l <= K + (K/h) la(u)l du + 3K la(u)l du + Ir(s)l

<= 2K + (K/h) o(u) du + 4K la(u)l du / g(s)

=<2K[.1 +2 la(u)ldu+0(s) O < s < t.

Write this bound in the form IQ(t, h)l <= Ko + K(t).
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Given e > 0 let K2 be a bound for r(t) over 6 __< =< T- 6. Pick r/ in the
range 0 < r/ __< 6 and so small that

o’K2{Ko

+ Kl(t)} dt < e.

Now pick ho so small that whenever 0 < h _< ho, then

IQ(t, h)l -< r(s) ds + 1

uniformly over __< __< T- . Then for h and in the range 0 < h =< ho,
_< t_< T-onehas

IZ(t, h) X(t)l <= Q(t, h) + r(t s)Q(s, h) ds + r(t s)Q(s, h) ds

__< e + K2{Ko -k- KIZ(s)} ds -k r(t- s) r(u)du ds

<

Since e > 0 is arbitrary this shows that z(t, h) X(t) as h 0 + uniformly in
6 __< =< T- 6. But 6 > 0 is also arbitrary so that X(t) is the continuous right
derivative of x(t) on the interval 0 < < T.

By virtue of the uniform convergence to X(t) it follows that on any interval
I {t’6 __< T- 6} the set {Z(., h)’0 < h < 6} is equicontinuous. Therefore,

lim Z(t, h) lim Z(t h, h) X(t)
hO+ hO+

uniformly on I. But Z(t h, h) is a left difference. For T a separate but similar
argument shows that X(T) is the left derivative of x(t) at T. This completes
the proof of Theorem 1.

Exactly the same proof will establish the following theorem.
THEOREM 2. Theorem 1 remains true if the assumptions on f are weakened to

f C[0, T] fq C(0, T]and"o I(f(t + h)- f(t))/h f’(t)[ dt Oasrl Ouniformly
in h.

In case (A4-A6) are true, then one can formally differentiate (1’) as follows"

n-1

x(n)(t) fn)(t) "k- Z a(k)(t) Dn-k- xg(u, x(u))}u=O
(12)

=o

where /T d/du denotes the jth derivative and n 0, 1,..., v + 1. We shall
prove the following theorem.

TORN 3. Suppose (A4-A6) are true with v >= 1. Then the solution of (1)
satisfies the following"

(i x e c[0, r] Cl C/ (0, r],
(ii) x( + e L(O, r) and
(iii) x(t)satisfies (12)for N n <- v + and 0 < <= T.
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Proof. Since the hypotheses of Theorem are trivially satisfied, then
x’(t) C(O, T] f’l LI(O, T) and x(t) satisfies (12) on 0 < _< T for n 1. Since a(t)
is continuous at 0, it is clear that

{x(h) x(0)}h -1 {f(h) f(0)}h -1 + h -1 a(s)g(h s, x(h s)) ds

f’(0)+ a(0)g(0, x(0))

as h 0 +. Therefore, x’(0) exists and satisfies (12).
Continuing by induction one can use Theorem 1 to establish (12) for

n 1, 2, ..., v. Applying Theorem 2 to (12) with n v one then obtains (12) for
n=v+l.

4. Weakly singular kernels.
DEFINITION 1. Suppose v is a nonnegative integer and F is a function defined

on (0, T] or on 0, T]. Then F is called weakly singular of order v if and only if"
(i) FC(0, T]ifv=0orF6C-[0,T] fqC(0, T]ifv >0;
(ii) for each e > 0, Ft)(t) is absolutely continuous on e < __< T; and finally
(iii) the function defined by

av(t,f) f(r) + f(v+ 1)(s)l ds, 0 < <- T,

is of class L1(0, T).
For any integer v >__ 0 let WS(v) denote the set of all functions F which are

weakly singular of order v (T > 0 is fixed). The function av(t, F) is a measure of
the singularity of Fv) at 0. Indeed, it is easy to see that av is nonnegative, non-
increasing and that IFtV)(t)l =< v(t, F) on 0 < =< T. The precise value of T is
unimportant in the sense that if T is replaced by another value T’, then v must
be adjusted only by an additive constant.

THEOREM 4. Suppose (A4) is true, (A5) is true with v 1 and a(t) WS(O).
Then the solution x(t) of (1) is of class C2(0, T] and there exists a constant K* such
that

Ix"(t)l dt _< K* 1 + la’(t)l dt + Ix’(t)l 2 dt

(13)
/ Ix’(s)l la’(t)l dt ds

onO<z<_T.

Proof. We shall assume that g(t,x)= g(x) is independent of t. The only
additional complications in the general case are notational. By Theorem 1 above,
x e C[0, r] C 1(0, r] and x’(t) e L 1(0, r). For any z e (0, T) one has

x’(t + z)= f’(t + z) + a(t + z)g(x(0))+ a(t + r, s)g’(x(s))x’(s) ds

(4
+ a(t- s)g’(x(s + r,))x’(s + z)ds

on 0 < =< T- z. Note that f’(t + z), a(t + z) and g’(x(s + z)) are of class
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C1[0, T- r]. Also note that the function defined by

E(t) a(t + r- s)g’(x(s))x’(s) ds

is of class C[0, T- ] fq C1(0, T- z] and that E’e L1(0, T- r). Indeed, one has

a’(t + z- s)g’(x(s))x’(s) ds dtIE’(t)ldt--Yo- fo:

<_K

(15) la’(t + - s)l dt Ig’(x(s))x’(s)l ds

Ix’(s)l la’(t)l dt ds < ,
where K is an a priori constant which bounds Ig’(x(s))l. Moreover, for all small h
one has

h -1 IE(t + h)- E(t)l dt

<= (K/h) a’(u + + - s)du Ix’(s)l ds dt

(K/h) la’(u + + s)l dt Ix’(s)l d du

(K/h) (eo(U + r + s)- %(u + s))lx’(s)l ds, du,

where K is the bound on Ig’(x(s))l and %(0 %(t, a). The expression inside the
brackets in the last integral will tend to zero as 0 uniformly for 0 N u N 1.
Indeed, if this were not true, then there would exist sequences 0 and u Uo
such that 0 N uo N 1 and such that along this sequence the expression is larger
than some preassigned e > 0. But %(0 is continuous for > 0 and

0 N %(t + + r s)- %(u + r s)

N %(u + + s) %( s)

when 0 N u N 1, > 0 and 0 N s N r. Therefore the dominated convergence
theorem implies that

h

These remarks show that

lim I(E(t + h)- E(t))/h- E’(t) dt
0

lira IE(t + h)- E(t)l/h dt + IE’(t) dt 0

uniformly for 0 < h N 1. In particular Theorem 2 applies to (14). Therefore
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x"(t + ) exists and is continuous on 0 < =< T- . Since > 0 can be made
arbitrarily small, it follows that x’ C1(0, T].

For any z (0, T) the function x"(t + ) satisfies an equation of the form

x"(t + z)= f"(t + z) + a’(t + "r)g(x(0)) + E’(t) + Fl(t) + F2(t)
(16)

+ a(t- s)g’(x(s + ))x"(s + )ds,

where E is the function defined above, F(t) a(t)g’(x(r,))x’(r,) and

F2(t) a(t- s)g"(x( + s))x’(r + s)2 ds.

Let K. be a bound on 0 __< =< T for the functions f"(t), g(x(t)), g’(x(t)) and g"(x(t)).
There will be no loss of generality in assuming that T is small enough so that

e K la(t)l dt< 1/2.

Take absolute values in (16) and integrate"

Ix"(t)l dt Ix"(t + z)l dt

<_ K(T- r) + K la’(t)l dt + {IE’(t)l + IFx(t)l + IF2(t)l} dt

a(t- s)g’(x(-r + s))x"(’c + s)ds dt.

The last term in this inequality may be bounded as follows"

K

Furthermore,

and

f ,T-z
K f"

la(t- s)l Ix"(’c + s)l dt ds

T

la(t s)l dt Ix"(s)l ds <- fT Ix"(s)l ds.

T

IFx(t)l dt K la(t)l dtlx’()l lx’()l

_-< Ix’(r)l + Ix"(t)ldt

IF2(t)l dt K ;To la(t- s)l dt Ix’(r + s)l 2 ds

la(t)l dt Ix’(s)l 2 ds Ix’(s)l 2 as.
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Combining these inequalities with (15) and rearranging we obtain

(1 2a) Ix"(s)l ds <= KT + K la’(t)l dt + K Ix’(s)l la’(t)l dt ds

/ lx’(r)l / Ix’(s)l 2

Since 2 > 0, then the proof is complete.
COROLLARY 2. Assume the hypotheses of Theorem 4. If in addition the function

o(t, a) L2(0, T), then x WS(1).
Proof. First note that

Ix’(t)l 2 dt dr ]x’(t)l 2

and

dt tlx’(t)l 2 dt < oo

7"

la’(t)l dt <= %(t, a).

Finally note that x’(t) and ao(t, a) e L1(0, T). Therefore,

Ix’(s)l la’(t)l dt ds <= Ix’(s)lo( s)ds

with the last function of class L1 in r, 0 =< r =< T. Using these estimates in (13) it
follows that

0l(t, x(.)) Ix’(Z)l + Ix"(u)l du e El(0, Z).

This completes the proof of Corollary 2.
COROLLARY 3. Assume the hypotheses of Theorem 4. If in addition (t) o(t, a)

satisfies assumption (HI), then x(t) WS(1) and l(t,x(. )) <= K(t) on 0 < <= T
for some a priori constant K.

Proof. Theorem 1 and Corollary imply that Ix’(t)l <_- go/(0 on 0 < __< Z
for some fixed constant Ko > 0. Since/3 is nonincreasing, then

Ix’(t)l z dt <= Kfl(t)2 dt <= Kgfl(z) fl(t) dt.

Moreover (H1)may be used to see that

Ix’(s)l la’(t)l dt ds <= Ix’(s)l/( s)ds

Ko (s)(’c s)ds <= K

Using these estimates in (13) one obtains

I"()ld_-<K* + +K Z()+K Z().

This proves Corollary .
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THEOREM 5. Suppose (A4) is true, a(t) WS(v) where v >= and both f and g
are of class C+2. Then the solution of (1) is of class WS(v + 1) and e+l(t,x(.))
<= Keg(t, a) on 0 < <= T for some fixed constant K > O.

Proof. Apply Theorem 3 to obtain (12). Replace by + z in (12) and proceed
as in Theorem 4.

5. An example of special kernels. Suppose x(t) is the solution of

(17) x(t) f(t) + (t s) g(s, x(s)) ds

on 0 __< __< T, where v => 0 is an integer and 0 < p < 1. If f and g are sufficiently
smooth, then the results in 4 show that x e WS(v) and x((t) O(t-) as 0.
Further information may be obtained for this special kernel. Change variables
in the integral to s sin 0"

7/2

(17’) x(t) f(t) + 2 + I-P cos+ -’ 0 sin Og(t sin2 0, x(t sin2 0)) dO.
,0

If f and g are of class C+2, then by differentiating v + times on both sides of
(17’) one obtains

x(+a)(t) /2(v + 1 p)(v p)... (1 p)

cos+ -P 0 sin Og(t sin 0, x(t sin 0)) dO -0

+continuous terms of order t-P(tl-;p if v 0) or higher.

In particular then not only is x( / (t) O(t-) but

x(+ )(t) f(+ 1)(0) + Kt-p + o(tl-P), v 1,

or

where

x’(t) Kt-p + O(t-ZP),

and

E(e) {(z, w)’z e D(e) and Iwl Ix + 1},

n/2

K 2(v + 1 p)(v p) (1 p) cos+ -P sin 0g(0, x(0)) dO
e0

2g(0,f(0))(v + 1 p)... (1 p)/(v + 2 p).

Even more information is available when f and g are analytic.
THEOREM 6. Assume v is a nonnegative integer, 0 < p < 1 and that f(t) is

real analytic in a neighborhood of 0 <= <= T. Suppose g(t, x) is real analytic on an
open set which contains all real ordered pairs (t, x), 0 _< <= T, and Ix[ < . Then
x(t) is real analytic in a neighborhood of the set 0 < _< T.

Proof. Let Ilxll max Ix(t)] on 0 _< __< T. Given e > 0 define

D(e)= {z’0=<Rez<- T+eandllmz[ =<e}
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Define

and

M max Ig(z, w)l, ffw(Z, w) "(z, w) e E(e)

K max {If(z)l + TMI(z + s) +’-pl" zeD(e) and 0 _<_ s <= T},

S(e) {z complex" 0 =< Re z =< e, IIm zl =< e/2}.
Pick eo so small that whenever 0 < e <= eo, then f is analytic in D(0 and g is
analytic in E(0.

Let F(e) denote the set of all functions o, real analytic in the interior of S(e),
continuous on S(e) and satisfying the bound Io(z)l _-< K + for all z e S(e). Given
q in F(e) define

(Rqg)(z) f(z) + 2z+ 1-p cos+ 1-p 0 sin Og(z sin2 0, (z sin 0)) dO.
0

If e is chosen so that

fl (e/2) +-’nM < 1,

then for any z S(e),
n12

I(R)(z)l 5 If(z)l + 2(e/2)+-Plg(z sin2 0, (z sin2 0))l dO
0

NK + 2( e/2)+-Md0NK + <g + 1.
0

Therefore SO e F(e) when e F(e). Moreover, if and e F(e), then

n/2

IR(z) Rz(Z)l 5 2(e/2)+ -PMI(z sine 0) 2(z sin2 0)l dO
0

max {ll(Z) 2(z)l z S(e)}.
Therefore R is a contraction mapping on F(e).

Let x(z) be the unique fixed point of R. Then x(z) is real analytic in the interior
3f S(0, continuous on all of S(e) and x(t) solves (17) if 0 e. This means that
the solution of (17) is analytic in a neighborhood of 0 < < e.

Suppose we know that x(z) is analytic in a set {z’0 < Re z r,lIm zl e/2},
where r < Z

Translation in (17) shows that

x(t + L(O + (- sl-g(s + , x(s + s,

where

f(t) f(t + z) + (t + z s)-Pg(s, x(s)) ds.

Since f is real analytic in and [f,(z)[ =< K if z S(e), then the first part of the
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proof applies. This means that x(z + r) is in the class F(e). Since the number e
has been fixed beforehand, one may step across the interval 0 =< =< T in a finite
number of steps. This completes the proof of Theorem 6.

COROLLARY 4. Assume the hypotheses of Theorem 6. If p is a rational number,
p r/q in lowest terms, then x(tq) is analytic in a neighborhood of O.

Proof. First replace by zq in (17’)"

(17") x(zq) f(zq) + 2ztV+ 1-p)q cosY+ 1-p 0 sin tg(zq sinz 0, x(z sin2 0)) dO.
.0

Let F(e) {q" q9 is real analytic in Izl < and continuous on Izl -<_ }. Define

Rqg(z) f(zq) + 2z+ -p)q cos+ x-p 0 sin Og(z sin2 0, q(z sin2/ 0)) dO
,0

for q9 F(e) and Izl <- e. As in the proof of Theorem 6 one can show that if e is
sufficiently small, then R is a contraction mapping on F(e).

It would be interesting to know whether or not Theorem 6 can be generalized
to a large class of kernels a(t) which are analytic for Re > 0. The proof ofTheorem
6 cannot be generalized too much since it depends on the monotonicity and
homogeneity of a(t) -p. Corollary 4, which establishes the exact nature of the
singularity of x(z) at z 0, is even more firmly wedded to the particular properties
of P.
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ON THE ASYMPTOTIC SOLUTION OF INITIAL VALUE PROBLEMS
FOR DIFFERENTIAL EQUATIONS WITH SMALL DELAY*

R. E. O’MALLEY, JR.t

Abstract. This paper obtains asymptotic expansions for initial value problems of the form

(1) (t) f(t,x(t),x(t-/), (t p)), __> 0,

(2) x(t) dp(t), -p <__ <= 0,

as the positive delay parameter/ tends to zero. The critical hypotheses are’0) that the reduced problem
((1)---(2) with/ 0) has a unique solution Xo(t), and (ii) that IL(t, x, y, u) < a < everywhere. Then
x(t) will converge to Xo(t) as 0 and boundary layer behavior will occur in higher order approxima-
tions near 0.

1. Introduction and summary. Consider the initial value problem consisting
of the nonlinear differential-difference equation

(1.1) (t) f(t, x(t), x(t It), t(t It)) for >= 0

and the initial condition

(1.2) x(t) b(t) for-it _-< < 0.

We wish to determine the behavior of a continuous solution x(t) as the positive
delay parameter It tends to zero. Let us assume that"

(i) the nonlinear reduced problem (1.1)-(1.2) with It O)

Yf o(t) f(t, Xo(t), Xo(t), o(t)),
(1.3)

Xo(0) b(0)

has a unique continuously differentiable solution Xo(t for 0 __< T;
(ii) f(t, x, y, u) and qS(t) are infinitely differentiable (in all arguments); and
(iii) for some tc > 0,

(1.4) [j’u(t, x, y, u)[ < e < 1 everywhere.

Under these conditions, we shall show that the solution x(t) converges
to Xo(t) as It 0 on the closed interval 0 =< =< T. Higher order approximations,
as in the familiar boundary layer theory, will converge nonuniformly at 0.

Before proceeding, we note that for moderate values of It the problem could
be solved by a stepwise integration scheme on 0 =< =< T. We would define

x(t) Xo(t)= b(t) for-it _-< =< 0

and we would define x(t) to be the solution xj(t) of the initial value problem

c(t) f(t, x(t), x_ l(t It), :2j_ a(t It)),

x((j 1)it) x_ ((j 1)it) for (j 1)it =< =< jit

for each j with =< j =< 1 + IT/It] (here, [a] represents the greatest integer =<a).
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Note that &(t) will generally be discontinuous at the values j#, j >= 0. For our
problem, this method is unsatisfactory because the stepsize/ is too small. Instead,
asymptotic methods are appropriate. Asymptotic approximation procedures for
solving such problems were previously given by Vasil’eva and others (see [4]).
The presentation here is simpler.and is closely related to previous work on the
asymptotic solution of initial value problems and boundary value problems
(see Vasil’eva [3], O’Malley [1] and [2], and Wasow [6]).

We shall construct a formal solution of (1.1)-(1.2) on the interval 0 =< _<_ T
of the form

(.5) x(t) x(t ) + v(o ),

where the "outer expansion"

(1.6) X(t;/) Xj(t)
j=0

formally solves (1.1) and the "boundary layer correction" v(0 ;/) has the form

(1.7) v(0;kt) vj(O)p

in the stretched variable

(1.8) 0 t/#.

Taking b(t) independent of #, we have

(1.9)
Xo(0) b(0),

Xj(0) vj_ 1(0) for each j >_- 1.

Further, the values vj(0) will be chosen so that

(1.10) v(O) 0 as 0--. .
Away from O, then, the asymptotic solution will be determined by the outer
expansion alone, i.e., for each integer N >__ 0,

N

(.) x(t) x(t)# + o(/ )
j=0

uniformly on each interval b =< =< T for any b > 0. As (1.9) shows, however, the
initial values for the boundary layer correction terms must be calculated in order
to determine the outer expansion.

2. Construction of the formal expansions. The outer expansion is obtained
by substituting the sum (1.6) into the differential equation (1.1) and equating
coefficients of like powers of #J. We have equality at/ 0 since X0 solves the
reduced problem. Equating first order coefficients, we see that X must satisfy the
linear equation

21(t) fx(t, Xo(t), Xo(t), 2o(t))Xl(t)

+f(t, Xo(t), Xo(t), o(t))(X(t) o(t))
+f,(t, Xo(t), Xo(t), 2o(0)(2,(t) 2o(t)),
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which we shall rewrite as

(t) (1 f,o(t))-(fo(t) + fo(t))Xl(t) + Bo(t)

A(t)Xx(t)+ Bo(t).

In general, we find the Xfs successively as solutions of linear equations of the form

(2.1) j(t) A(t)Xj(t) + Sj_ (t),

’Swhere the Bj_x are determined by lower order terms. Thus, the terms Xj of
the outer expansion (1.6) can be generated recursively on 0 __< __< T with only
the initial values Xj(0) for j >= 1 to be specified. These terms are infinitely differ-
entiable.

Similarly, the terms of the boundary layer correction v(0;#) are determined
by stepwise integration on the intervals p =< 0 =< p + 1, p >= 0. By (1.5), we have

f(#O, X(/0 #) + #v(0; #), (#(0 1)), 4(#(0 1)))

-f(#O, X(lO; la), X(#(O 1); kt), (#(0 1); #))

for0_< 0__< 1,
(2.2) Vo(O #)

f(#O, X(lO la) + #v(O l), X(#(O 1); #)

+ v(O ), 2((o ); ) + vo(O ))

-f(#O, X(#O; I), X(l(O 1); kt), 2(#(0 1) ;/))

For/ 0, then, we ask that vo(O) be a continuous function such that

f(0, Xo(0), b(0), 4(0)) f(0, Xo(0), Xo(0), 20(0))

(2.3) Voo(O)=

forO> 1.

for0__< 0< 1,

f(0, Xo(0), Xo(0), ’o(0) + Voo(O 1))

-f(0, Xo(0), Xo(0), 8o(0)) for 0 _>_ 1.

Thus Voo is stepwise constant. Setting

Voo(O)= G forp=<0=<p+

and integrating, we have
p-1

(2.4) vo(O) vo(O) + G? + (O p)G forp=<0<p+ 1.
/=0

Since vo(O) 0 as 0 , we must select

(2.5) XI(O) -vo(O) G?
/=0

assuming that this limit exists. To clarify this issue, we introduce the mapping F
such that

Fu f(O, dp(O), dp(O), u)
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and

FJu f(0, b(0), b(0), FJ- lu) for integers j > 1.

Note that (1.3) and (1.4) imply that F is a contraction having o(0) as its unique
fixed point. Thus, o(0)can be obtained by successive approximations, i.e.,

o(0) lim FP(0).
p--

Further, since

(2.5) becomes
G6 FP4(0)- o(0) for each p >= 0,

X(0) lim (Uq(0))- p0(0)

and the limit is finite. This result was obtained by Vasil’eva 4].
In order to calculate higher order terms in v(0;/), we need the following

lemma.
LEMMA 1.

(2.6) vo(O O(e-) Voo(O) as 0 .
The proof of thelemma will be postponed to 5.
Equating coefficients of/ in (2.2) successively to zero, we ask that

(2.7) Vjo(O Mj(O) + Vjo(O 1)Nj(O),

where Mj(O) is a successively known linear combination of the Vl(O), Vl(O 1) and
vlo(O 1) for < j and

0
Nj(O)

L(o, 6(o), (o), o(O) + Voo(O ))
for0<0=< 1,

for0> 1.

Setting

(2.8) Vjo(O)--G(O) forp<=0p+ 1,

we determine the GjP.’s in turn, for p 0, 1, 2,.... Integrating stepwise, we find

(2.9) v(O)=v(O)+ 6}(s) ds + Gf(s) ds forp=<0=<p+ 1.
p

(Note that these boundary layer correction terms will generally have discontinuous
derivatives at positive integer values of 0.) Since IN(0)I < e-, we can easily show
that the following lemma holds.

LEMMA 2.

(2.10) vj(O) O(e-(-)) Vjo(O) as 0

for any > O.
The proof of this lemma will be postponed to ff 5.



ASYMPTOTIC SOLUTION OF INITIAL VALUE PROBLEMS 263

We then obtain

0 0(//+1(2.11) Xj+ 1(0) vj(0) Vjo(S) ds G}(s) ds

where the limit is finite. Thus, the complete expansion can be formally obtained
termwise.

3. Main result. In order to show the asymptotic validity of the preceding
formal results, we shall prove the following theorem.

THEOREM. Under the assumptions (i)-(iii), the initial value problem (1.1)-(1.2)
has a unique solution for It sufficiently small. It is of the form

for each integer N >= O, where
N

j=O

N-1

v(t//) v(t/)#,
j=0

and RN(t; It) is uniformly bounded throughout 0 <= <= T for It sufficiently small.
Note. Here assumption (iii) is crucial. The limiting case where Iful 1 is

discussed in Vasil’eva [5].

4. Examples.
Example 1. Equations with retarded argument. Consider the nonlinear problem

:(t) g(t, x(t), x(t It))

x(t) dp(t)

fort>0,

for -it =< =< O.

Since the differential-difference equation is independent of (t- #), the con-
struction of the boundary layer correction terms becomes considerably simplified.
In. particular, the determination of the initial values Xj(0) by the infinite sums

(2.11) is avoided.
Here (2.2) becomes

vo(O )

g(uO, xo,o ) + v(0; u), (#(0 )))

-g(it0, X(#O; It), X(It(O 1); It)) for 0 __< 0 =< 1,

g(O, x(o ) + v(o ), x((o ); ) + v(o ))

-g(ItO, X(ItO; It), X(It(O 1); It)) for 0 >__ 1.

Setting It 0, we obtain

Voo(O) O for0>0

since Xo(0) qS(0). Because Vo --+ 0 as 0 --+ oo, we select

vo(O) =- Vo(0) 0 for 0 > 0.
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Thus, X1(0) 0 also. Likewise, from the coefficient of #, we have

rio(O) {y(0, b(0), 4)(0))(4;(0)- Jo(0))(0 1) for0_<_0=< 1,

for0_> 1.

Because vl(O) --+ 0 as 0 --+ oo, we must set vl(1) 0 so that

Vl(0) {0gy(0 b(0), 4)(0))(4)(0)-- J’o(0))(0 1)2 for0<0< 1,

for0> 1.

As an induction hypothesis, we suppose that the Vl(O)’s are known for < j
and satisfy

1)l(O 0 for 0 > I.

Then,

Vjo(O Mj(O),

where Mj(O) is known for 0 >= 0 and satisfies Mj(O) =_ 0 for 0 j. Since vj(O) - 0
as 0 --+ oo, we then have

v(o)

for all integers j and

Mj(s) ds for0=<j,

for 0 j

Xj+ 1(0) Mj(s) ds.

Further, our theorem implies that for any integer N >__ 0,
N

x(t)= #JXj(t) + O(#u+) for#N__<t=< T.
j=0

Example 2. Linear difference equations for 2(0. Consider the linear problem

2(t)=a&(t-#) fort>=O,

x(t) 4)(0 for -# _<_ <= 0

for lal < 1. The outer expansion here is such that

Xo(t) 4(o),

and for each j >= 1,

Xj(t) p_ l(t)e,
where pj(t) is a polynomial of degree j and Xj(0) must be determined.

Equation (2.2) implies that the boundary layer correction v(0 ;/) must satisfy

vo(O;/) a(c(l(O 1))- 2(/(0 1);/))-- laJa(](O) for 0 __< 0 __< 1
j=O
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and

vo(O;#)=avo(O- 1;#) for0_> 1.

Equating coefficients, then, we have

Vjo(O)=G](O)=aPG(](O-p) forp__<0=<p+ 1.

Here, G(](O) is known successively in terms of the vz(O) for < j. For example,

o(O) 4;(o)
and

G(O)-- a(b(O)(O 1) + vo(O)).

Integrating then, we have

vj(O) aP {( a) f/ G(](s) ds + f;
and

X+(O)= i-a

G(s p)ds} forp<=O<=p+ 1

The expansions so obtained will be uniformly valid on any finite interval.

5. Proofs.
Proof of Lemma 1. Rewriting (2.3) as

Voo(O)---Voo(O- 1)/7p(0) forp=<0<_p+ 1, p=> 1,

we see that each p satisfies Ip(0)l < e < 1. Thus

IVoo(O)[ <= wo(O) for all 0 > 0,

where

Noting that

we have

wo(O)- {Ivoo(O)le-wo(O- 1)

for0__< 0 < 1,

for 0> 1.

wo(O)=e-Pwo(O-p) forp=<0_<p+ 1,

Ivoo(0)l wo(O) : Be-’ for all 0,

where B >= maxo<_zlWo()/e-l. Since vo(O) 0 as 0 , we also have

B -0IVo(0)l -<_ [Vo(S)[ ds -e for all 0.

Proof of Lemma 2. As an induction hypothesis, suppose that the Vl(O)’s are
known for < j and satisfy

Vl(O O(e -x(1-a)0) l)lo(O as 0
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for any 6 > 0. This will imply that

Imj(0)l _-< Be- (1

for some B > 0. Since INj(O)I < e -K, (2.7) implies that

IVjo(O)] <= wj(O) for all 0 _>_ 0,

where

wj(O) lj0(0)l
Be-(1-) + e-wj(O- 1)

Noting that

wj(O)-- e-rPwj(O p) nt- Be-(1-)( 11 ---:--
we have

0 =< IVjo(O)l =< wj(O) <= ce-(a-)

for0 0__< 1,

for0>_ 1.

forp <= O p + 1,

for all 0,

where c > B + maxo<__llwj()/e-]. Since vj(O) 0 as 0 --, oe, this implies that

6)e-tl-) for all 0IVo(0)l =< (
Proof of the theorem. The initial value problem (1.1)-(1.2) implies that Ru

must satisfy the equation

#u+ a/u(t; p)= f(t, x(t), x(t- p), 5c(t p))- J;;u(t)- Vo(O) for 0 =< T

and the initial condition

Ru(0; #) 0.

Moreover, since the outer expansion X(t; #) satisfies (1.1), we have

(t) f(t,X(t),X(t #),(t #)) + #+lBl(t;p) for0 =< =< T,

where B is bounded. Likewise, since the boundary layer correction v(O; #)
satisfies (2.2), we have

v(O) f(#O, XN(#O) + #vu(O), b(#(0 1)), d)(#(0 1)))

f(o, x(o), x((o )), ((o )))

nt- flNB2(O;# for 0 < 0 =<
with B2 bounded, and

v(O) f(#O, XU(#O) + #vu(O), XZV(#(O 1))

+ #v(O 1), N(#(O 1)) + v(O 1))

-f(o,x(o),x((o- )), ((o- )))

+#/B3(0 #) e-(1-6)0 for 0 >- 1

with B3 bounded.
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or

Thus for O =< <_ #,

#N + 1/N(t p) f(t, X(t) + pv(O)

+ tt
u+ ’Ru(t tt), qS(t #), (t

-f(t, xl(t) + /avu(O), dp(t- kt), b(t- #))

-tt+ S(t; it) #US2(0;

1/v(t tt) Ru(t; tt)Fl(t) + -C(O; #),

where Fx is a function of and t{v + R(t; g) and C
Integrating, we have

/.

R(t ) R(s fl)Fl(fls ds + R(t
vO

where R(t; )= f/ C,(s; )ds is bounded. This Volterra integral equation can
be simply solved by successive approximations. One sets

t/u

R+ l(t; ) R(t; ) + R(s;)Fx(s) ds
a0

for each j 0 and defines

R(t ) lim R(t ).
j

Convergence to a unique continuous solution on 0 is assured since Fa
is bounded (cf. Willett [7]).

Likewise, for , we have

N+,(t; #) f(t, xN(t) + #uN(O) +
+ vU(O- 1) + u+ Ru(t-

+v(O- ) + +(t- ;))

f(t, xN(t) + vN(O), xN(t
+v(o ), 2(t ) + v(O ))

+ + C(t ),

where C(t; )= -B(t;)- (1/)B(t/;)e-(-)/ is integrable. Thus,

(t; )= R(t; )F(t) + R(t- ; )F(t) + (t- ; )V(t) + C(t; ),

where F2 F and F are smooth functions of t, + aRN(t ;), N+ aRN(t ;)
and N + aN(t ;). Integrating, then, we see that RN(t ) must solve an integral
equation of the form

R(t ) R(t )F(t) + R(t )

+ L(s, R(s;), R(s- ;))ds for N N T.
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Here,

L(t, R(t t), R(t /a)) R(t #)F(t) + Rv(t t; t)(F3(t

and

Rv(t;/0 R(t t) R(0; t)F4(/0 + C(s; In) ds

is bounded since Rv(t; #) is bounded. This equation, too, can be solved by suc-
cessive approximations for bt sufficiently small. For each j >__ 0, we define

R]v+(t;p)=R(t;p) for 0__< t_<#

and

and set

R]v+ l(t;) RJu(t -/; #)F,(t) + Ru(t; #)

+ L(s, RJu(s; l), R(s !; !)) ds for/z__< =< T

R(t /) lim R(t l).

All iterates will be bounded. Moreover, they will converge to a unique continuous
solution on t __< N T by the contraction mapping principle because ]f4(t)l
< e < 1 and the kernel L(t, R,R) is Lipschitz continuous in its second and
third arguments for # small. Further, majorants can be simply obtained to yield
explicit bounds for Ru throughout 0 __< __< T.
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THE MAXIMUM LIKELIHOOD ESTIMATE OF THE
NONCENTRALITY PARAMETER OF A NONCENTRAL F VARIATE*

J. N. PANDEY AND M. RAHMAN?

Abstract. The maximum likelihood estimate of the noncentrality parameter of a noncentral F
distribution with p and q degrees of freedom is obtained. This estimate is expressed as a solution of an
equation involving confluent hypergeometric functions for which tables are readily available [8].
Our derivation is based upon a crucial lemma that the quotient of the derivative of a confluent hyper-
geometric function by itself is a strictly monotonic function for different positive parameters and
positive argument. The maximum likelihood estimate of the noncentrality parameter of noncentral
Z and noncentral distributions are also derived as very special cases of our result.

1. Introduction. In 1949, P. B. Patnaik dealt with various applications of
noncentral Z2 and noncentral F distributions in testing hypotheses and calculating
the power of such tests [2]. In 1967 the maximum likelihood estimate of the
noncentrality parameter of a noncentral Z2 distribution with 2 degrees of freedom
was determined by P. L. Meyer [1]. Recently the maximum likelihood estimate of
the noncentrality parameter of a noncentral Z

2 variate with p degrees of freedom
was also determined [9]. The object of this paper is to find the maximum likeli-
hood estimate of the noncentrality parameter of a noncentral F distribution.
It is understood that the noncentral F variate under consideration is the quotient
of a noncentral Z2 variate by a central Z

2 variate. Following the notations of
F. A. Graybill [3, p. 78] we assume that the noncentral F variate is denoted by F’.
It is a fact that if u wq/pz, where w is a random variable distributed as Z2(p, 2),
that is, as the noncentral chi-square with p degrees of freedom and noncentrality
parameter 2, and if another random variable z is distributed as z2(q, 0), that is,
as the central chi-square with q degrees of freedom, and if w and z are independent,
then u is distributed as the noncentral F distribution with p, q degrees of freedom
and with noncentrality parameter 2, and the frequency function of u is

@ F((2i + p + q)/2)(p/q)(2i+p)/Z2i(1) f(u) =o F(q/2)F((2i + p)/2)i!

iA(2i + p- 2)/2

(1 + pu/q)(2i+p+q)/2’

0 =< u < oe. (See [3, p. 78].)

In a situation like this we shall say that U is distributed as F’(p, q, 2). It is
easily seen that

r((p + q)/2) (pu/q)p/2 aM p + q p. 2pu_(2) f(u)
F(p/2)F(q/2)u(1 + pu/q)(’+)/2

e
2 2’q + pu]’

where M(a, b; x) stands for the. confluent hypergeometric function with para-

* Received by the editors April 7, 1970, and in revised form September 14. 1970.
f Department of Mathematics, Carleton University, Ottawa 1, Canada. The work of the first

author was supported by National Research Council Grant A5298 and also by the Summer Research
Institute of the Canadian Mathematical Congress held in 1970 at Queen’s University, Kingston,
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meters a, b, and argument x, that is,

(3)

where (a),

M(a, b" x) o (a), x

(b)nn!’
is Pochhammer’s symbol:

(a), a(a + 1)(a + 2)... (a + n- 1), (a)o 1.

2. The likelihood function. Let us assume that ux, u2,..., u represent
a sample of size n from a random variable U which is distributed as F’(p, q, 2)
whose probability density function is given by (2). Hence the likelihood function
L will be given by

L L(ul, U2,’’" U )

e- "4 (pui/q)p/2
B"(-, q/2) (-[

ui(1 + pui/q)(p + q)/2
=1

M P + q P" 2PUi
2 ’2’q -Uil"

Therefore,

log L= -nlog B( n2 + log
i=1

p+qlogui log
i=1

+ log M
i=1

P+q p
2 ’2; q + PUi

Hence, our maximum likelihood equation is

pu
F(2.ui),(4) n

i=l q -+- PUi

where

(5) F(2; u)
M’((p + q)/2, p/2 2pu/(q + pu))
M((p + q)/2, p/2 2pu/(q + pu))

If the maximum likelihood estimate exists, it will be obtained by solving
for 2 from (4). In the next section we will deal with existence as well as uniqueness of
such an estimate. To discuss these results we shall need some results which we
prove below.

3.
LEMMA 1. For the confluent hypergeometric function M(a, b; x) with parameters

a, b and argument x( >= 0), m’(a, b; x)/M(a, b x) is:

(i) a strictly decreasing function of x if a > b > O,
(ii) a strictly increasing function of x if 0 < a < b.
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Proof. We have

d [-M’(a, b; x)] M"(a, b; x)M(a, b; x) M’2(a, b; x)
d-xl_--, b J M2(a, b x)

Therefore, our result will be proved by showing that {M"(a, b;x)M(a,b;x)
-M’2(a,b;x)} is strictly negative or strictly positive according as a > b or
a < b. Now it can be readily seen that

a (a+l),x"
(6) M’(a, b; x) - (b + ). n ’.=0

and

(7) M’(a, b; x)
a(a+ 1) (a+2),x"
b(b + 1) (b + 2), n.----0

By using the formula for the Cauchy product of two series one can readily

M"(a, b; x)M(a, b; x) M’2(a, b x) x"7.,
n=O

see that

(8)

where

a r(b)F(b + )
7" r(a)r(a + 1)
(9)

() r(a+r)r(a+n+-r)
(b-a)

F(b+r+ 1)F(b +n+2-r)r=0
(n + 2r).

Our lemma will be proved if we can show that for all n, 7, is strictly negative or
strictly positive according as a > b or a < b.

In the finite sum in (9) there are n + 1 terms, and it is evident that if n is
odd the first (n + 1)/2 terms are positive, the ((n + 3)/2)th term is zero and the
last (n 1)/2 terms are negative. On the other hand, if n is even, the first (n + 2)/2
terms are positive and the last n/2 terms are negative. This makes it possible to
pair with t,, 2 with t,_ 1, "’", tr with t,_r+ for r <= n/2 wheh n is even, where

l(n F(a+r)F(a+n+ 1-r)
r)(n(10) t + 2r).ni r F(b + -r(+n+2

It can be easily seen that

F(a+r)F(a+n+ 1- r)(n+ 1-2r)2

(11) t + t,_+l
F(b + 1 + r)F(b + n + 2- r)(n- r + 1)!r!

Clearly, tr + t,-+l > 0 whether r =< (n- 1)/2 or r <= n/2 as they are in two
different cases.

Now

7. bF(a)F(a + 1)
(tr + t._+ 1) + to

where k(n) (n 1)/2 when n is odd, and k(n) n/2 when n is even. Note that
to is obtained by taking r 0 in (10) which is clearly positive, and t + t,_+l
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is evaluated by (11). Thus it is quite evident that 7, < 0 ifa > b and 7,
So the proof of our lemma is complete.

Now we obtain the following result quite trivially.
COROLLARY. If a > b > O, we have for x > O,

> 0ifa < b.

(12)

a M’(a, b; O) M’(a, b; x)- M(a, b; O)
>

M(a, b; x)

It is obvious, therefore, that for 2 > 0 and u > 0,

M’((p + q)/2, p/2 2pu/(q + pu))
M((p + q)/2, p/2 2pu/(q + pu))

P+q

P

where p and q are positive integers.
THEOREM 1. The solution to the likelihood equation

pu
n F(2; ui),

i=l q -F pU

if it exists at all, is unique.

Proof If the solution to the maximum likelihood equation is not unique,
assume that there are two solutions 2 and 2’. For the sake of definiteness let us
say that 2’ > 2.

Therefore,

(13)
pug

IF(2; ug) F(2’" ug)] 0
i= q + PUi

which is a contradiction, as in view of Lemma 1, we have,

THEOREM 2. If
F(2 ug) F(2’ ui) > O.

p+q , pug <n,
P g=lq+pug-

the maximum value of log L is obtained at 2 O.
Proof From (4) we have

c3(log L) pug
c32

-n+ F(2;
i= q -F pu

< P+q PUi PUi+
P i= q + pug g= q + pug

F(2 ui)

Ip+q F(2,ui)] PUi <0,
i=1 P q + pug

assuming that all ug’s are not zero. Therefore, log L is a decreasing function of 2.
Consequently, , the maximum likelihood (ML) estimate of the parameter 2, based
on a sample u,u2,..., u,, is zero if

P + q PUi(14) n.
P i=q A- pu
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However, it will be shown later that the situation (14) is unlikely to occur when

THEOREM 3. If the random variable U has probability density function given
by (2), then 2, the maximum likelihood estimate of the parameter 2, based on a
sample ul, u2, "", u,, when

p+q pug
>n,

P i=lq q- pUg

is obtained as the unique solution of
pug

(15) n + F(2; ug) O.
i=xq + PUi

Proof We have already observed in the corollary to Lemma 1 that F(2; u)
(p + q)/p as 2 0+. Therefore, if 4)(2) denotes 0(log L)/c32,

p + q pug
lim -n>0.
z-o+ P i=x q + Pui

But 4)(2) is continuous for 2 > 0; therefore, b(2) > 0 when 2 is sufficiently small
and positive. Further it can be readily seen that

a
M’(a, b; x) -M(a + 1, b + 1 x), a,b >0.

Therefore, in view of the fact that as Izl - ,F(b) eZza_b[ + O(Izl- 1)]M(a, b; z)

(see [8, p. 504]), we have

M’(a, b; x)
lim 1.
,-, M(a, b; x)

Rez>0

Thus limz_.oo F(2; u)= 1 when u > 0, and

p+q
(16) limF(2;u)= when u=0.

--, p

Now

i PUilim q5(2) n +
;t-*oo i=1 q + PUi

q

i=q + pui

(all ug’s > 0)

If however some of the ui’s happen to be zero, the limit of b(2) as 2 --, will be
smaller. Thus we see that 95(2) is positive when 2 is sufficiently large. Therefore,
there exists a positive zero of b(2). Uniqueness has already been proved
in Theorem 1.
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Since 4(2) changes from positive to negative values if , passes the zero of
b(2), it follows that the zero of 4(2) obtained must correspond to the global
maximum of log L.

THEOREM 4.

(17) limp
pui

> n 1.
nc i=1 q + PUi

Proof Let U be a noncentral F distribution whose frequency function is
given by (2). Let E2 pu/(q + pu). It is well known that the frequency function
of E2 is

(18) g(E2 p, q 2) i=o F(q/2)I-’((2iF((2i+ p ++ p)/2)i!q)/2) 2i e- ;t(E2)(2i+ P- 2)/2(1 E2)(q- 2)/2

0 E2 1. (See [-3, p. 79] .)
It can be readily shown that the expectation of E2 is given by

Thus,

Therefore,

e- .2i 2i + p e-X2 p p
dO(E2) y > ]

i--o i! 2i + p + q i= i! p + q p + q

(E) >
p+q

(19) o(E2) P + r/,
P+q

where r/is a positive quantity depending upon p, q and 2. Let e be an arbitrarily
small positive quantity less than r/.

Now if u l, u2, "", u, are the sample elements from the random variable U,
invoking the weak law of large numbers [5J we obtain

limP P
+r/-e< n <+q +e 1.

q i=1 qui P+q

Thus,

or

n q "4- pU p q-
=1

n--, i=l q nt- PUi

Remark. Thus with probability approaching 1, as n oe, a solution of the
maximum likelihood equation exists which depends on sample values.

4. Particular eases. In this section we shall deal with a few important special
cases of our main result.

(a) p 1. It is well known that if p 1, the distribution of the noncentral
F variate whose frequency function is given by (1) reduces to that of noncentral
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2 variate [2, p. 220]; therefore, the ML estimate of the noncentrality parameter
of the noncentral 2 distribution will be obtained by solving for 2 from

(20)
M’((q + 1)/2, 1/2; 2ui/(q + u3) ui

i=1 M((q + 1)/2, 1/2; 2uJ(q + ui) q + ui

or

(21)
(q + 1)u M((q + 3)/2, 3/2;2ui/(q + ui)

n
i-a q + ui M((q + 1)/2, l/2 2uJ(q +

(b) We now deal with the case when q--+ oo, and p is fixed. It can be seen
that when q-+ oo, the distribution of U whose probability density function is
given by (2) reduces to that of z’Z(p, 2)/p (see [2, p. 221]). Now since

p+ q p. 2pu p+ q
M

2 ’2’q + pu] p
p+q+2 p+2. 2pu_

2 2 ’q + pu!

we have

Hence,

F(2; u)
p + q M((p + q + 2)/2, (p + 2)/2;)opu/(q + pu))

M((p + q)/2, p/2 2pu/(q + pu))

lim
F(2; u)

q-,ooq + pu
F((p + 2)/2)(2pu/2)a/Z-(P+Z)/4Ip/z(v/22pu)

p F(p/2)(2pu/2) x/2 -(P+ 2)/Ip/2_ 1(22pu)

[8, p. 506]

Thus, when q -+ c, the ML equation (15) reduces to

(22). n- k Ip/2(x//2Apui) PUi

I/27 -(--X//-p x//22pu
Using a suitable transformation one can easily show that the ML equation for
Z’Z(p, 2) is

(23) n F(aR,)R,
i=1

where

Ip/2(XF(x)
X Ip/2_ I(X)

and Ra, R2, "’’, Rn are sample values from z’Z(p, 2).
The ML equation (23) is in complete agreement with that obtained in [9,

p. 83.
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AN EXISTENCE AND UNIQUENESS THEOREM FOR
BOUNDARY VALUE PROBLEMS OF NONLINEAR

ORDINARY DIFFERENTIAL EQUATIONS*
FRIEDEMANN W. STALLMANN"

Abstract. A condition is given for the existence and uniqueness of solutions for n-point boundary
value problems which generalizes the condition of P61ya for linear differential equations. A unique
solution exists if the nth order differential equation can be integrated in n steps, reducing the order
by one at each step.

1. Introduction. In 1922 G. P61ya [3] gave a set of conditions which assure
uniqueness and existence for boundary value problems of linear differential equa-
tions. The purpose of this paper is to generalize his ideas to include nonlinear
differential equations. Some of P61ya’s results can be transferred almost verbatim
to the general case, but additional considerations are required, owing to the fact
that uniqueness does not automatically assure existence in the nonlinear case.

2. Statement of the theorem. Consider the nth order differential equation
(D.E.)
(1) y(") f,,(x y, y’, yO,- 1))
where f, is continuous in (a; b) x R" and fulfills a Lipschitz condition for the
y")’s uniform in every compact subset of (a, b) R".

This D.E. is called reducible if it is equivalent to a family of (n 1)st order
D.E. of the same type, i.e., if there exists a function f,_ 1, continuous in (a, b)

R" with Lipschitz condition for the y")’s, such that any solution of (1) is also a
solution of

(2) y(,-1) f,-l(x,y,y’, "", y(n-2); C)

for some value of the parameter c, and, conversely, if a solution of (2) for any value
of c,-oe < c < +oe, is a solution of (1). Moreover, different members of (2)
will have no solution in common. This establishes a one-to-one relation between
y(,-1) and c, and as a consequence, there exists a function F, continuous in
(a, b) x R" (see Lemma 4)such that

(2a) c F,(x, y, y’, ..., yt"- ).
The D.E. (1) is called decomposable if (2) is again reducible for every value

of the parameter c and so forth; that is, if there are equivalent families of D.E.’s
D.E.’s

y") L(x, y, y’, ..., y"- )),

(3)
y(n- 1) fn- 1(X, Y, Y’, y(n- 2);

Y’ fl(x, Y; C2 C3,

y fo(x; c, c, ..-, c,),
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f Mathematics Department, The University of Tennessee, Knoxville, Tennessee 37916.

277



278 FRIEDEMANN W. STALLMANN

and the parameters ci are determined uniquely for every point (x, y, y’, ..., y("- 1))
by the continuous functions F

c, F,(x, y, y’, y"-

(4) c,_ Fn- 1(X, fl Y’, y(n- 2); Cn),

C FI(X Y;C2,’’" Cn).

In particular, the last equation of (3) establishes a principal set of solutions
of(l).

A k-point nth order boundary value problem (k-n-B.V.P.) of the D.E. (1)
is defined as follows" Given k points , 1, ..., k,a < 1 < 2 < < < b,
k positive integers hi, =1 ni n, and a set of n values q], 1, ..., k,j 0, ...,
n- 1; we require a solution y(x) of (1) defined in 1 =< x =< , which satisfies
yJ)() r/,J.’. In particular, a 1-n-B.V.P. is an initial value problem. This definition
excludes some mixed boundary value problems.

With these definitions, the following is true.
THEOREM 1. If the n-th order D.E. (1) is decomposable, then every k-n-B. V.P.

has one and only one solution.
In P61ya’s paper the linear D.E.

(5) y(,)= al(x)yO,-1) + + a,,(x)y

is brought into the form

(Sa) u,(x) (u,,_(x) (...-dx(UO(X)y(x))... ))= o,

from which the decomposition (3), (4) can be obtained by simple integration;
for example,

F, u,_ l(x). (...-x(UO(X)y(x))... )= c,

and f,_ has the form

f,-1 b l(x)y"- 2 + + b,_ (x)Y + c,,(x)

We observe that for any solution y(x) of (1),

d
(6)

dx
(F,(x, y(x), y’(x), y"- 1)(x))) _= 0.

If F, is differentiable, then it is the solution of the first order partial differential
equation

(7) F,,,x + y’V,,,, + y"F,,y, + + f,(x, y, y’,..., yO,-1))F,,,,,,_, 0

(F,,x cF,/c3x, etc.), which is obtained from (6) by replacing y") by f,. Con-
versely, the D.E. (1) is uniquely determined by (6) using (7) if

(8) F.,y,.-,, :/: 0 in (a, b) x R".

Equivalent conditions hold for the other functions in (3), (4).
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Equations (3), (4) establish for fixed x a one-to-one mapping R" R" from
the parameters ci to the derivatives yO). Conditions are especially simple if this
mapping is differentiable in both directions. The following theorem holds.

THEOREM 2. Let

(9) y f(x c l, c2,"" c,)

be a set of principal solutions of (1) with the following properties:
(i) Equation (9) satisfies (1)jor every set of values (ci) R"; any solution

of(l) is of the form (9)jbr one and only one set of parameters ci.
(ii) f and the first n 1 derivatives with respect to x are differentiable with

respect to (ci).
(iii)

(lO)

cy
:/:0,

C

a(y, y’)
-0,

(c,c)

(y y,, ..., yO,- 1))
O(c c c.)

i.e., these Jacobians do not vanish for any point in (a, b) x R,.
Then (1) is decomposable.
It is easy to see that under the stated conditions systems of the form (3), (4)

can be obtained from (9) and its derivatives. An easy, but tedious, computation
shows also that (10) is equivalent to (8) for the functions (4) if the differentiability
conditions are fulfilled. For a linear D.E. the Jacobians (10) are the Wronskians
considered by Pdlya.

The proof of Theorem is divided into two parts. The first part is concerned
with the uniqueness, the second part with the existence of the boundary value
problems.

3. Proof of uniqueness. As in Pdlya’s paper the proof is based on generaliza-
tions of Rolle’s theorem.

LEMMA 1. Let (1) be reducible and dp(x) a C"-finction in (a, b). Define

(11) c(4, x) F,(x, (x), 4)"- (x))

with F, as in (2a). Let (b; xl) (dp xz) for some pair ofpoints a < Xl < X2 < b.
Then there exists a point , x < < x2, such that

(12) "() L(, (), ’(), "’", -()).

Proof If F, is differentiable, then (12) is a simple application of Rolle’s
theorem. If (b; x) is only assumed to be continuous, then it is either constant
in x _-< x N x2 or has a maximum or minimum different from O(b;xl,2). In
the first case b(x) is a solution of (1) in (Xl, x2) and (12) must be true. In the second
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case let (qS; ) CM be a maximum and

#"() L(, (), ’(),

say, qSt")() > f,(, ). Let u(x) be a solution of (1) with initial conditions at ,
utJ)() qSt)(), j 0, ..., n 1. Then ut")(x) < ibt")(x)in some neighborhood of, and there are constants d, D and 6 such that 0 < d < bt")(t 1) ut")(t2) < D for
all l, t2 in ( 6, + 6). Thus,

(3) "-(x)<> u"-(x) + d(x )

depending on whether 6 =< x < or < x =< 6. Moreover,
D

(14) ibj)(x uJ(x)l < 5(x )2

for all x in ( 6, + 6),j 0,... n 2.
We have

(15) u"- (x) L-(x, u(x), u’(x), u"-2(x); c,)
and

IL- a(x, u(x), u"-2(x); CM) L-,(x, ok(x),.", 4"-2(x); CM)I
(16) LD

< -=(x )
Z

where L is the Lipschitz constant for f,_ in a sufficiently large cube around
(,u(), ..., u"-2)()). From (13)-(16) it follows that

(17) dp"-X)(x) <> f,_l(x,c(x), "’, b"-Z)(x); CM)

for --6’<x<{ or <x<{+6’, respectively, and a sufficiently small
6’ > 0. According to (2) and (2a) there is a one-to-one continuous relation between
y,- 1) and c; that is, F, and f, are monotone functions in y{"- 1) and c respectively
for fixed values of x, y, y’, ..., y{,-2). Moreover, these functions are either all
decreasing or all increasing, independent of x,y, ..., y{,-e). Thus from (17) it
follows that

(4,, x) X c,

depending on whether x X {; that is, CM cannot be a maximum of e(qS, x). Thus
qS")({) u")({) or (12) is true.

In this proof the Lipschitz condition can be replaced by a Nagumo con-
dition around { (see [1, p. 31]). The lemma becomes false if the initial value
problem at { of the D.E. (2) has more than one solution. It is an open question
whether Lemma 1 remains true, if f,_ is continuous and every initial value prob-
lem of (2) has only one solution.

Repeated application of Lemma leads to a second lemma.
LEMMA 2. Let (1) be decomposable and u(x)=f0(x; c l, c2,’", c,), a solu-

tion of (1) for some set (ci). Let dp(x) be Ck- in (a, b) and uJ)(xi) dptJ)(xi) 1,
l, u < xl < x2 < < Xl < b,j=O,...,ni- 1, ti=l ni k. Then

F(, b(),..., btk- 1)();ck+l,..., c,) ck

for some , x <= <- XI.
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An immediate consequence of Lemma 2 is the following.
LEMMA 3. Let (1) be decomposable and

u(x) fo(x c l, Ck, Ck+ l, C,),

fi(X) fo(X 0.1,... Ok, Ck + 1, On)

be two solutions of (1). Further, let utJ)(xi) gttJ)(xi), 1,..., 1, u < x < <
Xl < b,j 1,..., ni 1, I--1 ni k. Then O. ci, 1,..., k, i.e.,ft(x) =_ u(x).

Proof According to Lemma 2 there exists a , xl <= <= Xl, such that

Fk(, fi(), a(), Ok- 1)(); ck + 1,"" Ck) Ck

but, since fi(x) is a solution with parameters (1, "’", k, ck+ 1, "’", c,), Fk(x, (x),
..., ark- 1)(x); ck + 1, "’", c,) ek for all x. Thus k ck. Repetition of the process
leads to :k-1 ck-1,’" down to

Setting k n we obtain the following corollary.
COROLLARY. If (1) is decomposable, then every k-n-B.V.P, has at most one

solution.

4. Proof of existence. As a first step in the proof we have to establish that
the solutions of a B.V.P. depend continuously on the parameters of the problem.
The basis for this is a little known topological theorem.

THEOREM 3. Let D be a domain (nonempty, open, connected subset) in
and T a continuous one-to-one mapping from D into R". Then the image T(D) is
also a domain in R" and the inverse mapping is continuous.

For a proof, see Rado and Reichelderfer 4, p. 135]. An immediate conse-
quence is the following lemma.

LEMMA 4. Let the functions
(18) Yi fi(xl, x,;cl, Ck)

be continuous in R" Dk, where D is a domain in Rk, and let (18) represent a
one-to-one mapping from R" onto R" for any set (cl, Ck) Dk. Then the inverse

functions
(19) Xi=gi(Yl,’’’,Y,;Cl,’’’,Ck), i= 1,...,n,

are continuous in R" Dk.
Proof By adding the equations

(20) cj=cj, j= 1,...,k,

we obtain a one-to-one continuous mapping of R" D onto itself whose inverse
is (19) and (20) and is thus continuous in R" Dk.

The following lemma lists conditions under which solutions of B.V.P.’s
depend continuously on the parameters of the problem.

LEMMA 5. Let y(x ;rl ;c be the solution of the k-n-B.V.P.

(21) y(") f(x,y,..., y("-a);cl,..., c)

with Y(J)(i c; rl) ri{, 1,..., k; j 0,..., ni, =1 ni n, (tli) Rn, (i) ok
c Rk, where Dk is a domain such that a < 1 < 2 < k < b, for all sets (i)
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Consider ytJ)( rl c), j O, ..., n 1, a < < b. These are continuous func-
tions in (a, b), (i) Dk, (rl) R", (c,,) R if thefollowing conditions are satisfied"

(i) f(x,y, y,-l; cl,’", Cl) is continuous in (a, b) R" R.
(ii) All solutions of (21) can be extended through the interval (a,b).

(iii) The k-n-B.V.P, has a unique solutionfor any set (rli) R, (i) D, (Cm) R.
(iv) All initial value problems have a unique solution.
Proof Under the stated conditions a solution of a B.V.P. is a solution of

an initial value problem and there is a one-to-one continuous mapping from a
set of initial values to a set r/i for fixed i, and Cm, these being considered the
parameters of Lemma 4. Thus the initial values are continuously dependent on
gi’ i’ and Cm.

LMMA 6. Let y(x; l c) be defined as in Lemma 5 and let 1t- vary from
-ov to + o, for some t, <_ <= k, all other ti’s, i’s and Cm’S being fixed. Then
y(; q; c) for i, 1, ..., k, and yt"J)(, l c) vary alsofrom oe to + and
are monotone continuousfunctions of rl7 under conditions (i)-(iii) of Lemma 5 and
the additional condition"

(iv)* The following modified B.V.P. has a unique solution for all values of
qOk+ or rl respectively" Y(J)(i) r]j, 1,’’’, k; j 0,’", n 1 for :/: t,

" respectively.j 0,..., n 2fori y() q+ or yt"J)(j) rlj,
The proof of this lemma is straightforward.
LEMMA 7. Let the D.E. (1) be reducible and (2) be its reduced form. There

exists a solution for any k-n-B.V.P, of (1) if the following conditions are fulfilled"
(i) All solutions of (1) can be extended through the whole interval (a, b).

(ii) A solution of a k-n-B.V.P, of (1) !f it exists is unique.
(iii) There is a unique solution of any k-(n- 1)-B.V.P. of (2) for any value

ofc.
Proof The basic idea of this proof is to eliminate one condition of the

k-n-B.V.P, and solve the ensuing k’-(n- 1)-B..P. of (2) for all values of c. By
varying c one hopes to fulfill the missing condition. The technique is similar to
that used by Lasota and Opial [2].

We shall discuss in detail only the n-n-B.V.P. The general case can be handled
in the same manner. Let a < 1 < 2 < <( n-1 < n < b, and let y(x;rl;c
be the solution of the (n 1)-(n 1)-B.V.P. of (2) with

Y(i; rl C) Fli 1, ..., n 1.

Let O(c) y(, /; c). According to Lemma 5, O(c) is continuous; it is also mono-
tone because different values of c lead to different solutions of (1) and no two solu-
tions can have the same boundary values. Lemma 7 is established if one can show
that the range of O(c) is R.

Let us assume that O(c) is monotone increasing and that for some sequence
Co <c < <c +, lim_(c)=r/+ < +. Let (Co)<r/+-e for
some e > 0.

We first establish that yJ)(x rl c,) is uniformly bounded for j 0, ..., n 2
in + 6 <= x =< , 6 for all 6 > 0. This is done by constructing, certain "limit-
ing" solutions of (2) for a fixed c Co; let us call them y+(x) and y-(x), j 0,.., n 2. These are solutions of k-(n 2)-B.V.P.’s to be specified later with the



AN EXISTENCE AND UNIQUENESS THEOREM 283

additional conditions

yj (,) =< r/+ e < r/+ + e =< yf(,) and

(22) Yj (1) ’/1 < ql .ql_ e < Yf(I) or

y/() <-_ 1 < 1 + <- y/().
These combined with any n 2 additional boundary conditions can always be
satisfied according to Lemma 6 and part (iii) of Lemma 7. More specifically,
let

yg() y(i) r/, i= 2, ..., n 1.

It is easy to see that y(x; cv) is always between y- (x) and y(x) for
x - i, 2,..., n 1, and y’(i; t/; cv) is between Y-’(i) and Y-’(i), 2, ...,
n 1.1 This is true for x 1,

, because of(22). Ifit is not true at some other point,
then y(x; rl; cv) has to cross either y- or y- and has to cross the same solution again
in order to return. If this happens at one of the points (i it must be y’(; r/; c)
Y- (i) or yff’(i). Under either condition y(x rl Cv) would have n points in common
with either y + or y- counting multiplicity, and a k-n-B.V.P, of (1) would have more
than one solution. Thus y(x; c) is uniformly bounded.

For y-, y-, we require that the following conditions be satisfied"

y,() y;()= y(; n; c)

for some,l +6-< =< ,-6,:P i, and

y;(,) y-(()= rl,, <= <= n- 1, i:/: o,

for some i0. By the same argument as above, y’(; r/;c0 is between y;-’() and
y-’(). Of course, the limiting functions depend on and y(;r/;c0; but these
values can be restricted to compact sets. This is true for y(; r/; cv) because it is
uniformly bounded. The value of can be restricted to one of the overlapping
intervals o-1 + 6 _<_ _<_ io+ 6, 2 _<_ io -<_ n 1; y-’() and y-’() are con-
tinuous functions of in these intervals provided one of the inequalities (22) is
replaced by equality. This is possible by Lemma 6. Thus y’(; r/; c) is uniformly
bounded.

The same method is used for the higher derivatives. For instance, the con-
ditions for y.+_ 1, Y-- read

Y,+-() Y--() YJ)(; 0; Cv), j 0,..., n 3,

from which it follows that y"- 2)(; r/; c) lies between y,+_"- 2)() and y-_"- 2)().
Since y(n-2)(; r/; ev) is uniformly bounded, the mean value theorem shows

that there exists for every v a point x t such that [y"-l)(tv; r/;c)[ < M for
sufficiently large M independent of v. We can therefore select a subsequence
cj such that tj to, y(t; r/; cv.) u - , j 0, ..., n 1. But (2a) gives

V,(tj, y(tvj ;r/; c)...) c
Note that y- and y- have no points in common outside i and the derivatives are different

at these points.
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and the left side converges to F,(to,Uo,U 1, ..., U,-l)#: oo contrary to the
assumption that cvj--+ oo. Thus r/+ c.

It remains to show that the set of D.E.’s (3) satisfies the conditions ofLemma 7,
starting from the bottom. We observe first that any solution of (3) exists in the
whole interval (a, b). Because of the relation y fo(x; c l,..., c), y .remains
finite in (a, b) for any fixed set (ci). So does y’ since

y’ fl(x,fo(x; cl,’.., c,); c2,..., c)

and so on up to y(. Furthermore, the D.E.

(3a) y’ fl(x, y;c2, c3,

has a unique solution for any 1-1-B.V.P. because of the Lipschitz condition on

f with respect to y.
Also a k-2-B.V.P, of the D.E.

(3b) y’ f2(x, y, y’;c3, Cn),

whose reduced form is (3a), has at most one solution (Lemma 3). Thus every
k-2-B.V.P, of (3b) has a unique solution. Repeated application of this process
establishes the existence of all k-n-B.V.P, of the D.E. (1).

5. Example and conclusion. As an example for a nonlinear decomposable
D.E. let the function qS(a, b) be defined as the solution of

(23) 3 + ab b.

This equation has a unique real solution for all 0 < a < +
Its partial derivatives are

(24) qSb --(/)a (/(/)2 _lt_ a)-l.
Consider the D.E.

(25) y" y’ tanh x + (2 cosh x)- lb((cosh x)- 1, y y, tanh x).
This has the following decomposition.

(26a) y’ -2 cosh x + e"b(e, y 2c sinh x),

(26b) y cxe + cze -k (c q- 2)3

and

(27a) c (2 cosh x)- -y’ + -4((cosh x)- , y y’ tanh x

(27b) c -c + 4(e y 2 sinh x).

Equations (27a), (27b) are obtained solving (26a), (26b) for c. and c, re-
spectively. Equivalence of (26a), (26b) with (25) is established by differentiation
of (27a), (27b) using (23), (24), one obtains

dc (2 cosh x)- + qS- tanh x (y y’ tanh x (2 cosh x)- 4) 0dx

dc bb(y’ 2C2 cosh x eXqS) 0,dx
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i.e., (25) and (26a), except for the nonvanishing factor (8). The Jacobians (10) are

y
e + 3(c + C2)2 " 0,

c3c

a(y, y’)
-2-6(cl +c2)2coshx<0,

((Cl C2)

i.e., the conditions of Theorem 2 are satisfied. Thus every 2-2-B.V.P. of (25) has
a solution which can be verified directly. A similar D.E. is discussed by Lasota
and Opial in [2].

The above example is somewhat artificial due to the fact that not many
D.E.’s can be decomposed in the prescribed manner. However, most of the proofs
remain valid if the decomposition can be achieved in a suitable subset of (a, b) x R".
Consider, for instance, the D.E.

(28) y,,= y,2/y,

which satisfies all conditions in D" -o < x < +, 0 < y < +oe, -oe
< y’ < + oe. A decomposition of (28) is

(29a) y’ c2y,

(29b) y eC1+C2X
and

(30a) C2 y’/y,

(30b) Cl c2x + log y.

All 2-2-B.V.P.’s of (28) in D (i.e., r/, r/2 > 0) have a solution. Further work is
necessary to determine conditions for D and possible modifications of the theorem.

Another interesting question is whether the converse of Theorem 1 is true,
i.e., is a D.E. decomposable if every B.V.P. has a unique solution? If this con-
dition is satisfied for some interval a < x < b, the decomposition may be obtained
in a smaller interval, say, (a’, b), a < a’, provided that the parameters c, are chosen
to satisfy the initial conditions at some point , a < < a’, ci y(n-i)(). Exis-
tence and uniqueness for every 2-n-B.V.P. assures the existence of continuous
functions in (3), (4). However, the D.E.’s (3) may have more than one solution
of an initial value problem, since there is no guarantee that the functions so ob-
tained are of Lipschitz type. This may introduce solutions of (3) which are not
solutions of the original D.E. (1). Whether this can be avoided is an open question.

REFERENCES

1] P. HARTMAN, Ordinary Differential Equations, John Wiley, New York, 1964.
[2] A. LASOTA AND Z. OalgL, On the existence and uniqueness ofsolutions ofa boundary value problem

for an ordinary second-order differential equation, Colloq. Math., 18 (1967), pp. 1-5.
[3] G. P6LYA, On the mean value theorem corresponding to a given linear homogeneous differential

equation, Trans. Amer. Math. Soc., 24 (1922), pp. 312-324.
[4] T. RADO AND P. V. REICHELDERFER, Continuous Transformations in Analysis, Springer, Berlin, 1955.



SIAM J. MATH. ANAL.
Vol. 2, No. 2, May 1971

A REPRESENTATION THEOREM FOR A CLASS OF CONVOLUTION
TRANSFORMABLE GENERALIZED FUNCTIONS*

J. N. PANDEY-

Abstract. Let Kc,d(t) be an infinitely differentiable function defined over (-or, ) such that

=re for t-> 1,
Kc,d(t)

edt for __< 1,

and Kc,d(t :/: 0 in (--1, 1), the quantities c and d being real. We say that an infinitely differentiable
function b(x) defined over (-, ) belongs to Zemanian’s Lc,d-space if

k() sup [g,(t)tk)(t)[ <

for k 0, 1, 2, The topology on L,d-space is generated by the sequence of seminorms {Tk}kO"
Zemanian extended the real, inversion theory (for the convolution transform of functions) of Hirschman
and Widder to L’c,n-space, but did not give a structure formula.

In this paper an extension of Lc,d-space and its dual space to n dimensions is given and a structure

formula obtained which shows that, globally, every element of the dual space of L(c, d) is the linear
combination of the finite order distributional derivative of continuous functions. The space L(c, d) is
the strict inductive limit of Lc,,,,v, cv c +, dv d-. Some special cases are also derived.

The Hirschman-Widder convolution transformation [1 has recently been
extended to certain classes of generalized functions [3], and their real inversion
formula [1, pp. 127-132] has been shown to be still valid when the limiting opera-
tion in that formula is understood as weak convergence in the space D’ of Schwartz
distributions [8]. The complex inversion formula [1, Theorem 7.1b, p. 231 has
been extended in a similar way to the convolution transform of generalized
functions. In 1967 Zemanian introduced the space L’c,d of generalized functions
[3], where c and d are fixed real (arbitrary) constants. The real as well as complex
inversion formulas of Hirschman and Widder are shown to be valid for the
space of generalized functions L’c,d, where the constants c and d are restricted
in some way [33, [5]. The testing function space L, which was dealt with in [3]
and [5] was defined over R1. In this note we shall deal with an Lc,n-space defined
over R", and the constants c and d will be fixed arbitrary elements of R". Our object
is to find a representation formula for a certain subspace of L’c,a.

The notation and terminology will follow that of [7]. Unless otherwise
stated and x will be understood to be variables in R" and the letters c, d and a
will signify constants in R". If a and b are in R", by a > b we mean that ai > bi
for 1, 2,..., n, where a and bi are the components of a and b respectively.
When c and x both belong to R", the expression cx is understood to be the scalar
product of c and x. The differentiation operator D is understood to be the operator

kn (k2 (kl

where k (kl, k2,"’, kn) and the k are nonnegative integers. The order of the
differentiation operator Dk will be defined as the number ]k] k + k2 + -Jr- k
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" Department of Mathematics, Carleton University, Ottawa 1, Canada. This work was supported
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The testing function space Lc,a. Choose a real-valued infinitely differentiable
positive function Kc,a(t over R" such that

ct for -> 1,
Kc’d(t) (et fort_< -1.

One way of choosing such a function Kc,d(t over R" is as follows" Define

c,(t) (-I Kc,,(t3,
i=1

where

citi for >= 1,
K,,e, I.ee,t for <- -1,

and Kc,,d,(ti) is infinitely differentiable and positive on (-oe, oe). A complex-
valued and infinitely differentiable function qS(t) defined over R" is said to belong
to the space Lc,d if

/m((])) max sup IKc,a(t)DUcl <
0 _< Ikl <-m teR

for m 0, 1, 2, Clearly Lc,d is a vector space closed with respect to differen-
tiation.

The convergence in Lc,a. A sequence {b(t)}T=, where qS(t) is in Lc,a for
each v, s said to converge to qS(t) in Lc, a if 7(b q) - 0 as v for k 0, 1,
2, We further add that a sequence {qS(t)}7=, where each b(t) Lc,a, is
a Cauchy sequence in L,a if 7(b bu) 0 as/ and v both go to , independ-
ently of each other, for k 0, 1,2,.... It has been proved by Zemanian 3]
that for n 1, Lc,a is a sequentially complete, Hausdorff, locally convex topo-
logical vector space. This result is also true for Lc,a defined over R", n > 1, and
the proof is quite similar to that given by Zemanian for n 1.

The dual space L’,a contains all distributions of compact support in R".
Also, the regular distribution f corresponding to any locally integrable function
f(x) defined over R" such that

fR f(x)
dx <K,,(x)

is a member of
DEFINITION. For fixed real values of c and d, a smooth and complex-valued

function 05(0 defined over R" is said to be in the space Ec,a if there exists an r/> 0
such that

-(C+")t] for > 0 and It]
(1) qS(k)(t)

O[e -(d--n)t] for < 0 and Itl --’

where It[ w/t + t + + t,2; r/ (r/,, r/2, r/,), and Ikl assumes the values
O, 1, 2, It can be readily seen that ,a is a linear submanifold of L,n.

One may observe that the elements of the space E,a are actually the same as
those of the space L(c, d), where L(c, d) is the countable union of L,a, c -. c +,
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d,, d- [2]. Also f,c,a is a proper subspace of Lc,a [2]. When we say that cv --* c +
we mean that every component of cv approaches the corresponding component
of c from the right. Similarly dv d-.

LEMMa. Let Lc,a be the space of infinitely differentiable complex-valued
functions defined over R" satisfying the asymptotic orders (1). Then for cD(t) e Lc,a
and f L’c,a there exist a constant C and an integer r >_ 0 such that

(2)

where

(3) fl(b) max f IK,d(t)(k)(t)l dt.
0 <=lkl<=m

Proof For every b(x) e L,d and f e L’,d we have, in view of the boundedness
property of generalized functions,

(4) I(f, 4)1 =< Py(b)

for appropriate constants P and r. Further,

K,a(t)ct)(t) A[Kc,a(x)ckt)(x)] dx dx2 dx.,

where A is the differentiation monomial 8/8Xl t/OX2 O/SX It can be seen quite
readily that for an appropriate constant q > 0 we have for a fixed x in R",

(6) IDm[K,e(x)dp((x)]l <= q max IK,a(x)q)()(x)l.
O<=lpl<=lml+lkl

Therefore, (2) is obtained quite easily in view of (4), (5) and (6).
TNEOREM. Let f L’.d and 4) L.d. Let N be the number ofn-tuples satisfying

the condition lil <= r + n. Then there exist N bounded measurable functions gi(x)
defined over R" such that

(7) (f, b) (gi(x),K,a(x)Didp(x)).
lil<-_r+n

Proof The result follows quite readily in view of inequality (2), the repre-
sentation theorem of Riesz and the Hahn-Banach theorem. The proof is very
similar to that given in [7, pp. 273-274], and therefore the details are omitted.

Remark. At first glance it would seem that the result expressed in (7) is an easy
consequence of a general result of Gel’fand and Shilov [9, pp. 110-113]. But in
fact it could not be obtained from Gel’fand and Shilov’s result as the spaces
/,c,a and L,d do not satisfy either of the conditions (N) and (P) (see [9, pp. 110-113]).
Formula (7) gives only the structure of the space L’,a, the dual space of the countable
union space L(c, d), and it is invalid for the whole space L’,d [2, p. 50, Ex. 3.2-1].

COROLLARY. Let f L’c,d and dp D(R"), the space of infinitely differentiable
functions with compact support in R". Then, there exist N bounded measurable
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functions gi(x) defined over R" such that

(f, 4)

(8) , (- 1)lilDiA Kc,a(x)gi(xl, x2, x,) dXl dx,,
[i[<_n+r

(tl, "’", t)).
Here N is the number of n-tuples satisfying Ill + r, r is the same nonnegatie
imeger that appeared in (2), and A is the differentiation monomial /t /t2
/t.

Proofi Let (t) D(R"). Then in view of the previous theorems, there exist
bounded measurable functions g(x) defined over R" satisfying the relation

9) ) g(x), K,(x)x)).

Again, since D(t) D(R) and the regular distribution corresponding to the
integral appearing in (8) belongs to D(R), the relation (8) follows immediately
using the rules of distributional differentiation.

If n 1, the structure formula (8) for elements of Zemanian’s space L, takes
the form

(10) < > (- 1)ioi+ g,(x)K,a(x) dx, (t
ki=o

Here the gi(x) are bounded measurable functions over R and the operator D
stands for the operator d/dt. The function Kc,d(x is the function defined over R
and the integer r is determined appropriately.
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UNIQUENESS OF POSITIVE SOLUTIONS TO
NONLINEAR ELLIPTIC PROBLEMS*

J. M. CUSHING,"

Abstract. The uniqueness of positive solutions to self-adjoint elliptic partial differential equations
with nonlinear forcing terms subject to mixed Dirichlet and nonlinear Neumann boundary conditions
on bounded domains is proved under relatively mild conditions on the nonlinear terms. The result
generalizes known results.

1. Introduction. Recently, positive solutions to certain nonlinear elliptic
partial differential equations have been of interest (cf. [1], [2], [4], [5]). The
uniqueness of such solutions is known for nonlinear elliptic problems with linear
boundary conditions under the assumption that the nonlinear terms are of a
restrictive form and satisfy a concavity condition (see [1], [2], [4], [5]). In Theorem 1
below we generalize these known results in several directions:first, we consider
a nonlinear differential equation of a general type (see (2.1) below); secondly we
consider nonlinear boundary conditions (see (2.2) below); and, finally, we weaken
the assumptions on the nonlinear terms (H1-H3 below).

2. Results. Consider the following general boundary value problem which
will be referred to as Problem I"

(2.1) Lu=F(x,u) onD,

(2.2) u(x) e(x) on S, cu/cv G(x, u) on S2,

where x (x x,..., Xm) and

Lu Di(aij(x)Dju + ao(X)U,
i,j

> o, + + o,

ai(x ai(x), x e D,

u
ao(x)ni(x)Du x S

S .qt_ $2=S,

D c/Oxi,

x6D,

Here D is a bounded region in m-dimensional space with boundary S whose
outwardly directed normal at x is denoted by (nl(x),..., nm(X)); S and S2 are
disjoint measurable sets whose union is S. (Actually our proof and hence our
result are valid when S and S2 are disjoint, measurable sets whose union equals S
up to a set of measure zero, but we will not push this point.) The divergence
theorem is assumed to hold on D and the coefficients aiJ(X,), ao(X) are assumed
once continuously differentiable on , the closure of D. The functions , F, G
are presumed given in advance. By a solution to Problem I we mean a function
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u(x) C1() for which the derivatives appearing in (2.1) exist and are continuous
on/, and the boundary conditions (2.2) hold on the appropriate regions.

We impose the following conditions on the given functions a, F, G"

H1. e(x), F(x, z), G(x, z) are all defined and continuous on S 1, D x [0, ),
S2 x [0, ), respectively, and e(x) > 0 on S1.

H2. z’F(x, z) >= zF(x, z’) for z >= z’ >= 0 and x O.
H3. z’G(x, z) <= zG(x, z’) for z >= z’ _>_ 0 and x e S2.

Our main result, which is proved in the next section, is contained in the following
theorem.

THEOREM 1. If HI, H2, H3 hold and if u, v are two solutions to Problem I
satisfying u > O, v > 0 on D, then u kv, k positive constant. Consequently, if
S is nonempty, there exists at most one positive solution to Problem I. In any case

if a strict inequality holds in either H2 or H3, then at most one positive solution
exists.

Hypothesis H2 (H3) means geometrically that the slope of the line in the
z,F-plane (z, G-plane) passing through the origin and the "point" z, F(x, z)]
([z, G(x, z)]) is a nondecreasing (nonincreasing) function of z > 0 for each fixed
value of x. If F, G are once differentiable in z for all values of x in the appropriate
regions, then H2, H3 are equivalent to the requirements zFz F >= 0, zGz G
=< 0 for all z _>_ 0 and appropriate x (see [21). It is not difficult to see that any
functions F, G which are concave up and concave down in z, respectively, and
which satisfy F(x, O)<= O, G(x, 0)=> 0 for all appropriate x necessarily satisfy
H2, H3, respectively. Moreover, H2 and H3 are certainly satisfied for functions
F, G linear in z and, thus, these hypotheses (which do not necessarily restrict the
concavity or monotonicity of F, G in the variable z) are weaker than the concavity
assumption of Keller [4, [5] and Cohen [1, [2] for Problem I.

3. Proof of Theorem 1. The proof utilizes a generalization of Green’s integral
identity (due originally to M. H. Martin) which has been used by many authors to
study uniqueness questions for nonlinear boundary problems (cf. Cushing [3]
for bibliography). A straightforward application of the divergence theorem
together with aij aji yields the identity

cu
uN(3.1) (2- 1) Vv- dx [Q + (2- 1)(vLu- uLv)] dx,

where 2 u/v and Q v2 ,= ajD2Dj2. Supposing that u, v are two solutions
to Problem I satisfying u > 0, v > 0 in , we see that this identity becomes

(3.2) 11 fs2
where

(2 1) [vG(x, u) uG(x, v)] dx I2 + I3,

Iz fo Q dx, I3 = 19 (2 1)[vF(x, u) uF(x, v)] dx.
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As v > 0 on , we have 2 e CX(/3) and consequently the identity is valid.
Now I2 >-- 0 by the definiteness of aj; moreover, the integrand of 13 is nonnegative
(H2) while the integrand of 11 is nonpositive (H3), and hence 11 =< 0, 13 >= 0.
We conclude from identity (3.2) that I 0, 1, 2, 3. But Iz 0 together with
the definiteness of Q implies D2 0, 1, ..., m, or u kv, k const. If S
is nonempty, then clearly k 1. In any case, if strict inequality holds in H2 or
H3, then 13 0 or 11 0 implies k 1 and the theorem follows.

Finally we note that for eigenvalue problems of the general type F F(2, x, u)
and/or G -= G(#, x, u), 2, # constants (to be determined as part of the solution),
Theorem 1 remains valid for all eigenvalues 2 and/or p for which a positive
solution exists provided Hl-H3 hold for the given values of 2, p.
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ON THE SOLUTION OF THE INTEGRAL EQUATION FOR THE
POTENTIAL OF TWO STRIPS*

A. K. GAUTESENI" AND W. E. OLMSTEAD:I:

Abstract. An integral equation associated with the potential of two strips is solved in closed form
and in series form. The closed form solution generalizes the well-known formula of Carleman for the
single strip problem. The series solution concludes the work initiated by Shinbrot. Also, an erroneous
solution found by Tricomi for a related problem is corrected.

1. Introduction and summary. We consider here the integral equation

(1.1) (Au)(x) = + log Ix tlu(t)dt f(x),

k < Ixl < 1, 0 < k < 1,

associated with the potential of two strips. We shall show that this equation has the
solution

j.-I j.1 [R(t)]l/2 sgn f’(t)
dt7z2[R(x)] 1/2 sgn x u(x) +

-1 k

(1.2) + + 1 2

-1 K(k)

sgn f(t)[R(t)]- 1/2 dt,
where

(1.3) k’- x//i k,
and K(k), E(k) are the complete elliptic integrals

K(k) (1 k2t2) 1/2(1 t2) 1/2 dr,

(1.4)

E(k) (1 k2t2)1/2(1 t2) 1/2 dr.

R(x) (1 x2)(x2 k2),

In (1.2), and throughout this paper, we interpret improper integrals in the principal
value sense whenever necessary.

This result can be regarded as a generalization of a well-known formula due
to Carleman [1] for the single strip. It is easily verified that (1.2) reduces to his
solution in the limit as k vanishes.

In an alternative approach we will show that a solution to (1.1) can be found
in the form of an infinite series

(1.5) U(X)--,=o[f + j dp,(t)f(t)d ,(x), k < Ixl < 1,
k

* Received by the editors July 30, 1970, and in revised form November 12, 1970.
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294 A. K. GAUTESEN AND W. E. OLMSTEAD

where the {b,(x)} are defined by

[R(x)]l/2cko(X) [xl, k < Ixl < 1,

[R(x)]l/2dpl(X) sgn x, k < Ixl < 1,

cos .,F sin-
[R(x)] /2 dp2.(x)

0,
(1.6)

l0

cos K(k’if sin-

(X k2)l/2
k’lxl

(X2 k2)1/2

,k’]}, k<x<l,

-l<x<-k,

k<x<l,

with F(, y) denoting the elliptic integral of the first kind

sin

(1.7) F(, y) (1 ’2t2)-1/2(1 /:2)-1/2 dr.

The normalizing constants are

(1.8) M, + 4.(s) + 4,(t) log Is tl at ds,
-1

n=0,1,2,...

Mo n2 log (2/k’), M1 2nK(k)K(k’), M2n M2n + K2(k’)/2n, n 1,
o...

The series solution is obtained by following the method of Shinbrot [3], who
has shown that the integral equation (1.1) and similar equations can be related to
an eigenvalue problem for an ordinary differential equation.

Another result which is an easy consequence of (1.1) and (1.2) concerns the
integral equation

f_- fl v(t)
(1.9) + dt= g(x), k < lxl < l O < k < l.

tX

It will be shown that this equation has the solution

(1.10) f_-k fkl [R(t)]l/2 sgn g(t)drc2[R(x)] 1/2 sgn x v(x)= + + C’x + C"
x--t

k < Ix[ < 1,

where C’ and C" are arbitrary constants.
This problem was treated earlier by Tricomi [4]. We shall demonstrate that

his formula corresponding to (1.10) is incorrect.
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2. Closed form solution. To begin the investigation of (1.1), we extend the
interval of consideration to -1 < x < 1 by defining

(2.1) U(x) { u(x), k < Ixl < 1,

0, -k <x <k,

(2.2) F(x) I f(x),

h(x) + log ix tlu(t) dr,

k < Ixl < 1,

-k <x <k.

Although h(x)is not known a priori, these definitions allow us to express (1.1) as

(2.3)
-1

log Ix- tlU(t) dt F(x), -l<x<l.

This equation can be solved for U(x) in terms of F(x) by the well-known formula of
Carleman 1],

1/2 1 fxre2( 1 x2)/2U(x)= (1 2) F’(t)
dt

-1 t- x log2
_

(2.4)

F(t)(1 t2) 1/2 dt,

-l<x<l.

From the definition of U(x), we see that (2.4) is equivalent to the two equations

f_-k fkl (1 --t2)l/Zf’(t)d fk (1 t2)l/2h’(t)dt D,7t2(1 x2)l/2u(x)--- _it_ +
tX -k tX

(2.5) k < Ixl < 1,

and

t2) 1/

(2.6)
(1 2h’(t)

k t--x

where

f_-k fk (1 t2)l/2f’(t)
dt= +

X--t
dt +D,

-k <x <k,

1
h(t)(1 t2) 1/2 dt + + f(t)(1 t2) 1/2 dt(2.7) D=log2

Once h’(t) and D have been determined, (2.5) becomes the required solution of
(1.1). In order to determine h’(t) and D, we focus our attention on (2.6). We see that
it can be interpreted as an integral equation for h’(t). To solve it, we employ another
well-known result from the theory of singular integral equations. It readily follows
from the Carleman problem (2.3), (2.4) that the integral equation

f v(t)
(2.8) dt G(x), -k < x < k

kt_ X
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has the solution

(2.9)
t2)l/2G(t)2(k2 X2)I/2v(x) I
t--x

where C is an arbitrary constant.
Using this formula to solve (2.6) we find that

dt +C,

-k <x <k,

(2.10)
(k2-t2)’/2[fI-k --X k

(k t)/
D

-k t--x

(1 s2)/2f’(s) dsJS--t
dt

dt +C, -k <x <k.

Upon interchanging the order of integration we find that

,2[-R(x)]l/2h’(X) f_-k (k2 t2) 1/2 dt

(2.11) fk (k2-t2)1/2 ] f(k2-kt-s
dt ds- D

k

t2)l/2
dr+C,

t--X
-k <x <k.

Then the identity

(2.12) fk (k2

-k

t2)l/2
dt ) ny,

-ny + n(y2 k2) 1/2 sgn y,

-k<y<k,

k < lyl < 1,

reduces (2.11) to

(2.13)
fl

1[R(t)]l/2 sgn f’(t) dtn[-R(x)]l/2h’(x) +

+ + (1 t2)l/2f’(t)dt + Dx +-
C

-k <x <k.

To find C, we divide (2.12) by [-R(x)I 1/2 and integrate over the interval -k < x
< k. This yields

[h(k) h(- k)] N + + +
(2.14)

(1-t2)l/2f’(t)dtI f [-R(s)]- 1/2 ds,

where the constant N is defined as

fk If-I fkl [R(t)]l/2 sgn t,l.,(t) dtl(2.15) S [-g(s)] -1/2 +
-k t--s

dS.
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For sufficiently well-behaved solutions of the integral equation, we see that F(x)
will be continuous on the interval -1 < x _< 1. Consequently h(k)= f(k) and
h(-k) f(-k). This argument and the integral identity

(2.16) [-R(s)]-1/2 ds 2 (1 t2) 1/2(1 k2t2) 1/2 dt 2K(k)

allow us to determine C from (2.14) as

f_- fl rt{N + rt[f(k)- f(-k)]}
(2.17) C rc + (1 tZ)l/Zf’(t) dt +

2K(k)
As for the constant D, we postpone its determination for the moment.

The next step is to use (2.13) to find an expression for the integral
k

(t- X)-I(1 t2)l/2h’(t)dt, k < [xl < 1,
-k

which appears in (2.5). We hasten to point out that this integral is not the same
as in (2.6), where the domain is -k < x < k. We find that

f_ f_-k fkl fk (kZ t2)- l/2 dtk (1 tz)l/Zh’(t)dt + [R(s)] 1/2 sgnsf’(s)
(t- x)(t -- ds

k t--x -k

(k (k2 t2) -1/2 dt
(2.1 8) + D

-k

N + f(-k)] ; (k2 t2) 1/2 dt
+ c[f(2k;(k) t-x

(2.19)

This expression can be simplified by using the identities

rt(x2 k2) sgn x,
(k 1/2 dt 1/2

-k t--X

k (k2 t2) 1/2 dt
(2.20)

-k t--X -- lxl(x2 k2)-1/2

(k2 t2) 1/2 dt rt sgn s
(2.21) =-L k2)1/2

_
(- x)(t- s) x s (s

We then have

(1 t2)l/2h’(t)
-k t-- x

(2.22)

k < Ixl < 1,

k < Ixl < 1,

k < Ixl < 1,

sgn x ] k < Ixl < 1,
(X2 k2) 1/2 k < Isl < 1.

k j-1 (1 S2)I/2ft(s)
dsdt= +

k X S

sgnx k fkl [R(s)]l/2 sgn s f,(s)
(S2 k2)1/2 -+-

X S

+ D 1
(X2 k2)1/2

{N + rt[f(k) f(- k)]} sgn x
2K(k) (x2 k2) 1/2’

ds

k < Ixl < 1.
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This reduces the prospective solution (2.5) to

f_-k fl [R(t)]/2g2[R(x)]l/2 sgn x u(x) + sgn f’(t) dt
t-x

(2.23)
N + zr[f(k)- f(-k)]

2K(k)
-Dx, k<lxl < 1.

In order to bring (2.23) into the desired form for the solution, we need the
identities

(2.24)

(2.25)

(2.26)

(2.27)

f_-’ f, sgn [R(t)]- 1/2

+ dt- 0 k < Ixl < 1
X

f_-k fkl [t[ [R(t)]- x/2

+ dr=O, k< Ix[ < 1
X_ + Itl lbg Ix tl[e(0- / dt -log , k < Ixl < 1,

+ sgn IN(t)]- / a log Ix tl dt x,

k < Ix < 1.

The first two of these are found in [4, while the last two will be derived in 5.
From (1.1), we can produce the equation

(2.28)
+ [R(t)]- 1/2[t[ + log It x[u(x) dx dt

-1

+ [R(t)]-I/2[tlf(t)dt.
-1

Then by interchanging the order of integration and utilizing (2.26) we find

f_-k 1 7 f_-k(2.29) r2 + u(x) dx +log (2/k’)
]t]f(t)[R(t)]-1/2 dr.

Now (2.23) can be used to evaluate the left side of (2.29). Integrating (2.23) with
the aid of (2.24) we find that

(2.30) 2 -+- u(x) dx D +
N//(1 X2) (X2 k2)

dx 7rD.

Comparison of these last two equations yields

f_k(2.31) D
log (2/k’)

[t[f(t)[R(t)]-1/2
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Hence (2.23) becomes

k .1 [R(t)]l/e sgn f’(t) N + r[f(k) f(-k)]rce [R(x)] 1/a sgn x u(x) + dt.]k t- x 2K(k)
(2.32)

+ Itlf(t)[R(t)]-1/2 dr, k < Ix[ < 1.
log (2/k’)

This gives a formula for the solution of (1.1). All quantities on the right side are
known in terms of the given functionf(x); however, the constant term is somewhat
cumbersome. This motivates the finding of an alternative expression which will
finally bring the solution into the form of (1.2).

By integrating (2.32) and utilizing (2.25), we obtain the relationship

f,- 1 N + z[f(k)- f(-k)]
(2.33) + xu(x) dx

2K(k)-1 k

To obtain another expression for the left side of (2.33), we consider the follow-
ing integral of (1.1)

+ sgn [R(t)]- 1/2 1 2 E(k)
KA + log It xlu(x) dx dt

f_-k fkl{ [ g(k)}(2.34) + sgn [R(t)]-l/2 2

)A f(t)dr.

The interchange of the order of integration and utilization of the identity (2.27)
gives

(2.35) + xu(x) dx + sgn [R(t)-]- 1/2 1 2

Thus the constant on the right side of (2.32) can be replaced by the constant in
(2.34) to yield the final formula

(2.36)

f_-k fk [R(t)] 1/2 sgn f’(t) dt7r2[R(x)] 1/2 sgn x u(x) +
t--x

+ + t2 E(k)
K(k)

sgn tf(t)[R(t)]- ,/2 dt,

log/k’)]
k<lx[ < 1,

as in the solution of (1.1)

3. Series solution. Our task here is to show that the series

(3.1) o + c/),(t)f(t) dt c/),(x),S(x) -g.. k < Ix[ < 1,
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with the set of functions {b,(x)} defined by (1.6) satisfies (1.1). That is, u(x) S(x)
whenever a solution exists. The existence question has been resolved essentially
in the previous section.

The ease with which we can demonstrate that this series is a solution arises
from our fortune in knowing the explicit form of the {b,(x)}. We were able to
construct these functions (with one exception) by following the work of Shinbrot
3]. He shows that the problem of solving the integral equation (1.1) is related to
an eigenvalue problem for an ordinary differential equation. We have solved his
eigenvalue problem, and use the solutions in forming the {qS,(x)}. Our method
of forming the series (3.1) is somewhat different, and curiously we find it necessary
to add a term qSo(X which is not a solution of his differential equation.

One of the essential properties of the {q,(x)} is orthogonality with respect to
the integral operator A; that is, the integrals

(3.2) Iron + qm(X) + log IX tlb,(t) dt dx,
k

satisfy the condition

m=0,1,..., n=0,1,...

(3.3) Iron--"
f0, m

Mn, m n.

At this point, we enter into the details of constructing the {4,(x)} and show
that these functions satisfy (3.3). The background for much of this is given in [3].

To study (3.2) we introduce the Fourier transform pair,

(3.4) q,({) eigXdp,,(x) dx, dp,(x) e-i’$,({) d.

Then the Parseval formula gives

(3.5) Ira, --22 f *()"()d
for sufficiently well-behaved functions satisfying ,(0) 0.

To find suitable candidates for the {q,(x)}, we follow 3] in considering the
eigenfunctions {Z,(x)} which satisfy

d2 d
dx2 [(1 xZ)(x2 kZ)g,(x)] + xx[X(Zx2 1 k)z,(x)] + 2,Z,(x)= 0,

(3.6) k < Ixl < 1,

lim [(1- x2)(x2 k2)dzn(x) x(2x2 -1- k2)Zn(X)] =O.
x- + 1, +k dx

Also, we recall that every solution of (3.6) also satisfies

(3.7) lim [(1 X2)(X2 k2)zn(x)] --O.
x- _+ 1, __k
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Taking the Fourier transform of (3.6), we obtain

I2d4 d3 d2 d
2k2]+ 2)- + (1 4- k2)2d 4- (1 + k2)-- + )?,() + 2,)?,() 0,

(3.8) -oe < < oo,

lim )?(0 0.

By considering a similar equation for 2*(), we can perform the usual manipula-
tions for self-adjoint operators to find that, if )?*m(0) )?,(0) 0, then

(3.9) (2, ’’m)/ d 0
d-

In view of (3.5)the {Z,(x)} should be closely related to the {b,(x)}. We proceed to
investigate this connection.

To solve (3.6) it is convenient to change variables. Let

(3.10)

and

ds
0(x)

[is2 k21( s2)]1/2

{K(k)+F[sin -1 (x2-ke)l/2)k,l}sgnxk’lxl

(3.11) Zn(O [R(x)]I/2zn(X),
whereupon (3.6) can be expressed as

a2z.(0)
dO2 + ,.z.(o) o, k(k) < 101 < K(k)+ K(k’),

+_ K(k) _+ [K(k) + K(k’)]

It is easily verified that this problem is satisfied by a function of the form

Z(O) (a + b sgn 0)cos {2,/e[101- K(k)]},
K(k) < I01 < K(k)+ K(k’),

(3.13)
n=0,1,

where a and b are arbitrary constants. It follows that the solution of (3.6) is of the
form

(3.14) Z(x) =(a + b sgn x)cos {2/2110(x)1- K(k)]}, k < Ixl < 1.

Nevertheless, care must be exercised in the arrangement of these possible solutions
into an acceptable set {Z,(x)}. An important criterion is that their Fourier trans-
forms {,()) satisfy (3.9), thereby establishing the desired orthogonality.
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For the appropriate {Z,(x)} we choose, for 2 > 0,

[R(x)]l/2Zz,,(x)
cos

K(k’)
[0(x) K(k

O,
(3.1)

[R(x)]I/2Z2n+ 1(X) F/
cos i(k,[O(x) + I,:(k)]

k<x<l,

-l<x<-k,

k<x<l,

-l<x<-k, n= 1,2,

Unfortunately, this scheme cannot be extended to 2 0 because the resulting
solutions do not possess the desired orthogonality. Even though they satisfy (3.6),
their Fourier transforms are inappropriate for (3.9). This anomaly is partly
remedied by taking a linear combination of these solutions corresponding to
2 0. Hence we define

(3:,16) [R(x)]l/zzl(x sgn x, k < Ixl <
which satisfies (3.6) for 2 0, and its Fourier transform has the desired behavior.

Now the {Z,(x)} defined by (3.15), (3.16)do give Fourier transforms {2,()} for
which (3.9) applies, and therefore they have the desired orthogonality with respect
to the operator A. Consequently they are acceptable as members of the set
but they fail to provide all of the elements of that set. Ultimately, it will be seen that
the required {qS,(x)} are given by

(3.17) qSo(X) IxI[R(x)]-1/2, (/)n(X)
n>0, k<lx]< 1.

We note that b0(x) is not a solution of the eigenvalue problem (3.6).
Let us confirm that the {qS,(x)}, defined by (1.6) and equivalently by (3.17),

satisfy the orthogonality relation (3.3). By virtue of (3.5), (3.9), and (3.17) we
immediately have Ira, 0 for m - n, m 1, 2, ..., n 1, 2, Thus it remains
to show that Imo 0, m 1, 2,.... To do this, we recall the identity (2.26) and the
definition (3.2) which together yield the expression

(3.18) Imo rlog, + )m(X) dx, m O, 1,

Upon making the change of variables (3.10), (3.11), we find that

(3.19)

2 f-
K(k)

11 o rt log
K(k)- K(k’)

K(k)+K(k’)

+ sgn0d0=0, rn= 1,

2 K(k)+K(k,) f mrc }COS I0-K(k)] dO=OI,,o rc log - K(k) K(k’)
m-- 2,3,....

This establishes the desired orthogonality.
The constants Mo =-rr2 log(2/k’) and M1 =-2rcK(k)K(k’) are easily

found by straightforward calculation of the integrals Ioo and 11a respectively. We
show in 5 that M2, M2,+ -K2(k’)/(2n), n 1, 2,....
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Now that our digression into the determination of the {b,(x)} is finished, we
return to the task of demonstrating that the series S(x) provides the solution to the
integral equation (1.1).

As our first step toward showing that u(x) S(x) we consider the function
(AS)(x) generated by action of the integral operator on the series. We assume that
the summation and integration operations can be interchanged so that

,s),) oIf_- f+ f(s)dp,(s) as + log Ix tldp,(t) dt,

(3.20) k < Ixl < ,
Then by virtue of the orthogonality relation (3.3) for the {b,(x)} we have

f__ f l f__ f l(3.21) + dp,,(x)(AS)(x) dx + dp,(x)f(x) dx,
-1

n=O, 1,...

(3.22)

Given any f(x) for which there exists a u(x) such that (1.1) is satisfied, we have

+ ck.(x)(AS)(x) ,ix + ck.(x)(Au)(x) dx,
-1

n-- 0,1,...

Since the operators involved are linear, this is equivalent to the condition

(3.23) + ck,(x)[A(S u)(x)] dx O,
-1

n 0,1,...

Our final step is to show that (3.23) implies that S(x) u(x) 0. We make
the change of variables defined by (3.10) and use the explicit forms for bz,(X) and
b2,+ l(x), n 1, 2, ..., to obtain the expressions

cos [O K(k)] [A(S u)(x(O))] dO O
.,,) K(k’)

n-- 1,2,...,
(3.24)

_K(k)_K(k,)COS K(k,i[O + K(k)] [A(S- u)(x(O))] dO O,

n= 1,2,....
The well-known property of the completeness of the cosine functions enables us to
conclude from (3.24) that the function A(S u)(x(O)) is constant on each of the
indicated intervals. That is, we are dealing with a function of the form

(3.25) A(S u)(x(O)) a + b sgn 0, K(k) < 101 < K(k) + K(k’),

where a and b are arbitrary constants.
It remains to satisfy the conditions (3.23) for 4o(X) and q51(x). This gives us

f__ f l f_-,f,l0 + (a + b sgn x)[R(x)]- 1/2 dx a + ]xl[R(x)]- 1/2 dx,

(3.26)
0 + (a + b sgn x)[R(x)]- 1/2 sgn x dx b + [R(x)]- 1/2 dx,
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whereupon we conclude that a b 0, and hence

(3.27) Z(S u)(x) 0, k < Ixl < 1.

But the explicit form (1.2) of the solution to the integral equation shows that (3.27)
is satisfied only by

(3.28) S(x)- u(x)- 0, k < Ixl < 1,

which establishes the desired result.

4. Correction of Tricomi’s solution. The integral equation

(1.9) + dt g(x), k < Ixl < 1 0 < k < 1
t--x

has been treated by Tricomi [4], who gives two formulas for the solution. Un-
fortunately one is in error. The integral identity found at the foot of p. 405 in his
paper has been substituted with a loss of sign into the equation which precedes it.
This leads to the presence of two terms in his equation (9) which should cancel
instead. Upon correction, his result verifies the one given here.

To solve (1.9), we differentiate (1.1) to find that

f_-* f’ u(t)
(4.1) + dt -f’(x), k < Ixl < 1.

-1

Then formula (1.2) applies to (4.1) and (1.9) with the identification v(x) u(x),
’Xg(x) -f (), k < Ixl < 1. Of course, f(x) -g(x)dx is now arbitrary to the

extent of an additive constant, and so the definite integrals involving f(x) in (1.2)
must also be considered as arbitrary constants. Thus we are led to the formula
(1.10) as the solution.

5. Proof of two integral identities. From (1.1) and (2.23), we consider the
special case in which f(x) 1, k < Ixl < 1, The corresponding solution U l(X) is
given by

(5.1) n2ul(x)-- -Dlxl[R(x)] -x/2, k < Ixl < 1,

where D1 is unknown. Moreover, we have

_-k fk 2
(5.2) + log Ix- t[ [tl[R(t)]-1/2 dt k < Ix[ < 1.

Dx

Then by letting x 1 in (5.2) and combining the results, we find

rc2 l f_
-k

fk(5.3)
D1 2

2
log (1 t2)ltl[R(t)] 1/2 dt n log

which establishes (2.26).
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To derive (2.27) we consider (1.1) and (2.32) for the special case f(x)=_ x,
k < Ixl < 1. The solution u2(x) then follows from (2.32) as

(5.4)

fX [R(t)]l/2 sgn
dt Na + 2nk

g2[R(x)]l/2 sgn x Uz(X) +
Lk t- x 2K(k)

k < Ixl < 1,
k [R(t)]l/2 sgn

dt dsNa [-R(x)] -1/2 +
-k k s

The evaluation of the integrals in (5.4) is effected by use of the identity

2 f_
-k fkl [R(t)]l/2 sgn+

7 t-- f

1 k2 2(ka y2)1/2[(1 y2)1/2
dt (k2 y2)1/2],

1 k2 2(y2 k2),

which follows from identities found in [2]. It follows that

(5.6) nu2(x) sgn x [R(x)]l/2[1 E(k)/K(k)- x2], k < Ixl < 1.

Then substitution into (1.1) yields (2.27).
Next, we evaluate the normalizing constants

(5.7) Mzn Mzn+ KZ(k’)/(2n), n 1,2,

From the form of the {q,(x)}, it is clear that M2n M2n + 1, n 1, 2, .... We
consider the special case of(1.1)in which f(x) [R(x)]l/22n(X), k < IXI < 1. After
some manipulation, the corresponding solution u3(x) is found from (1.2) to be

+ log Ix tlq2,(t) dt[R(x)] 1/2 sgn x u3(x KZ(k,)

-[- 0 + [R(t)]l/2dPo(t)dP2n(t) dt

n2 + tltldp2.(t dt,

k<lxl < 1, n= 1,2,...

Alternatively, from (1.4) we find that

(5.9)

/(k’)
[R(x)] 1/2 sgn x u3(x) -n[R(x)] 1/2 sgn x dp 2,,(x)

+ -0 + [R(t)]l/24,0(t)dP2,(t dt,

k < Ixl < 1, n 1,2,...
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Comparison of these results yields the relation

+ log Ix tlCz,(t) dt
K2(k’)

(5.0) - + tltlCz.(t) dt

K(k’)
2M2n
[R(x)]1/2 sgn x 2,(x),

k<lx[< 1, n= 1,2,....

Upon multiplying (5.9) by b2,(x and integrating over the indicated interval, we
find that

+ 2,(x) + log Ix tl2,(t) dt dx(5.11) K2(k,)

which gives

K2(k’)
4M2n’
n- 1,2,...

(5.12) M22,
K4(k’)
=, n= 1,2,....

4n2

Then (3.3) and (3.5) show that M, I,, < 0, n 1, 2,..., which leads to the
desired result (5.7).
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ON LIE ALGEBRAS OF DIFFERENCE OPERATORS AND THE
SPECIAL FUNCTIONS OF MATHEMATICAL PHYSICS*

WILLARD MILLER, JR.’

Abstract. A method is given whereby special functions of hypergeometric type and their general-
izations can be derived in a systematic fashion from Lie algebras of difference and differential operators
in one complex variable. The method automatically yields contour integral representations, generating
functions, recurrence formulas, integral identities, and infinite sum identities for each function treated.
This approach unites Vilenkin’s integral transform method for special functions and the older factor-
ization method into a single flexible tool.

Introduction. In the study of special functions via group theory two basic
methods have been found useful. The older approach, related to the factorization
method [1], considers special functions as basis vectors for models of Lie algebra
representations and leads to generating functions and series identities. The author’s
book [2] probably presents this approach in its purest form, although the idea is
an old one. The newer approach due primarily to Vilenkin [3 involves a Fourier
or Mellin transform of simple multiplier representations of certain Lie groups.
The group action in the transformed representation is via integral operators
whose kernels are special functions. The group multiplication property of these
operators yields integral identities for special functions.

Both methods agree in considering the groups with Lie algebras 33, f(0, 1)
and sl(2) (to be defined later) as fundamental for the study of special functions of
hypergeometric type. However, beyond this the relationship of the methods is not
entirely clear. The older method is more systematic than Vilenkin’s, but it seems
incapable of obtaining by itself his integral identities. On the other hand, Vilenkin’s
approach does yield some series identities (through the evaluation of some contour
integrals by residues) but their group theoretic significance is not clear and the
identities are obtained for very restricted values of the parameters. Finally, the
factorization method isolates five classes of special functions while Vilenkin’s
method (as applied to 3, a(0, 1), and sl(2)) yields only three of these.

In the present paper we outline a theory which is capable of obtaining all
the results of [2] and [3] for functions associated with the above three Lie algebras,
and relating the results to one another. Furthermore, the theory can easily be
generalized to apply to new classes of special functions.

The theory involves a classification of all realizations of 3, if(0, 1) and sl(2) by
second order difference operators in one complex variable. Using these operators
to construct models of irreducible Lie algebra representations we show that the
basis functions for each model are special functions of hypergeometric type. Then
using (formally) the Fourier transform we map our model into a new model
involving first order differential operators. Local Lie theory is employed to extend
this Lie algebra model to a Lie group representation and the results are mapped
back to the difference operator space via the inverse Fourier transform. The effect
of this procedure is to exponentiate a Lie algebra representation by difference
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operators into a local Lie group representation. In the process we obtain both
series and integral identities for special functions as well as combinations of the
two.

The difference operator approach yields three classes of functions--those
obtained by Vilenkin. We show that the remaining two classes are related to Lie
algebra models in terms of second order differential operators, which can also be
exponentiated via the Fourier transform.

All of the special function identities obtained in this paper are known, although
we could have obtained new results by considering sufficiently complicated
examples. The point we wish to emphasize is the pedagogical and logical simplicity
of a reorganization of special function theory along the lines indicated here.

1. Lie algebras of difference operators. We begin by constructing realizations
of the Lie algebra 3. This Lie algebra has a basis J /, d-, j3 with commutation
relations

(1.1) [d3 j+_] +j+ [J+ J-] 0

We require that the realizations consist of linear difference operators acting on a
space of functions of one complex variable x. In particular,

d + =aE+b+cL,

(1.2) J- gE + h + jL,

j3 sE + u + vL,

where the lower-case letters denote functions of x, and E, L are the difference
operators

(1.3) Ef(x) f(x + 1), Lf(x) f(x 1).

Here, f is a function of x.
We shall classify all operators (1.2) satisfying the commutation relations (1.1).

(We shall not be specific as to the domains of the functions involved since our
computations are purely formal.) These operators will then be used to construct
models of those irreducible representations of 3 classified in [2] or [4]. For all
such representations the Casimir operator J+J- is a nonzero multiple of the
identity operator. Therefore, we shall also subject the operators (1.2) to the
requirement

(1.4) J+J- 21,

where 2 is a nonzero complex constant and I is the identity operator.
To simplify the statement of the solution of this problem note that if the

operators J+, j3 provide a realization of (1.1), (1.4), then so do the operators

(1.5) Y+ p(x)- 1J+ p(x), y3 p(x)- Xj3p(x),

where p(x) is a nonzero function of x. Here,

(1.6) j3 p(x)-p(x + 1)s(x)E + u(x) + p(x)-p(x 1)v(x)L
and

s(x)v(x + 1) g(x)(x + 1)
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with similar results for +/-. We shall regard two realizations J, as equivalent if
they are related by (1.5) for some function p(x). (Note that by an appropriate
choice of p(x) we can show that every realization is equivalent to a realization for
which either s(x) or s(x) 0.)

Furthermore, if J+/-, j3 provide a realization of the commutation relations,
then so do the operators 3 5 J+/-, 33 _j3. We shall identify the realizations
J and 3.

THEOREM 1. Every realization of relations (1.1) and (1.4) by difference operators
(1.2) is equivalent to a realization of the form

J+ klE, J- k2L,
j3 k3E + (k4 x) + k5L, kj C,

where klk 2 and k3 0 or 1.
The proof of this theorem, though tedious, is completely elementary, so we

omit it.
The four-dimensional Lie algebra c(0, 1) has a basis J+/-, j3, ! with commuta-

tion relations
[,/3, j+/-] +j+/- [J+ J-] -I

(1.7)
[j3, I3 [J+/-, I3 O.

We look for realizations of this Lie algebra such that J+/-, j3 take the form (1.2)
and 1 is the identity operator. In order to successfully construct models of the
irreducible representations of f(0, 1) listed in [2] or [4] we require that the Casimir
operator be a multiple of the identity

(1.8) J +J- j3 21,
where 2 is a complex constant. Two realizations of (1.7) and (1.8) are equivalent
if they are related by (1.5) for some nonzero function p(x). Furthermore, noting
that the operators + J-, - -j+, 3 j3, I provide a realization
whenever J+/-, j3 do so, we identify these realizations.

THeOReM 2. Every realization of (1.7) and (1.8) by difference operators is
equivalent to a realization of theform

J+ klE + k2, J- k3 -1- (k4 x/kl)L,
j3 ksE + (k6 x) -1- k2(k4 x/kl)L, kjs C,

where kl O, klk3 k5 and k2k3 + klk4 k6 2 -Jr- 1. We can assume k5 0
or 1 if necessary.

The three-dimensional Lie algebra sl(2) has a basis J+/-, j3 with commutation
relations

(1.9) [j3 j+/-] +j+ [j+ j-] 2j3

We look for realizations of this Lie algebra such that J 5, j are difference operators
(1.2) and the Casimir operator

(1.10) j+j- + j3j3 j3 2(2 + 1)I
is a multiple of the identity operator. We define the equivalence of two realizations
by (1.5) and identify two realizations J, J if 3 + J-, 3- J +, 3 J.
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THEOREM 3. Every realization of (1.9), (1.10) for which c(x) 0 is equivalent
to a realization of theform

(1.11)

J+ kE + (2kx + k2) 4- (klX(X 1) + k2x 4- k3)L,

k24E k4(k4 1)J- k----- k (2k,x + k)

(k4 1)2

k2 (kx(x- 1)4- k2x 4- k3)L

,]3 k4E + (2k4 1)x + (2k4 1) k2/
2k]

k4 1
(kx(x 1) 4- k2x 4- k3)L

k
k2 k2kjeC, k :/: O, 2(2 + 1)-
2k -2- + 1 k3

kl

(We can assume k4 0 or 1.) Every realization for which c(x) =_ 0 is equivalent to a
realization of the form

(1.12)

J+ klE,

k24E + k2) 4- 1 x) 4- x 4- k3
2k4 (x

x 2k2J-

j3 ka.E + (k2 x),

kj C, kl O, 2(2 4- 1) k2(k2 4- 1) + kxk3.

L,

(We can assume k4 0 or 1.)
If k3 0 it is easy to show that (1.11) is equivalent to the realization

J+ k(klX 4- k2)E 4- (2kxx + k2) 4- xL,

k(k,x + k2)E
k4(k# 1)(2k,x + k2)

(k# 1) 2
(1.13) J-=

k, k2 k21
xL,

j3 k4(kx 4- k2)E 4-
k4 1

(2k4 1)x + (2k4- 1) + ki
xg,

which is first order in x. Similarly, if k3 0, then (1.12) is equivalent to the realization

J+ kx(2k2 x)E,

k24(2k2 x)E + 2k4(x k2)+
x

(1.14) J -k- kl -1L’
j3 k4(2k2 x)E + (k2 x), /],(2 4- 1) k2(k2 4- 1).
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2. Models of3 representations. We now use Theorem to construct models
of the irreducible representations of Q(co, mo) of 3, listed in [23 and [43. Here,
the representations space W has a basis {fm}, m S {mo + n’n 0, 4-1,...},
where 0 =< Re mo < 1. The action of the operators J-+, j3 on this basis is

(2.1) J+J-fm co2fmJ 3fro mfm J + cofm + 1,

If the J-operators are the difference operators ofTheorem 1, then the basis functions

fm are Bessel functions or their degenerate limits. Indeed, if we choose

(2.2)

and

J+ coE, J- coL,

j3 E- x- L

(2.3) fro(X)-- Kin+x(7,),

we obtain a model of (2.1). A linearly independent set of solutions is given by

(2.4) fro(X) Ira+ x(-- Z).

Here Kin(z) and Im(Z are modified Bessel functions [5, Chap. 7].
We can exponentiate our model of a Lie algebra representation to construct

a Lie group representation. One way to accomplish this is via the Fourier transform.
Let be the space of C-functions h(y) on the real line such that elyly" dy’h(y) is
integrable for all nonnegative integers n and k and for some e > 0. We define the
Fourier transform of h e ocg by

(2.5) H(x) ,[h(y)] h(y)e’’ dy.

Then H(x) is an analytic function of x in the strip -e < Re x < and

(2.6)
1 c+ioo H(x)e -’‘y dx,h(y) -- l[H(x)] / c-ioo

Furthermore, we have the following relations"

(erh(y)) H(x + 1), -(yh(y)) x (X),

(2.7) (e-’h(y)) H(x- 1),

Proceeding formally, we can regard the basis functions fro(X) as the Fourier
transforms of functions hm(y) on the real line. The induced action of the Lie algebra
representation on the functions h(y) is given by differential operators K -1J,
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where the J-operators are determined by (2.2):

K + coer, K- coe- r,
(2.8)

d
K =zsinhy+

dy"

(Note that the K-operators satisfy the same commutation relations as the J-
operators.) Using the K-operators to construct a model of Q(co, too) we easily find
the basis

(2.9) hm(Y) Co exp [- z cosh y + my],

where Co is a nonzero constant. (For convenience we set Co 1/2.) Here hm(y
for Re z > 0.

Since the operators (2.8) are first order differential operators we can use Lie
theory to compute the local Lie group representation which they induce. Consider
the real Lie algebra with basis K +-, K3. This is the Lie algebra of the group of
motions MH(2) of the pseudo-Euclidean plane [3, Chap. V]. Here MH(2) has the
3 x 3 matrix realization

(2.10) A(O, bx,b2)

and multiplication rule

e 0

0 e- b2
0 0

(2.11) A(O, b b2)A(O’ b’ b’2) A(O + 0’, bl + eb’, b + e-b’2).
Furthermore, we can make the identifications exp OK 3 A(O, 0, 0), exp bK+

A(0, ba, 0), and exp b2K- A(0, 0, b2). A straightforward computation using
local Lie theory [2] shows that the action of MH(2) on induced by the K-
operators is

(2.12) [T(A)h](y) exp [cobxe o
+ cob2e-r + 2z sinh sinh y+

0- lh(Y + 0),

These operators leave invariant provided

(2.13a) Re (cob + (z/2)( i + e)) < 0

and

(2.13b) Re (cob2 + (z/2)(-1 + e-)) < 0.

However, for fixed h(y) these operators may make sense for a larger parameter
domain. From the group property we have

(2.14) T(A)T(A’) T(AA’), A, A’ MH(2).

Expression (2.14) makes sense on off provided the coordinates of A, A’ and AA’
each satisfy the inequalities (2.13). (Here again for fixed h(y) the restrictions on A
and A’ may be relaxed considerably.) The matrix elements of the operators T(A)
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with respect to the basis h
by (2.1) and are given by

(2.15)

hmo+k, k 0, + 1,..., are uniquely determined

[T(A)hmo+k](Y)= Z T(A)lthmo+l(Y),

etmo + k)O(b2(D)(k + Ik -ll)/2(b 10-))(I- + Ik -/I)/2
T(A)l oF(Ik II + 1;co2blb2)

(see [2, Chap. 3]).
Now we transfer this representation to the space. The basis vectors are

(2.16) [hm(y)] fro(X) exp [--z cosh y + (x + m)y] dy, Re z > 0.

It is easily verified that the operators J K-1 on are given by (2.2)
and that the relations (2.1) are satisfied by the basis functions (2.16). Moreover,

(2.17) [hm(y)] Kx+m(7,)

(see [5, vol. 2, p. 82]).
The operators U(A) T(A)o- define a local representation of MH(2)

on -. Here,

U(A f(x) T(A) f

(2.18)
1

dyex exp cob
2zci

e-.+of(t) ,
0

ey + cob2e-y + 2z sinh sinh

where A A(bl, b2, 0). If the integrals are absolutely convergent, we can inter-
change the order of integration and write

cC+(2.19) U(A)f(x) K(x, t; A)f(t) tit,

K(x, t; A) exp cobe + cobe- + 2z sinh sinh y +
(.o

+ y(x t)- toJ dy.

(These expressions are valid if the inequalities (2.13) hold.) The group multiplication
law implies

+ ic

(2.21) g(x,t; AA2) g(x,y; Ax)K(y,t; A2)dy

provided it is permissible to interchange the orders of integration in U(AA2)f
U(A)U(A2)f] (see 3, Chap. V]).
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Formulas (2.20) and (2.21) lead to a number of identities for Bessel functions
which are identical with those derived in [3] so we shall not repeat them here.
The novelty in our treatment is that we also have the relations

+ io

(2.22) U(A)fmo+k(X)= K(x,t;A)fmo+k(t)dt= Tlk(A)fmo+l(x
,c-io

which permit us to exponentiate the Lie algebra representation (2.2), (2.3). For
example let A A(b/2, b/2, 0), ip. Then

1
K(x, t; A) --:.Kx_t(- ipb), Im pb > O,

(2.23)
rtz

Tlk(A) ik-lJk-l(Pb),
where J,(z) is a Bessel function [5, Chap. 7. Then if Ipbl < [zl, Re z > 0,

U(A)fmo+k(X - T(A)hmo+k(y)exy dy
(2.24)

exp[(ipb-z)coshy+ (too + k +x)y]dy.

Making use of (2.15), (2.23) and changing the order of integration and summation,
we obtain

U(A)f,,,o+k(x)=

(see [6, p. 45]). On the other hand we can evaluate the integral (2.24) directly to
obtain

Thus,

U(A)fmo + k(x) =Km +k + x(z ipb).

(2.25) gm(z ipb)= iIJl(Pb)gm+l(Z), [pbl < Izl, Rez > 0.

Furthermore,

(2.26)
U(A)fmo+k(x)

1 c+ioo Kx_,(-ipb)Kmo+k+,(z)dt
7l ,c-io

Kmo + k+ x(Z ipb), Re z > 0, Im pb > O.

The group theoretic significance of both integral and infinite series identities are
obvious from this approach. Choosing other group elements we can derive a wide
variety of such formulas. Furthermore, by choosing contours in (2.5) other than
the real axis we can extend the domain of validity of the summation identities
and establish them for other types of Bessel functions.

Vilenkin establishes the identities (2.21) in terms of the degenerate basis

(2.2’) J+ E, J- L, j3
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This basis is convenient for integral identities but it fails to show the group
theoretic significance of the identities (2.22). By applying our method to other
operators listed in Theorem 1, such as J/ E, J- L, j3 zE x, we could
obtain additional series identities for Bessel functions.

3. Models of representations of f#(0, 1). Theorem 2 can be used to construct
models of the irreducible representations R(- 2, mo, 1) of f#(0, 1) (see [2, Chap. 4]).
For the representation R(og, mo, 1) the space Whas basis {fm}, m e S {mo + n "n

0, 1, + 2,... }, where 0 =< Re mo< 1. The action of the operators J-+, j3, I
is given by

J3fm mfm, Ifm= fm’ J+fm fm+l o9C, o9 + mo(3.1)
J-fro (m + o)f,,,_ , (J+J- J)fm of,,,, not an integer.

If the J-operators are the difference operators of Theorem 2, then the basis func-
tions for R(-2, too, 1) are confluent hypergeometric functions or degenerate limits
of these functions. Indeed, the operators

J+ E+ 1, J- =z+(1-x)L,.
(3.2)

j3 zE + (z + 2 x) + (1 x)L

and basis functions

(3.3) fro(X) F(x)(x, x + m- 1; z)

satisfy (3.1). The basis functions

ei,,F(x)F(m- 1)
(3.4) F(m+x-1)lFl(X;m+x- 1;z)

provide another solution. Here aFx and are confluent hypergeometric functions
[5, vol. I], and F(x) is a gamma function.

Just as in 2, we exponentiate our Lie algebra representation via the Fourier
transform. The operators K -J are given by

d
K + =u+ 1, K- + z,

du
(3.5)

d d
K3

=Uu+-u-k- zu nt- z + 2,

where u ey, i.e., we are using the Mellin transform.
Let be the space of all C-functions h(u) on (0, ) such that h(u) o(ua),

u 0, for some/3 < 1, and h(u) O(e-"), u , for some 7 > 0. Let -o c

be the space of C-functions on (0, ) with compact support. It is easy to construct
a model of R(-2, mo, 1) in terms of the K-operators. The basis is

(3.6) hm(u c( l -+- u) 2e-ZU,

where c is a constant. For convenience we set c 1. These functions belong to
provided Re z > 0. However, many of the identities which we derive will make

sense for less restricted values of the parameters.
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We can use local Lie theory to compute the Lie group representation induced
by the operators (3.5). The real Lie algebra spanned by K +, K3, 1 is the Lie algebra
of a four-parameter group G [3, Chap. VIII]. The elements of G are triangular
matrices

b c

(3.7) A(a,b,c,e)= O0 e a,b,c real, e>O.

0

The group multiplication rule is

A(a, b, c, e)A(a’, b’, c’, e’) A(a + ca’, be’ + b’, c + c’ + ba’,

and we make the identification

(3.9)
exp aK + A(a, 0, 0, 1),

exp cI A(0, 0, c, 1),

exp bK- A(O, b, O, 1),

exp (pK3 A(0, 0, 0, e ).

A straightforward computation [2] shows that the action of G on induced by
the K-operators is

[T(A)h](u) exp [(u + 1)(ze z + a) + 2(o + zb + e]h[(u + 1)e + b 1].
(3.10)

This expression defines a semigroup of operators on --ggo Indeed, (3.10) makes sense
only if (u + 1)e + b > 0 for all u > 0, i.e., only if

(3.11) e + b >__ 1.

The operators are defined for all z, toe C. Furthermore the group property
T(A)T(A’) T(AA’) holds whenever A and A’ satisfy (3.11), and )fo is invariant
under these operators. If h e and h(u) O(e-u) as u --* oo, then in order that
T(A)h we must require that (3.11) hold and in addition Re (ze z + a) < 7.

The matrix elements of the operators T(A) with respect to the basis (3.6) are
uniquely determined by relations (3.1):

T(A)h,no+,(u) Tu,(A)hmo+,(u), Ibe-q’l < lu +
(3.12) =

Tk(A eCe" +b-’-) ,( ab/e)J"mo + +

where

c"(z) F( + v + 1)
F( + 1)F(v + 1)

Fx( v;/2 + z)

is a generalized Laguerre function [5, vol. I].
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We can now transfer this representation to the spaces /’/go and //, where
///stands for the Mellin transform. Here

H(x) dd[h(u)] [h(d)] h(u)u du, h(u) e o,

(3.13) 1
H(x)u dx.

If he)V, then (3.13) is still valid provided the requirements Rex > -fl and
7 > -fl are met. The basis vectors dd[h(u)] e/dY are

//[hm(u)] fro(X) (1 + H) 2Hx- e-z,, du,
(3.14)

Rex>0, Rez>0.

It is straightforward to check that the functions fm(X) and the operators je, j3

satisfy (3.1), thus providing us with a model of R(-2, too, 1). (The integral can be
analytically continued into the half-plane Re x < 0 with the exception of simple
poles at x 0,- 1, -2,....) In fact, fm(X) is given by (3.3) as should have been
expected [5, vol.

The operators U(A) /T(A)/-1 define a local semigroup representation
of G on

U(A)f(x) =/dT(A)/d/- f

(3.15)
1

duux-exp[(u+ 1)(ze-z+a)+2qg+zb+c]
2rci

+io

" -,oo
[(u + 1)e + b 1] y(t)dt.

Corresponding to those values of the group parameters for which the iterated
integral is absolutely convergent we can interchange the order of integration and
obtain

,+ioo

(3.16) U(A)f(x) K(x, t; A)f(t) dr,

(3.17)

(x, t; A) / exp[(u+ 1)(zeo z + a) + 2q) + zb + c]ux-’

In particular these expressions are valid if

(3.18) eq’+b> 1, Rex>0,

[(u + 1)e + b- 11 -tdu.

Re(zeq’- z + a) < O.

The group multiplication rule implies the identity

(3.19) K(x, A,A2) K(x, y; A,)K(y, t; A2) dy
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is valid if the coordinates of A1, A2, and AIA2 each satisfy (3.18). Furthermore we
have the identity

(3.20)

V(A)fmo+k(x) K(x, t; A)f,.o+k(t dt

T(A)f,o+,(x)

valid whenever each portion of the equality converges. (The basis functions f,,(x)
belong to /W but not to /’o. Thus, the domain of validity of (3.20) is more
restricted than that of (3.19).)

The kernel functions K(x, t;A) can be expressed in terms of confluent hyper-
geometric functions and the identities (3.19) are equivalent to those derived in
[3, Chap. VIII] (see also [7]). However, (3.20) is new. As in 2, we prove this
formula directly for a single example: A A(-b, b, 0, 1), 1 > b > 0. Here

(3.21)
71,(A) bk-’(k- 2(b2)L’mo +

r(x)eb(-
K(x, A) T(x, x t+ 1; b), Rex>0.

2hi

Furthermore,

U(A)fmo+(x) [T(A)h,,o+](u)u du

(3.22) fo exp [-b(u + 1) zu](u + 1 + b)m+’-2ux-x du

bk-t(k-O 2(b2)r(x)tP(x mo +1 + x- l’z)-amo +

where we have used (3.12) and interchanged the order of summation and integra-
tion. Furthermore, direct evaluation of the integral yields

U(A)fo+(x e-’(1 + b)’+*+-2r(x)tV(x, mo+ k + x 1,(1 + b)(b + z)).
(3.23)

Finally, from (3.16) and (3.21) we have

U(A)fo+,(x)

(3.24)

e(- x)r(x)/’ +
tt’(x, x + 1 b)F(t)tP(t, + m 1 z) dr,

2hi
Re, > O.

One can obtain many such identities by varying the group parameters.
Moreover, by changing the contour in (3.13) to a path other than the positive real
axis it is possible to derive series identities for other confluent hypergeometric
functions. One need only require that the new contour integrals converge and that
the duality between (3.2) and (3.5) be maintained. Finally, we can get additional
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results by changing our choice of operators from Theorem 2 and our selection of an
irreducible representation from [2]. Vilenkin’s choice of operators is

J+=(x-1)L, J-=E, J3---z--x

which is convenient for integral identities but not for identities involving series.
These results can be extended in another direction by allowing u to vary over

the whole real axis. Then (3.10) defines a local group of operators on o, not just a
semigroup. One takes the Mellin transform on the positive real numbers and on
the negative real numbers simultaneously, thus associating with each h vf a
pair of Mellin transforms g+h. This is the approach followed in [3].

4. Models of representations of sl(2). In analogy with the work of the previous
sections we use Theorem 3 to construct models of the irreducible representations
D(p, mo) of sl(2), [2]. Here, the representation space W has a basis (fro}, me S

{too + n’n 0, _+l,...}, wherep, mo C, 0 __< Remo < 1 and

J3fm mfm, J+fm (m- P)fm+ ,,
(4.1)

J-f,, -(m + P)f,n-1, (j+j- + j3j3 ja)f,, p(p + 1)f,,.

If the J-operators are the difference operators of Theorem 3, then the functions
are hypergeometric functions or their degenerate limits. For example, the operators

J+ (z 1)-l[(x + 1 y)E + (2x y) + (x 1)L],

(4.2) J- (z- 1)-l{(x + 1 7)E- z(2x 7)- z2(x 1)L},

and basis functions

(4.3) f"(x)=(-1)"F(7-x)F(X)F(F(7)m + z’ 7 x;7;1 z)
satisfy (4.1) with p -7/2. Here the operators (4.2) are obtained from (1.13) by
replacingxwithx + 1,settingkl 1,k2 2- 7,k4 -(1 z)-l,andrenormaliz
ing the operators for the sake of symmetry. The F(a, b;c;z) is a hypergeometric
function [5, vol. I].

As in the preceding section we apply the Mellin transform and obtain
differential operators K //{-J/on .:

K + -(z- 1) -1 -(u+ 1)Zu-7(u+ 1)

(4.4) K- =(z- 1) -1 u+z)2uu+7(u+z)

K3-(z- 1) -1 (u+z)(u+ 1)d+7 u+
du 2

It is easy to verify that the functions

(4.5) h,,,(u) (-1)"(u + 1)"-/2(u + z)-"-/, u > O,
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together with the K-operators define a model of D(-y/2, mo). To be definite we
require z real, z > 1, but we could also make sense of these formulas for complex z.
The hm(u belong to (f provided Re y > 0.

The real Lie algebra generated by K-+, K3 is isomorphic to the Lie algebra of
SL(2, R). The elements of SL(2, R) are 2 2 real unimodular matrices

(4.6) A
abd)’c ad-bc=l.

Here we make the identification

(4.7)

expbK+ (10 -bl),
e/2 0

expq)K3
0 e -’/2

exp cK-

It follows from these expressions and (4.4) that the action of SL(2, R) on /g induced
by the K-operators is

(4.8)

[T(A)hl(u) (z 1)[-(a + b)(u + 1) + (c + d)(u + z) -’

haz(u+l)+b(u+l)-cz(u+z)-d(u+Z_)z)]-a(u + l) b(u + 1)+c(u+z)+d(u+
CZ

a

b

Just as (3.10) this expression defines a local semigroup of operators on o. In
particular gfo is invariant under the operators provided c + d >= a + b, az + b
>= z(cz + d).

The matrix elements of these operators with respect to the basis (4.5) are given
by

(4.9)

F(k- l+ 1)
l+bc

(See [2, Chap. 5] for a precise determination of the domain of definition of these
operators and matrix elements.)
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Using (3.13) we can tranfer our representation to the spaces ///oo and /.
The basis vectors ///[h,,(u)] are

(4.10) ux- l(u -k- 1)m-’/2(U -t- Z) -m-?/2 du,

Re), > Rex > 0.

It is straightforward to check that these functions and the operators (4.2) satisfy
relations (4.1). Furthermore, the integrals (4.10) are equal to the hypergeometric
functions (4.3), [5, vol. I].

We can define a local semigroup representation of SL(2, R) on /Wo:

Whenever this iterated integral converges absolutely we can interchange the order
of integration and obtain

(4.12) U(A)f(x) K(x, t; A)f(t) dr,,

(4.13)
K(x,t;A)

(z
2hi-

1)7 ff uX-[-(a + b)(u + 1) + (c + d)(u + z)] -’+t

[(az + b)(u + 1)- (cz + d)(u + z)] -t du,

c+ d>= a+ b, az+ b >z(cz+ d).

The kernel functions are hypergeometric functions or their limits. The group
multiplication rule leads to integral identities of the form (3.19). These are worked
out in detail in [3, Chap. VIII. In addition we have infinite sum identities of the
form (3.20).

For example, let a d cosh e, b -z 1/2 sinh e, c -z 1/2 sinh e, e > 0.
Then

z(x-t)/2 F(x)F(-x + 7)(cosh (X)x+t-q)
(4.14) K(x, t; A)

2hi F(?) (sinhx)x+t
F

-1
x, t; ,

sinh2

Re7 > Rex > 0,

Tu,(A) (cosh O)-+l-k( Z 1/2 sinh 0)k-l

(4.15) F -+mo+k+l
-,-+mo+/+ 1

mo l,- + mo + k k- + 1;tanh2
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Also,

(4.16)

and

T(A)(- 1)m+/F(7 z)F(x) 7
F(7)

F mo + l+,
7 x 7 ;1- z), Iz /2 tanh ] < 1,

Zx/2 F(x)F(-x + 7)f6+ioo (cosh 00x/- -1
U(A)fmo+k(X) }-i F(7)2 "6-ioo (s-nl :7 F x, t; 7;

sinh2 e
(4.17)

F(7- OF(OF mo +k+,7- t;7;1-z dr,

ReT>>0.

Finally a direct computation of the integral in (4.6) yields

(4.18)

U(A)fmo+,(x)
(--1)m+k

2rci
(cosh e + Z 1/2 sinh 00-m+k+7/2-x

mo %- k -+- , /- x;3; 1 z2

1 / z- 1/2 tanh
1 +z/2tanha

These results can be extended in many directions (the discussion at the end of
3 also applies here). In particular by choosing contours other than the positive

u-axis we can obtain many additional summation identities. Furthermore, this
technique can be used to construct models of irreducible unitary representations of
SL(2, R) and SU(2). Such models lead to orthogonality relations for special
functions. (See [8] and [9] for some examples.)

5. Representations by differential operators of second order. In [2] we classified
all models of the Lie algebras 3, f#(0, 1), and sl(2) by first order differential
operators in one complex variable. We have made use of these models in this paper.
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Now we classify all models of these Lie algebras by differential operators of at most
second order"

d2

b
d__ d2 d

J+ a-x + dx + c, J- g-dx + hux + j,

d2 d
j3 s_x2 + Uxx + v, E 1,

where the lower-case letters denote analytic functions ofx. We look for all models of
the three Lie algebras such that at least one of a, s, g is not identically zero and
such that the Casimir operator is a constant. Two models J, J are equivalent if

(5.2) J+ p(X)- 1J+ p(X), j3 p(x)- 1j3p(x)

for some nonzero analytic function p(x). Here

d2

p(x) J + p(x) a-d-x2 +
(5.3)

2ap-
dp d
-dx+b-x + ap -1

d2p dp
-d-x2 + bp--x+ C

with similar results for -, 3. Two models will be identified if one can be obtained
from the other by an analytic change of variable. We also identify the realizations J
and J discussed in 1.

THEOREM 4. There are no models of 33 by second order ordinary differential
operators. Every realization of if(0, 1) is equivalent to

5.4)

d x dJ+ - -, J- c--
dx c dx’

d2 d
j3 2-c-d-x Xx
j+j- j3 21,

Every realization of sl(2) is equivalent to

d2 )dJ+ Xx2 + 2(x p 1
dx

x + 2(p + 1),

d2 d
J- x-x2 + 2(p + 1)dx,

d2
-x-x +(x-2p-2) +p+ 1,

j+j- _+_ j3j3 j3 p(p + 1),
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The proof of this theorem is tedious but straightforward, so we omit it.
We can use the operators (5.4) (c 1) to construct a model of the representa-

tion R(0, mo, 1), (3.1), of f#(0, 1). (Consideration of R(c0, mo, 1)for co va 0 leads to no
new results.) As basis functions we can take

(5.6) fro(X) 2-m/2nm(xl)= eX2/4Dm(x)

or

(5.7) fro(X) eX2/2eir( 1)F(m + 1)2(m+ 1)/2H_m_ l(ix/xf),

where Hm(x is a Hermite function and D,,,(x) is a parabolic cylinder function [5,
Chap. 8].

Since J-+ are first order operators we could use local Lie theory and (3.12) to
derive a series of summation identities for these basis vectors. This is essentially
what is done in [2, Chap. 4]. It is more instructive, however, to formally take the
inverse Fourier transform as in the preceding sections of this paper. The trans-
formed operators K -1j are

+u K u,

In terms of the K-operators, a model for R(0, mo, 1) is provided by the basis vectors

(5.9) h,,,(u) cF(m + l)u -tin+ 1)e-u2

where we set c 1 for convenience. Since the K-operators are first order we can
use local Lie theory to compute the induced group action of G"

(5.10) [T(A)h](u)={expI(U-a) urea
+ b ---+ c

Here, A A(a, b, c, ) is defined by (3.7). The matrix elements of T(A) with respect
to the basis (5.9) are given by (3.12) (o) 0). To transfer these results to the opera-
tors (5.4) we take the Fourier transform"

(5.11) .[hm(u)] F(m + 1) e-u:/2 +uxbl-(m+ 1)du.

It is easy to verify that these functions and (5.4) define a model ofR(0, mo, 1) at least
for Re m < 0. The [h,,(u)] are linear combinations of the basis vectors (5.6) and
(5.7). Since these functions are defined only for Re m < 0 they are not suitable for
the application of operators U(A)= T(A)-1. We get around this difficulty
by choosing a new contour for the integral transform o which preserves the formal
properties (2.7) and such that ’[hm(u)] converges for all m e S. A suitable candidate
is

(5.12) [h(u)] e"Xh(u) du.
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Here the contour starts at + oo on the real axis, circles the origin counterclockwise
and returns to + oo. Now the functions

(5.13)
[h,,(u)]

r(m + 1)+ 2rci e-u2 +UXbl-(m+ 1) du

einmOm(- x)e’2/4 fro(X)

are defined for all m e C [5, Chap. 8] and yield a basis for R(0, mo, 1). Furthermore,
from (5.10) and (3.12) we have

(5.14)
ab -Jr-cl} (u--z)-m-1 du

eCom + lbk- II(k- l)
+ ab ein(mo + l)Dmo + l( X)eX2/4

m=mo+k,

where the contour C has been chosen such that la/ul < Co < for all u and C.
Furthermore, by direct evaluation of the integral we find

b[,2a2b2axxbab 1U(A)fm(X eirmDm -x + a exp t- + - t- c
a 4 - 2o 2o

(5.5)
These results hold for all values of the parameters x, m and make sense for complex
a, b, c, and -- 0; i.e., we can extend G to a complex Lie group Gc.

The operators (5.4) can also be used to construct unitary irreducible repre-
sentations of $4, another real form of the group Gc. This approach, which leads to
Hermite polynomials and their orthogonality relations, is discussed in [2, Chap. 4].

The operators (5.5) can be used to construct models of the representations of
D(p, too) of sl(2). In fact, the Laguerre functions

jr,(2u + )1 (X)(5.16) fro(x) -’m-p-

form a basis for such a model [2, p. 185]. Taking an inverse Fourier transform we
can define operators K --1j, where

d
K+ -(u + 1)2" + 2pu + 2(p + 1),

du

(5.17) K- /,/2
d
Uu- 2pu,

d
K3 U(U -+- 1)---- + 2pu + p.

du
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(6.4)

yield a model of
and the functions

(Note that these are virtually the operators (4.4) with z 0.) As usual we can
construct a model of D(p, mo) in terms of the K-operators, extend the model to a
group representation using local Lie theory, and map the results back to x-space.
The details are similar to the preceding example and lead to various contour
integrals and series identities for Laguerre functions. The identities are essentially
those derived in [2, Chap. 5].

The operators (5.5) can also be used to construct unitary irreducible repre-
sentations of SL(2, R). This approach leads to the orthogonality relations for
Laguerre polynomials and is briefly discussed in [91.

6. Extensions of the method. To illustrate that our method can be considerably
extended we first consider an example which leads to familiar functions. Suppose
we search for all realizations of N(0, 1) by difference operators such that (1.2) and
(1.8) hold except that the condition (1.2) for j3 is dropped. Then there are new
solutions in addition to those of Theorem 2. One such is

J+ =E, J- =E+x+(1-x)L,
(6.1)

j3 E2 + sE x 2, s, 2 C.

Let us use these operators to find a model of the representation To. Here 2 0
and W has a basis fro, m e S {0, 1, 2, } such that

J+fm-- fm+l, J-fm-- mfm-1, J3fm--" mfm,
(6.2)

j+j- j3 O, me S.

To discover the functions fro(X) we formally take the inverse Mellin transform and
obtain operators

d d
(6.3) K + u, K- + U + S K3 u2

du u-d-u + + su

A straightforward computation shows that the K-operators and the functions

hm(u u exp [-u2/2 su] m O, 1,2, ...,
’o. Taking the Mellin transform we see that the J-operators

(6.5)
fro(X,) Um+’- exp [--u2/2 su] du

eS/aF(m + x)D_m-x(S), Re(m+x)>0,

yield another model of ’o- (Since m _>_ 0, for convergence of the integral it is
enough to require Re x > 0.) The K-operators induce the semigroup repre-
sentation

(6.6)
[T(A)h](u)= {exp [(a l) + u(sa- s + a + ba)

+ c + bs- b----]} h(ou + b), AeG,
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The matrix elements of these operators with respect to the basis hm(u are given
by (3.12) with mo co 0. Just as in 3 we can define integral operators
U(A) //T(A)- with kernels

K(x,t;A)= xp (ee- 1)+u(se-s+a+be)+c+bs+

(6.7)
U l(eu "J- b)-’ du, e2 < 1, b >= O, Re (x t) > O.

If e 1 and a + b < 0, we still get convergence. In fact by (3.3), (3.14) the kernel
is then a confluent hypergeometric function. If e < 1, b 0, then

(6.8)

-’(1 2),- )/2

K(x, t; A) F(x t)
27ri

exp
4(1 2 jD,-x x//1 e2

where A A(a, 0, 0, e) and w/1 e2 > 0. The formulas (3.19) and (3.20) (with
summed from 0 to ) lead to integral and series identities for the parabolic
cylinder functions whose explicit derivation is left to the reader.

To obtain identities for new classes of functions one need only find models
of our Lie algebras in terms of higher order difference and differential operators
whose coefficients are at most first order in x. For example the methods of this
paper apply to the model

j+
d2 x d

--dx2 -F
k’

J- k x-i- k2,

(6.9)
d3 d2 d k2j3 kl + kzx2 + x_x +__kl x ,

of if(0, 1) in terms of third order differential operators.
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ASYMPTOTICS FOR A CLASS OF NONANALYTIC
SECOND ORDER DIFFERENTIAL EQUATIONS*

PHILIP W. WALKERt

Abstract. New formulas giving asymptotic behavior (at o) of the solutions to y" + py’ + qy 0
on [a, oe) are developed. The coefficient functions p and q must satisfy certain regularity and relative
rate of growth conditions, but it is not required that they be analytic nor that they possess asymptotic
power series representations.

1. Introduction. Ifp(t) ++_ , q(t) ++_ (#, v real), and a > 0, a result of
Ghizzetti ([5] or 1, Theorem 3, p. 92]) yields information about the solutions
of

(1.1) y" + py’ + qy O ona, oe)

provided # < -1 and v < -2. In this case the solutions are asymptotic to the
solutions to y"= 0. By using the multiplying factor, exp {tap dt}, information
about the solutions of (1.1) can be derived from the WKB approximations ([1,
Theorem 13, p. 120] or [6, Theorem 1, p. 592] with m k 1) provided v > -2
and v > 4kt + 2. The results so obtained are in agreement with those indicated by
Corollary 1 below. Other less explicit information concerning the solutions to
(1.1) may be found in [4]; and recent related papers include [3], [6], [81, [9]
and [10].

We shall state all our hypotheses and conclusions explicitly in terms of the
coefficient functions of the differential equation under consideration.

2. Applicability. If a > 0, q(t) > 0 for >= a, p(t) tU[kl + o(1)], p’(t)
tu-l[k2 q- o(1)], q(t) tv[k3 + o(1)], q’(t) iV-ilk4 + o(1)], q"(/)- tv-2[k5

+ o(1), (/z, v, kj real), kl 0, 0 < k3, and all o(1)’s represent continuous functions,
then conditions (i) through (iv) of Theorem and condition (iii) of Corollary 1 will
be satisfied provided v > -2 and v > 2#. If also kl, p(t) > 0, then conditions (i)
through (vi) of Theorem 2 and, for some positive integer l, condition (iii)’ of
Corollary 2 will be satisfied provided/ > 1 and v < 2#.

3. Results. The solutions to (1.1) have essentially different behaviors depend-
ing on whether q dominates p2 (the case considered in the first theorem and
corollary) or p2 dominates q (the case considered in the second theorem and
corollary).

THEOREM 1. Suppose that each of p and q is a function defined on [a, oe with p
continuously differentiable and real-valued and q twice continuously differentiable

Received by the editors August 4, 1970, and in revised form November 13, 1970.- Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg,
Virginia 24061.
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and positive-valued. If n t or n 2, and if

(i) - dt < ,
pc/’

(ii) dt < o,

(iii) P-l(t) 0 as t
"’-u

(iv t < ,
hen there exists a pair of linearly independent solutions (y, y) to

(3.1) y" py’ (-1)qy =0 on [a, )

and a number b a such that for j 1, 2,

y(t) q- /4(t) exp dt (1 + o(1))

and

where

Explicitly,

where

and

y)(t) (-i)"(- 1)Jql/4(t)exp fdt (1 + o(1)),

Ji (-i)"(- 1)-/ql/2(1 + o(1)).

fj__ ql/2 2 Cjk
k=O

q_) k

on [b, o),

1/(8Cjo), 0CjO (-- i)n(--1)J, Cjl 2, Cj2 Cj3

329

ccj,k_ for k > 3.Cjk 2Cjo l=2

The sum for f converges uniformly and absolutely on [b, ).
COROLLARY 1. Suppose that all the hypotheses of Theorem 1 are satisfied,

except perhaps condition (iii) and

(iii)’ q/ dt < oe

for some nonnegative integer I. Then the conclusion to the theorem remains valid if
f is defined by

ql/2 Cjk on [b, ).
k=O
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THEOREM 2. Suppose that each of p and q is a positive-valued function defined on
[a, oo), p is continuously differentiable and q is twice continuously differentiable. If
m, n {1, 2}, and if

(i) p dt oo as

(ii)

qX/2

dr<

and

(v)
p

(vi)

then there exists a pair of linearly independent solutions (Yl Y2) to

(3.2) y" (-1)"py’ (-1)"qy 0 on [a,

and a number b > a such that

(pf ( + o(,

’(t)=ql/(t)exp{ (-1)f]2
(pf) dt (o(1)),

y(t) q- /(t) exp 2 p(2 + f)dt (o(1))

P

(iv) dr<

y’z(t) exp p(2 + f)dt (1 + o(1)),

where f(t) 0 as oo. Explicitly,

f= 2 c on[b, oe),
k=l

-Icc fork> 1. The sum forfconvergeswhere c 2(-1) and c -=unormly and absolutely on [b, ).
CooA 2. Suppose that all the hypotheses of Theorem 2 are satisfied,

except perhaps condition (iii); and

(iii)’ p dt <

(iii) --(t) 0 as
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for some positive integer 1. Then the conclusion to the theorem remains valid if f is

defined by

(f _= 0/f (iii)’ holds for 1).

4. Proofs. Verification of the above results will be facilitated by the following
lemma.

LEMMA. Suppose that Y1 is a fundamental matrix for the n-dimensional equation

(4.1) y’(t) A(t)y(t) on [a, ),

there exist numbers a 1, a, with a >= a for 1 <= <= n, functions i and (i defined
on [ai, v) for < <__ n with each i locally integrable on [ai, or) and each (i in-
tegrable on [ai, ), and there is a constant matrix L such that

Yl(t) exp diag (1 + 1) dr,..., (, + ,) dt - L ast.

Then there are a number b >= a and a fundamental matrix Y2 for (4.1) such that

Y2(t) exp diag (1) dr, ..., (,) dt L ast.

Proof Let b max {al, an} and let Y2 Y1D, where D is the constant
nonsingular diagonal matrix whose jth diagonal entry is

exp{;a(j’dt-f;J’j) dtt
Then

Yl(t)exp diag (1 + 1) dr,..., (, + ,) dt

exp diag (1) dr, ..., () dt

--, LI L as (I is the n x n identity matrix).

Proof of Theorem 1. We begin by examining the behavior of certain functions
which will arise when "changes of variable" are made in (3.1). Let

h(t) ql/2 dt for __> a.
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By [1, Lemma 6, p. 121] (with e 0) it follows that h(t) ---, oe as - c, and since q
is positive-valued we may let g be the function inverse to h so that h(g(s)) s for
s > 0. Let

e(s) [q,/q3/2] (g(s)) and 7(s) [p/ql/2](g(s))

for s => 0. Each of e’, e2, 7’ and ey is in L(0, oe) (absolutely integrable on [0, oe)) if
and only if each of [q,/q3/2],, (q,)2/qS/2, [p/ql/2], and pq,/q3/2 is in L(a, oe) respec-
tively. Condition (i) ofTheorem 1 and the Corollary on p. 594 of[6] imply that each
of [q,/q3/2], and (q,)2/qS/2 is in L(a, oe). Since [p/q/2], p,/q/2 pq,/(2q3/2), it
follows from (ii) and (iv) of Theorem 1 that [p/qa/2], is in L(a, oe). Thus

(4.2) cz’, 02 ])’

In view of (iii) and the fact that each of ’ and 2 is in L(0, ), we have

(4.3) (s) --, 0 and

The conclusion to the theorem will be immediate once we have shown that
the standard vector matrix formulation,

(4.4) y’= y on [a, oe),
(- 1)"q p

of (3.1) has a fundamental matrix Yo such that

(4.5) Q(t) Yo(t)E(t)

where

Q diag [q/4 q- /,]

for some b a, and

L=
-(-i)" (-i)"

For, we may then take y to be the (1, 1) entry of Yo and Y2 to be the (1, 2) entry of
Yo.

To establish (4.5) we begin by letting Y be a fundamental matrix for (4.4) and
defining Z by

Z(s) Q(g(s))Y(g(s)) for s => O.

(Recall g h-1 so g’(s) 1/h’(g(s)) 1/q/2(s).) Computation shows that Z is a
fundamental matrix for

z’= [Ao + )A nt- ocA2]z on [0,(4.6)

where

Ao=
).(-1

A =diag[0,1] and A2 =diag[1/4,-1/4].
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(See [9, Lemma 1.3] for details.) The characteristic polynomial, det [Ao + 7A1
+ A2 2I (I is the identity matrix), is

(A,7,) A2 72 / 1/47 2 (_1).

In light of (4.3) we may let .i(s) be the root of (, ?(s), a(s)) such that

2j(s) (-i)"(- 1)J as s

for j 1, 2. From the limiting values of the 2 it is clear that

(4.7) Re (2(s) 2k(S)) does not change sign

for all large s whenever 1 j, k 2 when n 2, and since (2, (s), a(s)) is a
polynomial with real coecients we see that 21(s)= 22(s) for all large s when
n 1. Thus (4.7) holds in both cases. The eigenvalues ofAo are (-i)"(- 1),j 1, 2,

and corresponding eigenvectors are j 1, 2. Examining (4.7) (4.3)
(- i)(- 1)J

and (4.2), we see that all the hypotheses of 2, Theorem 8.1, p. 92J or the theorem of
7] are satisfied. Hence there exist Sl, sa 0 and a fundamental matrix Z for (4.6)
such that

(4.S) ZI(S)EI(S) L as s ,
where L is as in (4.5) and

E1(s) diag [exp {- 2 ds} ,exp{- f’22 ds}
Returning to the definition of and using the quadratic formula we see that

(4.9) 2j(s) k[V(s) + (-i)"(-1)JV(v(s), (s))],

where

F(z, w) [4 + 1)"z2 (- 1)"zw + (( 1)"/4)w2] /2.

(x /2 denotes exp { In x} for x complex and off the nonpositive real axis.) F is
clearly an analytic function for [z[ and [w[ sufficiently small. Hence there exists a
sequence {a} such that

F(z, w) almZIW
l,m O

for Izl and Iwl sufficiently small. Since F(0, 0) 2 we see that aoo 2; and since
u=l

a,a_,,_zwm=4+( 1)’z2 1)’zw+
(-1)"

W2

l,m=O u=O 4
v=0

it follows from "equating coecients on like powers" that

aol 0 a10, a2o (--1)n/4, a3o 0,

a,oa_,,o for > 3.ao 4 ,=
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Since the power series for F is absolutely convergent we have

m-2F(z, w)= 2 + z2 -t- Z al,oZl-t" 1/92 2 aomW + ZW 2 aimZl 1wm-1
/=3 m=2 l,m=l

for ]z] and ]wi sufficiently small.
Returning to (4.9) and the definition of {Cjk) in the conclusion to the theorem

we see that

for all large s. Since each of the sums in brackets represents a bounded function for
all large s (note (4.3)), we see from (4.2) that each of the terms in brackets represents
a function in L(s3, oe) for some s3 sufficiently large.

It now follows from (4.8) and the lemma that there are an s, and a fundamental
matrix Z2 for (4.6) such that

(4.10) Z2(s)E2(s ---} L as s --*

where

and =o cJk?k"
Since each of Z2 and Z is a fundamental matrix for (4.6) there is a constant

nonsingular matrix C such that Z2 ZC. Let Yo be YC; then from the definition
of Z and (4.10) we have that Yo is a fundamental matrix for (4.4) such that

Hence

Q(g(s)) Yo(g(s))E2(s L

Q(t) Yo(t)E2(h(t)) --, L

aSS---} o0.

ast.

By noting js4fh(’) ds f(s4) fj dt, it follows (letting b g(s4) that Ez(h(t)) E(t) and
(4.5) has been established.

Proofof Corollary 1. Condition (iii)’ ensures that 7+ e L(0, oe), where 7 is as
in the proof of Theorem 1. This together with the fact that 7’ e L(0, oe) (see (4.2))
implies 7(s)---, 0 as s ---} oe, and this implies that condition (iii) of Theorem 1 is
satisfied. By noting that

ql/2 2 Cjk
k-O

ql/2 Cjk
k=0

+ q/2 P
k=/+l

Cjk

that the sum in brackets represents a bounded function, and that ql/2(p/ql/2)t+l
e L(a, oe), it follows that the term in brackets represents a function in L(a, oe), and
the conclusion to the corollary follows immediately from the lemma.
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Proof of Theorem 2. We begin by redefining some of the symbols used in the
proof of Theorem 1. Let

h(t) p dt for t>=a,

and let g be the function inverse to h so that h(g(s)) s for s >__ O. Let

e(s) [q’/(pq)](g(s)) and 7(s)= [q//p](g(s))

for s => 0. From conditions (ii), (iv) and (v) of the theorem it follows that

From (4.11) and condition (iii) it follows that

(4.12) z(s)0 and 7(s)0 ass-.

In order to establish the theorem we shall show that the standard vector matrix
formulation of (3.2),

(4.13) y’
(-1)"q (-1)"p

y on a, ),

has a fundamental matrix Yo such that

(4.14) Q(t)YoQ-l(t)E(t) I as t ,
where

Q(t) diag [ql/4, q- /]
and

E(t) exp
(- l)m

2
diag (- pf) dr, p(2 + f) dt

for some b => a with f as in the conclusion to the theorem.
Let Y be a fundamental matrix for (4.13) and let Z be given by

Z(s) Q(g(s))Y(g(s)) for s >= 0.

Computation shows that Z is a fundamental matrix for

(4.15) z’ [A + V]z on [0, ),

where

and

(-1)
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In view of (4.12) we may let 21(s) and/],2(S) be the roots of det [A + V(s) 21] such
that 21(s) --, 0and 22(s) (- 1) as s --, oo. Clearly Re (2j(s) 2k(s)) does not change
sign for all large s when 1 __< j, k =< 2. This together with (4.11) and (4.12) enables us
to conclude from [2, Theorem 8.1, p. 92] or [7] that there exist Sl, s2 => 0 and a
fundamental matrix Za for (4.15) such that

(4.16) Z(s)El(S)--, I,

where E,(s) diag [exp {-y, 2, ds}, exp {-y2 22 ds}]. From the quadratic for-
mula it follows that

2j ((- 1)m/2) [1 + (- 1)JF(2, )],
where

F(z, w) [1 + 4(- 1)"z (- 1)row "[" 1/4W2] 1/2,

Since F is analytic there exists a sequence {akl} such that

F(z, w) , aiz*w
k,l=O

for Izl and Iwl sufficiently small. Proceeding as in the proofofTheorem 1 we find that

and

aoo 1, aol --(-- 1)m/2, alo 2(--

k-1

ao -1/2 , a,oak-,,o for k > 1,
u=l

Thus

2j--" 2

for all large s, where

1
(--1)m 2k

k=l

with {c} as in the conclusion to the theorem and

k,l= I=2

Condition (vi) of the theorem ensures that 0/2 ff L(0, oo), and we have noted
(X2 ff L(0, oo). So, since each of the last two sums represents a bounded function, it
follows that L(s3, c) for some s3

Applying the lemma we see that there exist a fundamental matrix Z2 for
(4.15) and an s4 such that

Z2(s)E2(s -- I as s - ,
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where

and

E2(s exp diag -4-- ds, ds
$4

(__1)
exp

2
-----diag (-rl) ds, (2 + r/) ds

q Z Ck2k"

Noting that Z2(h(t))E2(h(t)) I as oe, evaluating E2(h(t)), and letting b g(s4),
we have

where

Z2(h(t))DQ- (t)E(t) - I,

D diag [q’/4(b), q-’/’(b)]

and E and Q are as in (4.14). Since each of Z2D and Z is a fundamental matrix for
(4.15) there is a constant nonsingular matrix C such that ZzD ZC. Letting Y0
be YC we have

Q(t) Yo(t)Q- ’(t)E(t) Z2(h(t))DQ- ’(t)E(t)

and (4.14) is established.
Proof of Corollary 2. Condition (iii)’ implies that 3)21 L(0, o), where 7 is as

in the proof of Theorem 2. Since 7’ is also in L(0, oe), it follows that 7(s) ---, 0 as
s oe; hence condition (iii) of Theorem 2 is satisfied. The conclusion to the
corollary now follows from the lemma as did the conclusion to Corollary 1.

5. Remarks. We noted in 1 that (1.1) may be transformed into

(5.1) (uy’)’ + vy 0 on [a, o)

by setting u(t) exp {ft, p dt} and v uq. Under certain circumstances results such
as [1, Theorem 13, p. 120] or the theorem of [6] may then be used to determine
asymptotic behavior of the solutions of (5.1), hence of (1.1).

Another approach is to transform (1.1) into

(5.2) z" + fz 0 on [a, oo),

where

(5.3) f q y[p + 1/2p2]

by letting mz y, where m(t) exp {-1/2t p dr}, and to apply one of the known
results such as [1, Theorem 14, p. 122], [8, Theorems 3 and 4], or the main result of
[10] to (5.2). This procedure (compared with the direct approach of using one of
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our theorems) has the disadvantage of requiring more stringent smoothness con-
ditions on p and q in (1.1) and where it is applicable produces more complicated
asymptotic formulas involving f- 1/, and tafl/2 dt where f is given by (5.3).

We wish to point out a specific example where our Corollary 1 gives results for
(1.1) but where no results are obtainable by applying previously known asymptotic
formulas to (1.1) or to either of the transformed equations (5.1) and (5.2).

Let po:[1, oe)--, R be given by: po(t)= 0 for all t[1, oe) such that g:[n
1/(4n3), n + 1/(4n3)] for each positive integer n; on each interval In 1/(4n3), n]

let Po be strictly increasing with po(n 1/(4n3)) 0, po(n) 1/n2, P’o continuous,
and p’o(n- 1/(4n3))= 0 p;(n); and on each interval In, n + 1/(4n3)] let Po be
strictly decreasing with po(n)= 1/n2, po(n + 1/(4n3))= 0, p; continuous, and
p;(n) 0 p;(n + 1/(4n3)). Note p; is continuous on [a, ),

(5.4) [Poldt< 2 < ,
n=l

and

Ip;Idt-- 1 +2 -< .n=2

Using the mean value theorem we see that

V integer n >= 2:1 0, and/3, in
(5.6) In 1(4n3), n + 1/(4n3)] .t. p)(0,) 4n

and p(/3,)= -4n.

It is easily verified that the hypotheses of Corollary 1 are satisfied for

(5.7) y’(t)- (1 + po(t))y’(t) ty’(t) 0 on [1,

with 3, and from Corollary 1, the technique indicated in the lemma, and the
fact that Po dt has a limit as t--. oo for k 1, 2, we conclude that (5.7) has a
pair of linearly independent solutions Y and Y2 such that

(5.8) yj(t) t-1/a’eYAt)(1 + o(1)),

where f(t) -(- 1)J-}t3/2 + 1/2t (-- 1)J1/4t 1/2.
Ghizzetti’s theorem [1, Theorem 3, p. 92] clearly does not apply to (5.7).

Transforming (5.7) into the form of (5.2) we have

(5.9) z"(t)- {t + 1/2[1/2(1 + po)2 p’o]}Z(t)= O.

Ghizzetti’s theorem does not apply to (5.9), for if it did it would predict a solution
of the form

z(t) t(1 + o(1)),

hence a solution of the form

y(t) re-t/z(1 + o(1))

for (5.7) (again we use the fact that Po dt has a limit as ---, oo) which is not
consistent with (5.8). Since (1 + po)Z(t) 1 as oo we see from (5.6) that the
function in braces in (5.9) is oscillatory; its value at /, will be positive and its value
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at e, will be negative for all sufficiently large n. Hence none of the results such as
[8, Theorems 3 and 4], [1, Theorem 14, p. 122], and the main result of [10] will
apply to (5.9).

Transforming (5.7) into the form of (5.1) we have

(5.10) (uy’)’ tuy O,

where u(t)= exp {-t (1 + po)dt}. Neither [1, Theorem 13, p. 120] nor the
theorem of [6] is applicable to (5.10), for if one were it would predict (again using
the technique of the lemma) two linearly independent solutions Y and Y2 of
(5.10), hence of (5.7), such that

yj(t) /-1/4(1 + O(1))exp {(-1)Jt3/2 + 1/2t}.
This is clearly not consistent with (5.8).
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ORTHOGONAL EXPANSIONS WITH POSITIVE COEFFICIENTS. II*

RICHARD ASKEY"

Abstract. A sufficient condition is given for writing a set of orthogonal polynomials as a linear
combination ofa second set oforthogonal polynomials with nonnegative coefficients. Some inequalities
for Pollaczek polynomials and associated ultraspherical polynomials follow from this result.

1. Introduction. Recently a number of problems have reduced to the problem
of expanding one set of orthogonal polynomials in a second set of orthogonal
polynomials and proving that the coefficients are nonnegative. These problems
have ranged from differential geometry [21 to numerical analysis [103, and this
property has also been useful in harmonic analysis I6] and in the investigation
of an interesting new set of discrete orthogonal polynomials 12]. Thus it seems
worthwhile to try to find some general theorems of this type. Wilson 113 has
one theorem, but in many cases it is impossible to verify his conditions and many
classical results do not follow from his theorem. One other small result and an
interesting conjecture are given in [13. These two results are theorems with
assumptions on the weight functions. We shall give a theorem of a different type
with the assumptions on the coefficients in the recurrence formulas. Only a few
of the many results for the classical polynomials (see [53) are contained in this
theorem, but there are some corollaries which have not been obtained by any
other method.

2. Positive coefficient expansion theorems. Any set of orthogonal polynomials
{p,(x)} satisfies

(1) xp,,(x) p,, +I(X) -- OnPn(X + nPn-l(X), n O, 1,...,

where p_ l(x) 0, po(x) 1, ,_ real, ft, > 0, n 1, 2, ..., and the polynomials
are normalized by

p.(x) x" +....

Conversely by a theorem of Favard [9 if p,(x) satisfies (1) with ,_ real, ft, > 0,
n 1, 2, ..., p_ l(X) 0, po(x) 1, then the p,,(x) are orthogonal with respect to
a nonnegative measure d(x); i.e.,

p,(X)Pm(X do(x) O, n-m.

In general the measure do(x) cannot be constructed (in fact it is not always unique)
and it often is impossible to even give the set which supports this measure. The
most complete survey of what has been said is in I8].
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We are given two sets of orthogonal polynomials, p,(x) and q,(x), with p,(x)
defined by (1) and q,(x) by

(2) xq,(x) q,+ I(X) "1- 7,q,(x) + 6,,q,_ l(x), n O, 1,.....

where again q_ l(x) 0, qo(x) 1, 7,-1 real, 6, > 0, n 1, 2,
THEOREM 1. Let p,(x) and q,(x) be de.fined by (1) and (2) and set

q,(x) a(k, n)Pk(X).
k=O

Then a(k, n) > 0 !f

(3) 0k > 7,, k--0, 1,... n

(4) flk >- 5,, k O, 1,..., n,

n =0,1,

n-0,1,

Proof We have q, + a(x) ,+ a(k, n + 1)pk(X) From (1) and (2)---0

6,a(k, n 1)]Pk(X) + [(% 7,)a(0, n) + fla(1,n)- 6,a(0,n 1)].

Thus

(5) a(n + 1,n + 1)= 1,

(6) a(n, n + 1)= a(n 1, n) + (,-

(7) a(k, n + 1) a(k 1, n) +
+ (5,a(k + 1, n) a(k, n 1)],

(8) a(0, n + 1) (o 7,)a(0,n) + (ill

6,)a(k + 1, n)

k=l,...,n-1,

6,)a(1,n) + 6,[a(1,n)- a(0, n 1)].

If we adopt the convention that a(n + 1, n) a(-1, n) 0, then (6) and (8) are
just (7) for k n and k 0.
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We shall show that a(k, n) > 0 by an induction on n. Assume that a(k, m) >__ 0
has been proved for k __< m, m __< n, and consider a(k, n + 1). If k n + 1, then
a(n+ 1, n+ 1)= 1 >0. Ifk=n, thena(n,n+ 1)=a(n- 1, n)+(,,-7,)and, _-> 7, by hypothesis and a(n- 1, n)>= 0 by the inductive assumption. Thus
a(n,n+ 1)>0. ifk=<n- 1, then

a(k, n + 1)= a(k 1, n) + (ak 7,)a(k, n) + (flk+l
(9) + 6,,[a(k + 1, n) a(k, n 1)3.

6,,)a(k + 1, n)

Each of the terms on the right-hand side is nonnegative except possibly the last
term a(k + 1, n) a(k, n 1). Equation (9) gives

a(k, n + 1)-a(k- 1, n)

>= 6,[a(k + 1, n) a(k, n 1)]

>= 6,6,,_x[a(k + 2, n 1)- a(k + 1, n 2)]- (n(n 6,,_j[a(k + j + 1, n j) a(k + j, n j 1)].

Choosingj [(n k 1)/2] we either have k + j + 1 n j or k + j + 2 n j.
In the first casea(k+j+ 1, n-j)-a(k+j,n-j- 1)- 1- =0, andinthe
second case using (6)we have

a(k + j + 1, n j) a(k + j, n j 1)

2 2
-1 -a

2
1,

2

(X(n +k)/2 7(n +k)/2 O,

and so

a(k, n + 1)- a(k 1, n) >__ 6,[a(k + 1, n)- a(k, n 1)3 0.

This completes the induction and so completes the proof of Theorem 1.
One possible generalization is to assume only , > 7,,/3, >= 6,. The following

example shows that this does not work. Let e, 7, 0,/31 2, 61 1,/3, 6,
n + 1, n 2, 3, .... Then ft, __> 5,, , __> ),, and

q4(x) P4(X) + P2(X)- 2Po(X).

This proof is similar to the proof [3] which gives

(10) p,(X)Pm(X) a(k, m, n)Pk(X), a(k, m, n) >= O,

under certain conditions on the coefficients in (1). Equation (10) is actually a
corollary of a maximum principle for difference equations [4] and it is natural to
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try to find the maximum principle connected with Theorem 1. Let A,
defined by

(11)

(12)

(13)

A.k(n) k(n + 1) + a.k(n) + fl.k(n 1), n O, 1,

V,.k(n) k(n + 1) + .k(n) + cSk(n 1), n O, 1,

and V be

.., k(- 1) --/3o O,

//,>0, n= 1,2,...,

.., k(-1) 6o 0,

c5,>0, n= 1,2,....
THEOREM 2. (i) a(m, n) satisfies

V,a(m, n) Ama(m, n).

(ii) Relations (3) and (4) hold, i.e., CZm >= 7,, tim >= 6,, rn O, 1,

a(O, O)>= O,

a(n + 1, n) =0, a(n + 2, n) O, n =0,1,2,...

and continuing in this fashion we have

a(m, n + 1) ’a(m 1, n) >= a(m + 1, n) ’/ la(m, n 1)
_> a(m + j,n + 1- j) [3.,+ja(m + j 1,n-j).

This last term is zero form+j>n+ 1-jor2j>n+ 1-m.

Letting m n + 1 and using (15), we find that

a(n + 1,n + 1)= ,+la(n,n)

.+ .... ,a(O, O) >__ o.
Assume that a(m, k) >= 0 for m =< k =< n has been proved and consider a(m, n + 1).
We have just shown that a(n + 1, n + 1) >_ 0. For m =< n use (13) to obtain

a(m, n + 1) ma(m 1, n) + (., 7,)a(m, n) + a(m + 1, n)- 6,a(m, n 1)

(17) fl.,a(m- 1, n) + (., /,)a(m, n)+ [m+l 6,]a(m, n- 1)

+ [a(m+ 1,n)-flm+a(m,n- 1)].

The first two terms are nonnegativc and the third is also, for/’+ > 6, ifm + 1 =< n
anda(m,n- 1)=0if m+ >n. From(17),

a(m, n + 1) .,a(m 1, n) > a(m + 1, n)- m+ a(m, n 1),

(iii)

(14)

(15)

Then

(16) a(rn, n)>O rn=0 1 n n=0,1

Proof. Equation (13) is

a(m, n + 1) / ?,a(m, n) + 6,a(m, n 1)

a(m + 1, n) + .,a(m, n)+ fl.,a(m 1, n).
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Theorem is an easy corollary of Theorem 2. The boundary conditions are
satisfied since the expansion of a polynomial of degree n in a series of polynomials
has zero coefficients for all terms that involve polynomials of degree k for k > n.
Also the difference equation (13) is satisfied if we define

The expansion is then

a(m, n) fE q,,(x)p,,(x) &z(x).

a(m, n)Pm(X)
q,(x) L

o IE P2"I(x) da(x)’
where p,(x) are orthogonal on a set E with respect to the measure de(x).

3. Applications. Theorem has a few applications which we will now examine.
Consider first some of the Pollaczek polynomials. Let R,(x, a) satisfy

xR,(x, a) Rn+l(X, a) + n(n + 22 1)
4(n +2 + a)(n +2 +a- 1)

R_ (x a)

R(x, a) 1, R(x, a) x. For a 0, R(x, a) reduces to the ultraspherical
polynomials. In [4] it was shown that

IR,(x, a)l _-<_ R,(1, a),

for a >__ 0, a => (2 22)/(1 + 2), 2 > 0. For 0 < 2 < 1 we shall now remove the
restriction a => (2 ,,],2)/(1 + 2).

Fora=0,0<2< 1,

is a decreasing sequence. Thus

for a > 0. From Theorem we have

n(n + 22- 1)
4(n+2)(n+2- 1)

n(n + 22- 1)
4(n+2+a)(n+2+a- 1)

RX.(x a) a(k, n)Rk(X, 0),
k=0

with a(k, n) >__ 0 for 0 < 2 < 1, a > 0. Since [R(x, 0)1 =< IR(1, 0)l R(1, 0), this
implies

]R(x, a)[ =< a(k, n)R(1,0) R,(1, a).
k=0

Another interesting application is to the associated polynomials. If p,,(x)
satisfies

(18) xp,(x) p,+ l(x) 4- z,p,(x) + [3,p,,_(x),



ORTHOGONAL EXPANSIONS 345

the associated polynomial p,(x, ) is defined by

(19) xp,(x, #) p,+ ,(x, #) + e,+,p,(x, #) + ft,+up,,_ ,(x, #),

p-l(X, 1) O, po(x, p) 1. For p we may use p,(x) and p,_ l(x, 1) to obtain
the general solution of the second order difference equation (18). For general
polynomials we are restricted to considering kt 1, 2, ..., but for some of the
classical polynomials (19) defines p,(x, l) for/ > 0 and even at times for some
/ < 0. In particular, for the Legendre polynomials (, 0, ft, nZ/(4n2 1) in
(18)) Barrucand and Dickinson [7] explicitly computed the coefficients in

p,,(x, #) a(k, n)Pk(X).
k=O

Their expression for a(k, n) is complicated (the product of about 20 gamma func-
tions) but a moment’s reflection shows that the coefficients are nonnegative for
#>0.

Using Theorem 1 we can prove the following. Let C,(x, #), the associated
ultraspherical polynomials, be defined by

(n+2v+#- 1)(n+/)
(x #)XCVn(X, #)-- C+ l(X, /) -[--

4(n + v + /z)(n + v + /z 1) C"-

i.e., let e, 0 and , (n + 2v- 1)n/[4(n + v)(n + v- 1)] in (18), and define
C,(x, p) by (19). Then

(20) C;(x, ) a(k, n)C(x, #)
k=O

with a(k,n)>=O for v> 1, #>-1. Since
[C(x)] < C(1) as above, we have

IC(x, )t _-< c;,(, ),

Letting # oe in fl,+, we obtain lim,_o fl,+,
c,(x, o) cl,(x, ).

Thus (20) is also

(21) C(x, #) a(k, n)C,(x, ), a(k, n) >= 0
k=O

For 0 < v < there is a more general result of this type"

C(x, #) a(k, n)C,(x, 2)
k=0

C(x, #) c1(x, o) c,(x) and

-1 =<x<_ 1, v__> 1, #> -1.

1/4 and so

forv > 1.

with a(k, n) _> 0 for 0 < v < 1, # __> 2 _>_ 0. This follows immediately from Theorem
1. Letting 2 0 and using

IC;,(x)l =< C;,(1), v > 0,
we obtain

ICY,(x,#)l <= C,(1,#), -l__<x__< 1, O<v< 1, />__0.
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There is probably a more general result than (21) with C,(x, 2), 2 > #, on
the right-hand side. Thus, there should be a generalization of Theorem 1. One
other useful result for the classical polynomials which does not follow from
Theorem is

/,(x) /,_-- (0)/4,(x).,
k=O

--1(0) > 0 if fl > e. A general theorem which implied this result wouldwhere L
be very interesting.
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NEW PROOF OF THE ADDITION THEOREM
FOR GEGENBAUER POLYNOMIALS*

B. C. CARLSON?

Abstract. The quantity (2 z) is expanded in Jacobi polynomials/,’’)(z), where , fl, and p are
unrelated. The known case fl -p is then used in a short proof of the addition theorem for
Gegenbauer polynomials. The only other ingredients of the proof are well-known generating relations
for these polynomials.

1. Introduction. Proofs of the addition theorem for Gegenbauer polynomials
C, ofgeneral order v have been given by Gegenbauer [7], Henrici [8], and Manocha
10]. The cases in which 2v is a positive integer are treated in [6, vol. 2, p. 244 and
[16] as part of the theory of spherical harmonics in 2v + 2 dimensions. Related
addition theorems for Legendre functions and Gegenbauer functions of the first
and second kinds are discussed by Robin [13, Chap. 73 and Henrici [8]. Gegenbauer
(or ultraspherical) polynomials are special Jacobi polynomials, and an addition
theorem for general Jacobi polynomials is not known. The possibility of such a
theorem is one reason for seeking new proofs in the Gegenbauer case, another
reason being the desire for a proof that is simple, transparent, and reasonably
elementary.

The first part of this note is concerned with a new relation (2.4) which has
some interest by itself, apart from its use in proving an addition theorem. It is
the expansion of (2 z) in Jacobi polynomials P,’)(z), where , fl, and p are
unrelated. In the literature of Jacobi polynomials one finds the limiting case
2 1 (misprinted in some standard reference books), the case p 1 [14, p. 251],
and the case fl 8, (107)]. The case =/3 and p a positive integer is given in
[16, p. 487]. The simplest generating relation for the Gegenbauer polynomials is
the case fl -p- 1/2, and for the addition theorem we shall want fl
=-p-1.

2. An expansion in Jacobi polynomials. Let 2 and p be (possibly complex)
constants, and assume that 2 is not a real number in the closed interval [- 1, 1].
Let D denote the interior of the ellipse in the complex plane which passes through
the point 2 and has loci at 1 and 1. By requiring arg (2 z) to be continuous on
D and to coincide with a fixed value of arg 2 at z 0, we determine a single-valued
branch of (2 z) which we denote by f(z), z D. Because f is holomorphic on D,
it can be expanded [14, p. 245] in a series of Jacobi polynomials,

(2.1) f(z) A,,P")(z), z D,
n--O

with any real e, fl such that > 1 and fl > 1.

* Received by the editors September 22, 1970, and in revised form December 2, 1970.

" Departments of Mathematics and Physics, Iowa State University, Ames, Iowa 50010. This
work was performed at the Ames Laboratory of the U.S. Atomic Energy Commission.

See note added in proof.
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Leaving for a moment the special choice off and taking (2.1) to be the Jacobi
series of any function holomorphic on D, we use the orthogonality of the Jacobi
polynomials to represent An by an integral, which is then transformed by substi-
tuting Rodrigues’ formula and integrating by parts n times. The result of this
familiar procedure can be written in the unfamiliar form

o 1F(n)(1 + + 1 +fl+n’-I 1)f(z) a n,

(2.2)
.R,,(-a-n,-fl-n;z + 1,z- 1).

The structure of(2.2)shows the kinship between Jacobi series and Taylor series,
both of which are special cases of [3,(3.16a)]. The R-polynomial is a Jacobi
polynomial normalized so that the coefficient of z" is unity:

(2.3a) P’)(z) (1 + z + fl + n),,R,,(_z n -fl- n’z + 1 z- 1)
2"n!

(2.3b)

where we define (a)o 1 and (a), a(a + 1)...(a + n 1). The coefficient F
is a weighted average of f") d"f/dz" over a line segment:

F(")(b, b’ x, y) f(")[ux + (1 u)y] d#(u),

d#(u) ub- 1(1 u)b’- du ub- (1 u)b’- du,

where b and b’ are assumed to have positive real parts.
In the special case at hand, we substitute

and find

where

f(")(z) (- p),(2 z)-"

F(")(b, b’ x, y) (- p),,Ro_,,(b, b’ 2 x, 2 y),

Rt(b, b’ x, y) [ux + (1 u)y] d#(u),

Reb>0, Reb’>0.

The R-function [2], [3], [4] is connected with standard notation by

Rt(b:,‘, by; x, y) yt 2F(_ t, b; b + by; 1 x/y),

both sides being symmetric in x and y. (The R-polynomial in (2.3a) is a special
case of R but does not have the preceding integral representation because its
parameters are negative.)

Specializing f and F") in (2.2), we find

(A- z)p-- (-P)"Ro_,(1 /z / n,1 / fl / n;A / 1,A- 1)
0

(2.4)
R,(-a- n,-fl- n;z + 1,z- 1),
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where e > -1, fl > -1, and z e D. If p 0, 1, 2, .-., the series terminates and
(2.4) is valid for all finite 2 and z.

In view of (2.1) and (2.3) we have

2"(- p),
A

(1 --I--o-k-fl-k- n)n
(2.5)

2"(- p),
(l++fl+n),

R,_,(1 + +n,1 +fl+n;2+ 1,2- 1)

(2 + 1)

2F1 n-p,1 +fl+n;2+0+fl+2n;+ i
Although we have excluded the limiting case 2 1 in which the ellipse degenerates
to the line segment with endpoints 1 and 1, the coefficient A, must still be given
by (2.5) if it exists. The hypergeometric function now has unit argument, and we
find

p)(_p),(1 + + fl + 2n)F(1 + + fl + n)
(2.6) A, 2p[’(1 + + F(1 ++n)F(2++fl+p +n)’

2= 1,

if > -Rep- 1. (Questions of convergence of the Jacobi series are more
difficult if 2 1 and lead to the further condition > -2 Re p .) This result
is given correctly by Tricomi [15, p. 250] but is reproduced with the factor
(1 + + fl + 2n) misprinted as F(1 + + fl + 2n)in 6, (10.20(3))] and [9, p. 217].

Putting 2 A/B and fl v , where v > -, we find

( 2 (-
.=o

(2.7)

Ro_ +v+n,+v+n;A +B,A-B C(z).

We use here the customary notation C for the Gegenbauer polynomial,

C(cosO)=2"(v), (n R, -v-n,- v-n;cos0+ 1,cos0- 1

2.8)
(2v).
n R,(v v" ei, e-i).

The last expression comes from comparing the generating relation

(2.9)
(1 2t cos 0 + tz)-v t"C,(cos 0),

n=0

tei < 1, te- < 1,

with the generating relation of the R-polynomials [3, (3.11)]

(2.10)
(1 tx)-(1 ty) -’ "(b + b’).R.(b b"x y)

llO

txi < 1, tyl < 1.
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If A r2+ r’2, B- 2rr’, and z cos0 r.r’/(rr’), (2.7) is an expansion of
Ir r’] 2p. If p -v, (2.7)can be shown equivalent to (2.9) by using a quadratic
transformation of the R-function. Putting p -v- 1/2 and then replacing v by
v 1/2, we get the case needed later"

(A Bz) ,_
(2.11)

R__.(v + n, v + n;A + B, A- B)C. 1/2(Z),
where v > 0.

3. The addition theorem. We cite first a result more general than the one
we shall use. A very simple proof [5] shows that

(a + a’)"R,(a a’ b’
n!

x, y)R,(b, z, w)
(3.1)

(1 yz)a-b(1 yw)a-b’R_a[b,b ;(1 xz)(1 yw),(1

where xz, xw, yz, yw all lie inside the unit circle and a + a’= b + b’ 4: 0,- 1,
-2, This is the case k 2 of [5, (2.4)]. Putting a a’ b b’ v, x te,
y te io, z ei, w e -g’, we have

tnn,Z___o C:(cos 0)C:(cos
(3.2)

R_[, ;1 2t cos (0 + (p) + 2, 1 2t cos (0- cp) +
This generating relation was written explicitly for Gegenbauer polynomials by
Ossicini [12], although (3.1) had been found earlier by Meixner [llJ., [6, (2.5(12))J.
A different and still earlier generalization of (3.2) is due to Bailey 17, p. 102],
[18, (2.1)].2 Another proof of Ossicini’s formula has been given by Carlitz 1].

Returning to (2.11) we define

(3.3) x cos 0 cos cp + sin 0 sin (p cos ,
and we put z cos and A Bz 1 2tx + 2, whence A + B

2t cos (0 + ) + 2. For any complex 0 and (p, IA/BI can be made arbitrarily
large by choosing [tl sufficiently small, and the ellipse passing through A/B can
thus be made to encircle cos (p for any given complex . Hence we find, for > 0,

m ()m
(t sin 0 sin 0)mc /2(cos(1 2tx + t2) --- (v- 1/2)m=0

(3.4) R_v_m[V + m, v + m;1 2t cos (0 +
+ 2, 1 2t cos (0 (p) + t2].

Insertion of Ossicini’s formula (3.2) gives

(V)mS 
(1 2tx + 2)-v Z Z tm+s sin 0 sin

(3.5)
m=0 s=O (V- 1/2)m(2V + 2m)s

Cs +m (cos 0) Cs +m (cos (t9) Cn- 1/2 (cos I//).

For these two references thank an associate editor.
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Comparing coefficients of t" with the help of (2.9), we have the addition theorem,

(3.6)

(V)m(n m)!
CVn(X)

(v- 1/2)m(2V + 2m).m=O

sin 0 C+ (cos 0) sin p

CVn +m (cos (/9) C- 1/2 (cos

The restriction v > 0 can be dropped by analytic continuation because the
left-hand side is an entire function of v and the right-hand side is analytic in v
except for singularities at 2v 1, 0,- 1, ..., -2n + 2. These singularities must
be removable by continuity, and (3.6) is then valid for all complex v, 0, 99 and ft.

Note added in proof. R. A. Askey informs me that T. Koornwinder has recently
found an addition theorem for general Jacobi polynomials.
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AN EXTENSION OF A CLASS OF POLYNOMIALS. II*

A. M. CHAK AND A. K. AGARWALt

Abstract. In this paper we study the algebraic structure of the class of polynomials {u, !H,(x)}
in x, where {H,(x)} satisfies the functional equation DuH.(x) H._ l(x) for n 0, 1, 2, ..., and where
D, is a general operator, linear and distributive, which transforms a polynomial of degree n in x into
one of degree n 1" in particular, D,x" u,x"- where (u) is a given sequence of real or complex num-.
bers subject to the restrictions u0 0, u 1, u, 4:0 for n => 1. Some of the algebraic properties of
this class of polynomials are then used to study an important particular example.

1. Introduction. In this paper we continue the study of the Appell set of
polynomials to the base (u), that is, the class of polynomials {H,(x)} in x which
satisfies the functional equation (see [5])

(1.1) D,,H,,(x) H,,_ l(x), n O, 1,2, ...,
where Du is a general operator, linear and distributive, which transforms a poly-
nomial of degree n in x into one of degree n 1. In particular, D,,x" u,,x"-1,
where (u) is a given sequence of real or complex numbers subject to the restrictions
that Uo 0, U 1 and u, - 0 for n >__ 1 (see Ward [17]). Incidentally, we know
that (see [53 with Au, instead of u") D, Dq if and only if the sequence {Au,}
obeys the law Au,. Aum Aun+m for n,m 0, 1, 2,..., where u, u, + u,
and the q-difference operator of Jackson is given by

f(qx) f(x) qtd/a,)
(1.2) Oqf(X)

(q- 1)x
or Oq--. (q_ 1)x

the q-difference operator Dq itself tends to the ordinary differential operator
D =_d/dx, asql.

References to the literature on the subject of generalized binomial coefficients
similar to those studied by Ward I17] are given at the end of this paper; the
chronological ordering is 7], [13], [10], 11], [12], [5], [16], [3], [8], [9]. It is
interesting to note that recently Chihara 61 studied the orthogonality of poly-
nomials with Brenke-type generating functions, of which ours is a special case;
more recently, Ismail [9] generalized the work of Sheffer [15] on polynomial
sets of type zero by replacing the ordinary differential operator D by Ward’s
operator D,.

In the present paper we study the algebraic structure of the class of poly-
nomials {u,!H,,(x)} in x, where {H,(x)} is an Appell set to the base (u); that is,
it satisfies the functional equation (1.1). Some of these algebraic properties are
then used to study an important example.

Received by the editors January 8, 1970, and in final revised form January 11, 1971.
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2. Algebraic structure. Let P P,(x), n 0, 1, 2, ..., be a simple set of
polynomials whose nth member P,(x) is of proper degree n. Appell 2] in 1880
defined (see also [1] and [14]) on the set of all polynomial sets two operations
+ and .x. as follows:

(i) (P + Q), P,(x)+ Q,(x),

provided that p(n, n) + q(n, n) :/: O, where

P,(x) p(n, k)x
k=0

and Q,(x) q(n, k)x"
k=O

(ii) (P .x. Q), p(n, k)Q(x).
k=0

He also defined

(iii) (aP), aP,(x),

where is a real or a complex number.
We observe that (aP .,. Q)= (P .,. zQ)= a(P .. Q)and that the operation +

is obviously commutative but .,. is not commutative. It is interesting to note
that one commutative subclass is the set ’ of all polynomials {n!P,(x)}, where
P,(x) satisfies the Appell property

d
(2.1) dxP,(x) P,_ ,(x), n O, 1,2,....

Our Appell set of polynomials to the base (u) is an extremely general class.
Let us denote by /(u) the class of all polynomial sets {u, !G,(x)}, where G,(x)
is an Appell polynomial set to the base (u). In (u) the identity element, with
respect to .x., is the set 1 {x"} and 1 is the determining function of 1; (see [5,
Theorem II]). We give below some easily proved properties of the class of poly-
nomials ’(u) and also show that the system {s(u), .. } is a commutative group.

Let P, Q, R e (u) and have A(t), B(t), C(t), respectively, as their determining
functions. Then:

(a) P + Q e/(u) if A(0)+ B(0) 0 and has the determining function
A(t) + B(t);

(b) P+(Q +R)=(P+ Q)+R=P+ Q +R;
(c) P .x. Q Q .x. P both belong to s(u) and have the determining function

A(t)B(t);
(d) P .. (Q .. R) (P .. Q) .,. R and both belong to ’(u).
The important property (c) can be proved quite easily if we use Theorems I

and II of Chak [5].
It is obvious that for every P 6 ff(u) there exists a set Q ’(u) such that

P .. Q Q .. P I. Indeed B(t)= (A(t)) -1. We may denote the element Q
by P-1 and define po I, P"= P .,. (P"-1), where n is a nonnegative integer,
and P-" P- .. (p-n+ 1). Since the system {/(u), .,. } is a commutative group,
we observe in passing that if P .,. Q R and any two of the elements belong to
’(u), then the third also belongs to ’(u).
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Sheffer [14] has shown that the system (, .x.) is a noncommutative group.
We have seen that {(u), .x } is a commutative subgroup. It can further be shown
that if P e s(u) and Q e and if P .x. Q Q .x. P, then Q e s’(u).

As a simple example of a polynomial H,(x) belonging to the class (u)
let us define

(2.2) H.(x, u) =- H.(x) )_[. In, r]x.
r=0

This was cited in the first paper of this series of papers but in a slightly different
form (see [5]).

It is easy to see that the set of polynomials H.(x, u) is generated by

(2.3) e.(t)e.(xt) . H.(x, u)
n=0 Un

where e,(x) is the u-basic exponential function given by

e,(x)= . and [n,k]=U"U"-l""u"-+ln= Un UkUk U

for n,k positive integers and n k; In, 0] 1; u, u,u,_...u if n > 0;
u,= 1 ifn=0;also [n,k =0ifn<korifk<0.

Let

(2.4)
e(xt)
e(t) .=o

As an application of property (c) of our class of polynomials at(u) let us try to
find the set of polynomials A.(x, u) xal(u) and generated by the inverse of e(t).
For this purpose let us define another function E.(x) by the relationship
eu(x)E,,(- x) 1; if E,,(x) ,,% o fl,,x", then it is easy to see that

1-(n_ 2 -’1-"’" "-l" (--1)n+l+o, 0- 1.(2.5) ft. fin-1
//2"

It is now easy to obtain the following expression for A.(x, u):
n--1

1-I(x-ku.) forn>=l,
(2.6) A,,(x, u) ,=o

1 forn O.

In the notation of the first paper of this series [5],

(2.7) A,,(x, u)
0 0 Un

where "S(u)=_ "S means the sum of all the combinations of the products of
u Uo, u2 u,..., u,- U,_l taken r at a time; also

Un"&(u)
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We now give two interesting expressions for x""

(2.8) x"= (-1)
0 u._

,,H,_(x, u);

(2.9) x" n, r]A(x, u).
’=0

The last two relations are the u-analogues of those given by Carlitz [4] and A1-
Salam [1] for the case in which Au,. Aura AU,+m. More generally, if C is an
Appell set of polynomials to the base (u) and C- is its inverse and we write

xn xn-
(2.10) (C-1),, ao-- + a + + a,,

Un Un-

then

X
(2.11)

u
aoC,(x) + aC,_(x) + + a,Co(x).

Acknowledgment. The authors wish to express their thanks to the referee
for many valuable suggestions.
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ON THE ASYMPTOTIC BEHAVIOR OF THE SOLUTION OF A
NONLINEAR INTEGRODIFFERENTIAL EQUATION*

STIG-OLOF LONDEN-

Abstract. A theorem concerning the asymptotic behavior of the solution of a nonlinear Volterra
integrodifferential equation is proved.

1. Introduction. We consider the equations

(1.1a) x’(t) b(t z)g(x(z))dr + [g(x(t))]-y(t) + f(t),

(1.1b) y’(t) g(x(t))- fly(t),

where 0 =< < , ]x(0)l < , y(0) > 0, > 0, fl > 0, and prove the following
theorem.

THEOREM. Let

(1.2)

(1.3)

(1.4)

(1.5)

(1.6)

(1.7)

(.8)

where

g(x) c( , ), g(x) > O, g’(x) >= O,

lim g(x)= 0, lim g(x)= ,
g’(x) =< (1/7)g(x), ]x] < oe, for some 7,

f(t) C[O, oo), sup If(t)l < oo,
0<t<oo

lf(z) oo for some >_ O,F[ dr, F

b(t) C2[0, ) LI[O ),

b(t) <0, b’(t) < -pb"(t), 0 <= < ,

IX[

b(O) < O,

min (1//3, y/F) if F > O,
P=

1/ ifF=O.
Let x(t),y(t) be a solution of (1.1) on 0 <= < oe. Then limt_.oog(x(t)),

lim,_oo y(t) exist and satisfy

(1.9) lim g(x(t)) lim y(t) + ]b(z)[
t- (Z t

While the existence of a solution x(t), y(t) on 0 =< < is assumed, we note
that the present hypothesis may also be used to obtain the a priori bounds necessary
for an existence proof. Also observe that the assumptions above (in particular
the first part of (1.2)) are sufficient to guarantee uniqueness of the solution. Clearly,
by (1.1b) and the second part of (1.2), y(t) > O, 0 <= < .
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A considerable literature [2], [3], [6], [12] concerning the asymptotic behavior
of the solutions of

(1.10) x’(t) b(t- z)g(x(z))dr + f(t), 0 <= <

exists under the hypothesis xg(x) > 0, x 0. In [3], (- 1)kb(k)(t) <= 0 (k O, 1, 2, 3
0 < < m)isassumed, andin [6], b(t) is taken completely monotonic on 0 < < m
(i.e., (- 1)kb(k)(t) N 0, k 0, 1, 2, 0 < < m). In [3] and [6], where f(t) O,
the result (obtained with the aid of certain Lyapunov functions) is that if x(t) is a
solution of (1.10) on 0 N < oe, then lim,_oo x()(t)= 0, k 0,1,2. In [2]
a Popov-type condition is imposed on the kernel, and, in addition, b(t),
f[ b(r)dr LI[0 0(3) L2[0 oo); f(t), f’(t)e LI[0, o) is assumed. The conclusion
is that if x(t) is a solution of (1.10) on 0 __< < o, then lim_oo x(t) 0. In [4] an
integrated version of (1.9) is considered. If b(t) > O, g(x) x, then (1.10) becomes
an equation of renewal type [1, Chap. 7].

Under the hypothesis g(x)>__ -2, Ixl < oe, 2 < oe, (1.10) has earlier been
studied in [5], where results concerning the existence of bounded solutions on
0 __< < oe under various assumptions on b(t) were obtained. Under the same
hypothesis on g(x) (and making, in addition, certain growth assumptions), (1.1)
has also been investigated [7]--[11], where different boundedness theorems were
proved. (Note that y(t) was taken more generally than here in [7]-[9] .)

In the present paper a result concerning the asymptotic behavior of the solu-
tions of (1.1) is obtained. This result--stronger than mere boundedness--obviously
requires more restrictive hypotheses to be imposed on b(t), (1.8). Note that the
sign hypothesis b(t) < 0, 0 < < oe, made in Theorems 3-8 in [7, Chap. 1], is in
general not alone sufficient to guarantee that lim,_o x(t) exists (not even b(t) < O,
0 =< < m, suffices) as it is not difficult to construct numerical counterexamples.
As to the nonlinear function g(x) we remark that (1.2) and (1.3) concern its mono-
tonicity and (1.4) is a pointwise imposed growth condition.

We finally observe that (1.1)--with g(x) exp {x}--occurs in certain problems
in nonlinear nuclear reactor dynamics if the delayed neutrons are taken into
account; see [7, p. 11], for details.

2. Proof. Notice at first that we have the relation, 0 =< < ,

(2.1)

b’(r s)[g(x(s))- g(x(r))] 2 ds dr + 1/2 b(t- r)g2(x(r))dr

+ 1/2 b(r)g2(x(r)) dr b(O) g2(x(r)) dr

g(x(r)) b’(r s)g(x(s)) ds dr O,

which can be verified by expanding [g(x(s)) g(x(r))] 2 and performing an inter-
change of the order of integration.
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We begin by examining the last term on the left side in (2.1),

(2.2) g(x(z)) b’(z s)g(x(s)) ds dz,

and consider the case F > 0. By (1.1a),

g(x(t)) F-l[x’(t)g(x(t))- y(t)- g(x(t)) b(t- r‘)g(x(r‘))dr‘

(2.3)
g(x(t))[f(t)- F]], 0 < .

Substituting g(x(t)) from (2.3) into (2.2) one has

(2.2) -F-1 [x’(r‘)g(x(r‘))- y(r‘)- g(x(r‘)) b(r‘ s)g(x(s))ds

(2.4)

g(x(r‘))If(r‘) F ]] b’(r‘ s)g(x(s))ds, dr‘.

Define, for some Xo, IXol < ,
(2.5) G(x) g(u) du, Ixl < oo.

We investigate the terms on the right side of (2.4) separately. Performing an
integration by parts in the first term yields, by (1.7),

(2.6)

F- x’(r‘)g(x(r‘)) b’(r‘ s)g(x(s)) ds

fiF- G(x(t)) b’(t r‘)g(x(r‘))

+ F- b"(r‘ s)g(x(s))G(x(r‘)) ds

+ b’(O)F- g(x(r‘))G(x(r‘)) dr,

+ F- b"(r‘ s)g(x(r‘))G(x(r‘)) ds dr‘

F- b"(r‘ s)g(x(r‘))G(x(r‘)) ds dr‘

F- G(x(t)) b’(t r‘)g(x(r‘)) dr‘

+ F- b"( s)[g(x(s))G(x(z)) g(x(r))G(x(r))] ds dz

+ F- b’(r‘)g(x(r‘))G(x(r‘)) dr‘.
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We need the following two lemmas.
LEMMA 1. Let the hypothesis of the theorem hold. Then SUpo_<,< Ix(t)] < ,

SUPo_<,<oo y(t) <
Proof Choose e > 0 sufficiently small. Solving (1.1b) for y(t) gives

(2.7) y(t) y(0)exp {-fit} + fO exp { flit r]}ag(x()) dr,

and, if is such that g(x(t)) <= [1 + e]g(x([)), 0 <= <= < o,

0=<t<,

(2.8) y(t) < Kxg(x(O + K2,

for some constants K1, K2 < O. Thus, after multiplying (1.1a) by g(x(t)), using
(1.5) and (2.8), one obtains

(2.9) d-tG(x(t)) <= g(x(t)) b(t- z)g(x())d + K3g(x(0 + K2

(2.10) < K3g(x(0)+ K2,

where the final step follows from (1.2) and (1.8).
Suppose SUpo=<,<oo x(t)= . Then, by (1.3), lim,_o supg(x(t))= , and,

from (1.2), lim,_ supG(x(t))= . Thus there exists {t,} such that G(x(t))
<= G(x(t,)), 0 <= <= t,, (d/dt)G(x(t,)) >= O, lim,_ G(x(t,))= , lim,_o t, . By
(2.9) we have that there exists a constant K4 < such that

(2.11) b(t, z)g(x(z)) dz => K,.

Let , max {tit < t,, g(x(t))= [1 + el-lg(x(t,))}.
Then, after integrating (1.4),

g(x(t,)) f["
Also, from (1.4),

1/2eg(x(t,)) <= g(x(t,)) g(x(,)) <= (1/7)g(x(t,))[x(t,) x(,)],

and x(t,) x(,) >= 1/2e. But, by (1.1a) and (2.8),

(2.12) x’(t) <= Ks, , <= <= t,.
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Thus t, t, is bounded away from zero and, as we may of course assume b(t) < 0,
0 =< __< t, ,, and also, by (2.12), that x(t,)- x(r) is sufficiently small,
=< t,, we have

lim b(t, r)g(x(r)) dr

which violates (2.11). Sup__<,<oo x(t) < oe follows. By (2.7), supo=<,< y(t) <
Rather obvious modifications of the final part of Theorem 3 7, Chap. 1] then

show that the condition

(2.13) sup g(x [b(r)[ d: lim inf (t) + a d(r) dr < 0

---which there, together with supo_<,< x(t) < oe and the eventual monotonicity of
g(x) (decreasing) as x --, -oe, was shown to imply SUpo_<,< -x(t) < oe--may,
under the assumption

[f(:)- F] dr < o,

be weakened to read

sup g(x) Ib(r)[ dr F a d(r) dr < 0.

As we now have F >= 0; ad(t) ae -t > 0; limx,_oo g(x) 0; g’(x) >= 0, Ixl < ,
and b(t)e LI[0, oe); then supo_<t< Ix(t)l < follows. The lemma is proved.

LEMMA 2. Let hi(x) C(-oe, oe), Ixl < , and let hi(x) be monotone non-

decreasing for Ixl < 1, 2. Also let, for some rl > O,

(2.14) hi(x2)- h(x)<=
1
[h2(x2) h2(x)]

and let

(2.15) z(t)C[O, oe), sup [z(t)[ < ,
0<t<oo

(2.16) a(t), ta(t) LO, oe) (’1 CO, ), a(t) >= O, 0 <= < oe.

Then, if hi(z(t)) >= O, 0 <= < , one has

f] ff a(r s)[h(z(r))h2(z(r)) h(z(s))hz(z(r))] ds

> rl a(r- s)[h2(z(r))- h(z(s))h(z(r))]dsdr K,

0=<t<oe,

for some constant K < oe, independent of t.
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Proof

flf a(r s) [h (z(r))he(z(r)) h (z(s))he(z(z)) ds

a(s) [hl(z)he(z hi(z, s)he(z)] dz ds

a(s) [hl(z)h2(z hl(Z s)h2(z)] dr ds,

where we write hi(z) hi(z(z)) and define

{hh(Z(-s)), s<<=t,
(2.17) hl(z,s)

l(z(t- z)), 0 < z < s.

We assert that for any s, 0 __< s < t,

[hl(z)hz(z) hi(z, s)he(z)] dr _>_ q [h(z) l(z, s)hl(z)] dz.

To realize that the assertion holds we make the following observation. Suppose we
have 2n nonnegative real numbers, xi, yi, 1,..., n, such that x =< x2 <

Xn; Yl Y2 < Yn, and xi- xj __< (1/17)[y- yj], for any i,j such that
j. Then

(2.18) ExiYi- XqiYi] 17 IX XiXqi],
i=1 i=1

where q l, q2, qn represents an arbitrary ordering of the integers 1, ..., n.

To see that (2.18) is true one only notices that any ordering q l, qe, "’", q, of
the integers 1, ..., n may be obtained by a certain number of interchanges of the
following type:

where, for some io,

(rl, r2, "", r,)--+ (s1, $2, Sn)

ri=si, i-- 1,...,io- 1, io +2,...,n,

rio Sio + 1, rio+ Sio rio < rio+ 1.

At each such step needed to obtain q l, "’", q, from 1, ..., n we get the following
nonnegative contribution to the left side in (2.18)"

Yi[Xri Xsi] Yio[Xrio- Xsio] "+" Yio+ 1EXI’io+ Xsio+
i=1

[Yio+l Yio] [Xr,o+, Xr,o] >- 17[Xio+1 Xio] [Xr,o+, Xrio]

17Xio[Xrio Xsio] "31- 17Xioq-1EXrio Xsio+ 1] q XiEXri Xsi]"
i=1
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Invoking now the monotonicity of hi(x), (2.14), (2.15) and (2.17), one has (after
taking the limit of a discrete version of the assertion) that the assertion holds. Thus

fl fJ a(’c s) (’C)h2(’c (S)h2(’c)]h ds dr,

>-_ ri a(s) [h2(z) x(-c, s)h (z)] d as

+ a(s) [h(x)- h(,s)h(x)] dr ds

a(s) [h(z)h2(z) h(z, s)h2(z)] dr ds

a(z s)[h(z) hl(S)hl(Z)J ds dr K,

where we have used (2.15) and (2.16). The lemma is proved.
Using now Lemma 2, with g(x) hi(x), G(x) hz(x), 7 r/, x(t) z(t) and

-b"(t) a(t) gives, by (2.6), Lemma 1 and the hypothesis (note that (1.7) and
(1.8) together imply tb"(t) Ll[0, ) and b"(t) =< 0, 0 =< < c and also that we
can of course, by Lemma 1, choose the Xo value defining G(x) such that G(x(t)) >= O,
0__<t < oe)

(2.19)

F- x’(z)g(x(z)) b’(z s)g(x(s)) ds dr

>__ F -16(x(t)) b’(t z)g(x(z)) dr

7- b"(z s)[g(x(s))- g(x(’c))] 2 ds d’c

+ -ffY b’(t z)g2(x(z)) d -ff b’(z)g2(x(z)) dr

+ F- b’(z)g(x(z))a(x(z)) dr

for some constant k and where we have also used

(2.20)

fl f] b"(z s)[g(x(s))g(x(z)) g2(x(’c))] ds d

1/2 b"( s)[g(x(s)) g(x(z))] 2 ds d’c

+ 1/2 b’(t z)g2(x())d 1/2 b’()g2(x(z)) d.
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Substituting g(x(t)) as given by (1.1b) into the second term on the right side of
(2.4) yields

F- y(z) b’(z s)g(x(s)) ds dr

-fl ;ifo 1 fl;aF
b’(’c s)y(’c)y(s) ds dr, + b’(’c s)y(’c)y’(s) ds d’c

fl f s) +
l
b"(z s)]y(’c)y(s) dsdr

+ fib(O) y() d
aF

b’(O) fl+ - y() d

fib(O) y(z) dr
aF

aft- b’()y(z) d

where we have integrated the term involving y’(s) by parts and applied the same
reasoning that gives (2.20).

Analyzing next the third term on the right side of (2.4) one has, by (1.1a),

d
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g(u) du d + y() y’(r) + y() d
F .,

x(O)

+ g2(x(z))[f(r) e dr + b(O) g2(x(z)) dr

g(x(t)) b(t r)g(x(r))dr
2F

2F
g’(x(r))x’(z) b(r s)g(x(s)) ds d

b(O) xt)g2(u) aU + [2(t) 2(0) + FF axO)

+ g(x(rl[f(l- ; + b(O g(x(.
Consider now the term

(. g’(x(rx’( b( sg(x(s s

above. Solving (1.1a) for ;b(r s)g(x(s))ds and substituting into (2.21) gives

(. ’(x(rx’(r[x’( f( ([g(x(-

’(x(x’(F(l[g(x()l]- g’(x(x’((rIf([g(x(rI]- r
g’(x(x’( b(r sg(x(s s- f- (r[g(x(r -1 r

g’(x(rx’([ f(

g’(x(r))x’(r)y(r)[g(x(r)) - dr- g’(x(x’(r[f(r e([g(x(r?-i r
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Observe that the integrand in the first term after the last equality sign above is
< 0, 0 < -c < oe. The term

(2.22)

[ Y(t)
(2.22) +- g(x(t))

2F
g,(x(z))x,(z)yZ(z)[g(x(z))]- 2 dz

gives, after integrating by parts and using (1.1),

y2(0) ] 1
-;-[y(t) y(0)] + y’2(qT)[g(x(z))]- dr.g-6)]

!

Integrating next

(2.23)

by parts we obtain

Let

g’(x(z))x’(z)y(z)[g(x(z))] - dr,

(2.23) -y(t)In {g(x(t))} + y(0)In {g(x(0))} + y’(-c) In {g(x(-c))} dz.

I lt-- {’clg(x(’c))>= (fl/oOy(’c), 0 <= "c <= t},

Izt-- {:lg(x()) < (/)Y(z), 0 = = t}.
Then, as y’(z) 0 on I 1, and y’(z) < 0 on Izt

Collecting terms and substituting into (2.23) one has that there exists ka <
such that (2.23) -k. Also, by Lemma 1,

(2.22) k + y’(r) [g(x(r));- d.

Thus, invoking (1.6), one has that there exists k5 < such that

Then, by Lemma 1 and (1.6),

k6 +
flb(O) f ia y2(z) dz + b(O) g2(x(z)) dz

y,
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Collecting terms and substituting into (2.1) gives, as b(k)(t) LI[O 3), k O, 1,

and, remembering (1.8), and also that the hypothesis implies b"(t) <= O, 0 <= < ,
we have

1 fly,2(2.24)
flF

(z) [g(x(z))] dz

for some k7 < . By the hypothesis and Lemma 1, y"(t) exists on 0 __< < o
and satisfies supo_<t<oo ly"(t)l < o. Thus we conclude from (2.24) that limt_.oo y’(t)
exists and is equal to zero, or by (1.1b), that limt_oo [ag(x(t)) fly(t)] 0. Suppose
limt_, g(x(t)) either does not exist or (if it exists) does not satisfy (1.9). Then there
clearly exist intervals It,, t, + T,] such that lim,_.oo t. lim,_oo T, o and such
that, e.g.,

(2.25) x(t. + T.) x(t.) >= -6., lim 6. O,

ag(x(t)) fly(t)sufficiently small,

g(x(t)) >= + F z)l dz + 6,

for some > 0. Integrating (1.1a) over these intervals, remembering (1.6) and that
b(t)eLl[O, oe), readily gives a contradiction to (2.25). Thus lim_oog(x(t)),
lim,_oo y(t) exist and satisfy (1.9).

Of course, if in addition to the hypothesis, g’(x)> 0 for x such that
g(x) g(x(oe)), then lim_, x(t) exists.

It is obvious that the arguments above remain much the same if F 0.
One may then begin by considering (2.2) and replace g(x(t)) in this term by

x’(t)g(x(t))- y(t)- g(x(t)) b(t- z)g(x(’0)d’c -f(t)g(x(t))

(which is identically zero) and then proceed as above.
This completes the proof.

3. Concluding remarks. In this paper we have investigated the solutions of a
certain nonlinear Volterra integrodifferential equation and given a sufficient
hypothesis under which the nonlinear function g(x(t)) of the solution x(t) tends to
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a limiting value as o. The equation considered may be viewed as a particular
case of the more general equation

fl fOfo d(z-s)g(x(s))dsdz+F(t)x(t) (t )g(x()) a + g(x())

on which extensions on the present work might be formulated.
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A CONSTRUCTIVE EXISTENCE THEOREM FOR A
NONLINEAR ELLIPTIC EQUATION*

ALAN R. ELCRAT"

Abstract. A constructive existence theorem for the homogeneous Dirichlet problem in (in two
or three dimensions) for the equation

P(u) Au + iju,,Uxj + f 0

is obtained by placing P in the role ofan operator mapping W22.0(#) into L2(?) and proving convergence
of a Newton sequence for P. The theorem is "local" in the sense that the Lz-norm offmust satisfy a

bound which becomes infinite as the diameter of shrinks to zero. An essential feature of the proof is
an application of Sobolev’s lemma to show that P(u) is an element of Lz(A when u W2,0(), and that
P satisfies the hypotheses of a theorem of Kantorovich.

Introduction. The purpose of this note is to present a constructive proof of the
existence of a solution of the homogeneous Dirichlet problem for the equation

(1) Au + (ZijUxiUxj -+" f 0

in a bounded domain in either two or three dimensions. (The summation con-
vention on repeated indices is employed here. We assume this unless stated other-
wise.) The coefficients zij are bounded and measurable, the function f is square
summable, and the solution sought is a "generalized" solution with square-
summable second derivatives. The proof is accomplished by showing that the
left-hand side of the equation defines an operator which satisfies the hypotheses of
a theorem of Kantorovich on convergence of Newton’s method. In order to do
this it is necessary to impose a bound on the Lz-norm of the functionf This bound,
which is explicitly given below, depends only on the size and geometry of the
region . In order to facilitate obtaining this explicit value we place two restrictions
on the region . The first is that the boundary of be smooth and that its mean
curvature be everywhere nonnegative (where the direction of the outward pointing
normal is taken as positive). Secondly, we assume that can be written as the
union of a finite number of convex regions which overlap in sets of positive
measure.

1. Preliminary lemmas. The solution of our problem is sought in the Hilbert
space W,o(), which is defined to be the completion of the vector space of func-
tions in C2() which vanish on the boundary of in the inner product

(U, D) ; (UV + UxiVxi + UxixjVxixj

* Received by the editors March 26, 1970, and in revised form October 7, 1970.

" Department of Mathematics, Wichita State University, Wichita, Kansas 67208.

368



A CONSTRUCTIVE EXISTENCE THEOREM 369

We adopt the notation

Ilul12 ((u, u))/

for the norm derived from this inner product.
We shall give several results needed in the proof of our main theorem in a

series of lemmas.
LEMMA 1. For u W2,o(),

(Au)2 (n 1) fo H
where H is the mean curvature of the boundary of (and n is the dimension of).

The proof is essentially given in [1, p. 171]. The important thing for us to.
notice is that our first assumption about implies that

(2) f (Ux,u,x) <_ f (Au)2

for u in W22,o(.).
In what follows we need the existence of

2-inf(lVul2/fu2),
where the infimum is taken over smooth functions that vanish on the boundary
of . (See 2] for example.) We use the notation

f )1/2U 0--- U2

for the norm in the Hilbert space L2().
LEMMA 2. The linear operator A maps W,o() onto L2(), is invertible, and

A-111__< l//,
Proof We begin by establishing the validity of the inequality

(u 22__< l++(llAUlol2

for smooth functions vanishing on the boundary of . It then follows for u in
W,o() by taking limits.

First note that, from (2), we have

(llu 2)2 U2 "- ; IVul 2 --- . (Au)2.

Then, using the inequalities
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[3, p. 555], and

we have

IVul<= u + (AuV, e>0,

(lu )_-< +++ (Au).
The required inequality then follows by minimizing the constant with respect to 5.

Now, since A maps WZz,0(N) into L2( and is bounded below, the lemma
follows once it is known that the range of A is dense in L2(). That this is the case
follows from well-known results on linear elliptic equations. (See [4, p. 114], for
example.)

In the next lemma we shall use the notation

M(u)
m(f)

u

for the mean value of a function integrable over .
LENNA 3. Suppose that is a convex n-dimensional region ofdiameter 6, and

that

PNq, q<
np

n-p"

Then

u wi.(),
where

K n-) n -(n 1)r r
Pq

(p- 1)q 4-p’

and o9, is the volume of the unit n-sphere.
This result is proved in 5, Chap. 10]. The following extension of Lemma 3 is

also proved there.
LENNA 3’. Suppose . can be written as the union of two convex regions 1 and

;2 which overlap in a set of positive measure 3. Then

(3) u M(u)IIL K’lllVul L,,, u W(),
where

K’= KI{1 + m(3)-’/q(m(fl) ’/q + 2m(z)’/q)}

+ K2{ 1 + m(t3)- 1/q(m(.l)l/q 4- 2m(f2) i/q)

+ m( i)(m()/ + m()/")}
and K l, K2 are the constants obtained in Lemma 3 for and , respectively.

This result has an obvious inductive extension. Henceforth, we shall assume
that is such that (3) holds for some constant K. The explicit value can easily be
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computed from Lemma 3 and Lemma 3’ for the type of region we are considering.
For our purposes we choose q 4, p 2 and obtain

Ilu M(u)IIL4 KIIIVul II,.=
provided n < 4. We have then the following lemma.

LEMMA 4. For u in W(),

Ilull, _-< max {K, m()-x/)llul w =- Kollullw’.
Proof First

Ilull4 =< Ilu M(u)ll / IIM(u)ll =< glllVu1112 / IM(u)lm()x/4

The result then follows from an application of H61der’s inequality to the last
term.

The following result, which is a specialization of a theorem of Kantorovich
(proved in [5]), is the vehicle for proving existence mentioned in the Introduction.

LEMMA 5. Suppose that P is a twice continuously F-differentiable mapping of a
Banach space X into a Banach space Y such that P’(O) is invertible, and that

Then, if

where

[P’(O)]- B,

IIP"(u)ll Co for each u in X.

P(O)II ,

rl < 1/(2B2Co),
the Newton sequence

U. + Un [P’(u,)]- 1p(u,), Uo O,

is well-defined and converges to a solution u* of the equation

P(u) O.

Error bounds and an a posteriori bound on the solution also can be obtained,
but these need not concern us here.

2. The proof of the existence theorem. Suppose that the nonlinear operator
P is defined by

P(u) Au + ijUxiUxj + f

for u in W,o(N). Then, since by Lemma 3’,

2 2(ux,uxj) _-< const. (llu 2)2, u e wZ2,o(N),

P maps W,o(N) into L2(i) and our problem is equivalent to showing that the
equation

P(u) 0
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has a solution in W22,o(). We do this by showing that .P satisfies the hypotheses
of Lemma 5 with W,o() and L2( in the roles of X and Y, respectively.

We define

A max

LEMNA 6. P is continuous.

Proof Let u e X. Then, for v

and

P(u) P(v)= A(u v) + eijUxi(Uxj vxj) + %vxj(u,, Vx, ),

2 2P(u) P(v)]. 2
o <__ (1 u v ]2) 2 + A,2[ u,,, 0 + Vx[lo] (Uxi v,,)21[o,

and, by Lemma 3’,

P(u)- P(v) <= [1 + c([ ull2 -+- IIv 2)1 U V 2,

where c is a constant independent of u and v. Continuity of P at u then follows
routinely.

We proceed by noting that

where

and

P(u + h)= P(u) + L,(h) + N(h, h), u, h X,

L,(h) Ah + oijuxhx q- zijuhxi

N(h, k) eijh,kj.

Hence if L, and N are continuous linear and bilinear operators, respectively,
it follows that P has two continuous Fr6chet derivatives, and that

P’(u) L,, P"(u) 2N.

LEMMA 7. L is a continuous linear operator.

Proof An application of Lemma 3’ yields

IIL.(h)llo (1 + cllull2)llhll2,

where c is a constant independent of u and h.
LEMMA 8. N is a continuous bilinear operator, and

N <= AK.
Proof We have

N(h, k)llo A hik o <: A(llh, o)i/2(llk2, 0) 1/2

so that, again using Lemma 3’,

IN(h, k) lo Agllh 2 k 2.
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Our preliminary work is finished once we note that P’(0) A, so that P’(0)
is invertible and

[P’(0)]-I =< ++
Our principal result is stated in the following theorem.

THEOREM. The equation (1) has a solution in W2,o() provided that

22

2AKo2(22 + 2 + 1)"

Proof We have shown that P satisfies all of the hypotheses of Lemma 5
except the required bound on the norm of P(0)= f This is precisely the bound
that is imposed in the statement of the theorem.

Remarks. The theorem has the character of a "local" existence theorem in
the sense that the required bound on Ilfllo goes to infinity as the diameter of
shrinks to zero. This follows from examination of K and an application of the
Faber-Krahn inequality [6, p. 462] to 2.

In regard to our assumption on the mean curvature H of the boundary of
it should be remarked that this can be relaxed to the requirement that H be
bounded. This could be done by utilizing an inequality of the form

=< const. (Au)2

(See, for example, [3].)
On the other hand, the restriction to two- or three-dimensional regions is

necessary in order that Lemma 3 hold. It appears to be a difficult matter to extend
the method of proof used above to higher dimensions.

Finally, we remark that the Kantorovich theorem provides error bounds for
the convergence of the Newton sequence, so that these hold in particular for the
convergence of the sequence of solutions of linear elliptic equations that converge
to our solution.

3. Conclusion. We have proved a "local" existence theorem for (1). In partic-
ular if we assumefto be given and allow the region to vary., a solution will always
exist if the diameter of the region is sufficiently small. It follows from the Sobolev
imbedding theorem [8, Chap. 3] that this solution is uniformly continuous in .
In light of this it is interesting to take note of the (two-dimensional) example

2Au + (2- x2- y2)(u2 + uy)+ c 0,

where c is a constant. It was pointed out in [73 that, when c _>_ 4, the Dirichlet
problem for this equation on the unit disc has no bounded solution. Therefore,
a complete "global" result for equations of the form (1) is not possible, and the
truth must lie somewhere between such a result and one of the type presented here.

Acknowledgment. The author is indebted to the referee for helpful suggestions.
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AN ASYMPTOTIC ANALYSIS OF A CERTAIN
HYPERBOLIC CAUCHY PROBLEM*

DONALD R. SMITH"

Abstract. An asymptotic expansion valid for small values of the positive parameter is given for
the solution of the Cauchy problem (1.1), (1.2). The expansion is shown to be asymptotically correct

(as 0) uniformly on compact sets in the upper half-plane __> 0. In the case that the reduced linear
algebraic system obtained by setting 0 in (1.1) has infinitely many solutions along a certain sub-
characteristic, it is shown that a particular one of these infinitely many solutions is distinguished as
the unique limit of the solution of the Cauchy problem (1.1), (1.2) as vanishes for fixed > 0. If the
reduced system has no solution along the subcharacteristic, it is shown that the solution of (1.1),
(1.2) becomes unbounded like e-1 as 0. Finally, if the reduced system is nonsingular, then the
solution of (1.1), (1.2) tends to the unique solution of the reduced system as 0.

1. Introduction. We consider the behavior of solutions of the hyperbolic
system

+ u+au+bv=f(x,t),

(1.1)

( c),- v + cu +clv g(x, t)

as the positive parameter e tends toward zero. The coefficients a, b, c and d are fixed
constants while the forcing terms f and g are specified functions defined and
smooth for > 0. We specify also the values of u and v along 0"

(1.2) u uo(x), v vo(x) for 0.

The data a, b, c, d, j; g, Uo and vo are independent of e.

We assume throughout that the coefficient matrix has nonnegative
c

diagonal elements and positive trace,

(1.3) a __> 0, d 0, a + d > 0.

Moreover we assume that the product of the off-diagonal elements is nonnegative
and dominated by the product of the diagonal elements

(1.4) 0 <= bc <_ ad.

Actually we need only assume [bc[ <= ad instead of (1.4), but (1.4) makes certain
estimates simpler by eliminating certain complex-valued expressions (see, for
example, (2.11), (2.18), (3.7), etc.). The conditions (1.3) and (1.4) are stability
conditions, and will be seen to ensure that solutions of (1.1), (1.2) do not become
exponentially unbounded as e 0. Indeed, in the case when all the data are
independent of x, so that (1.1), (1.2) reduce to an initial value problem for a system
of ordinary differential equations, then (1.3) and (1.4) are known to ensure stability.

* Received by the editors June 30, 1970, and in revised form December 7, 1970.- Department of Mathematics, University of California, San Diego, La Jolla, California 92037.
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In fact, it is well known in that case that (1.4) can be replaced with the weaker
condition bc < ad.

One expects that the solution of the Cauchy problem (1.1), (1.2) will exhibit
some sort of singular behavior as e 0. The problem is linear with constant
coefficients and may, of course, be solved in closed form in terms of the Riemann
function (which may be given in this case in terms of a modified Bessel function),
and the resulting closed form solution may be studied as e ---, 0. Alternately one
may attempt somehow to use the system (1.1), (1.2) directly to obtain a suitable
approximation to the solution for small e. Each of these approaches has been used
successfully by Whitham [1] to obtain appropriate first approximations to the
solutions of a class of similar problems for various linear and nonlinear hyperbolic
equations. (The author is indebted to a referee for bringing [1] to his attention.)
In the present paper we use a standard version of the latter approach (see, for
example, [2, pp. 449-451] and the references given there) to obtain a complete
asymptotic expansion for the solution of (1.1), (1.2), and we show that the resulting
expansion is asymptotically correct (as e ---, 0) uniformly on compact sets in the
upper half-plane __> 0. The proof of the asymptotic correctness of the expansion
is based on a study of the consequences of the inequalities (see (3.14) below)

etaR(t) < Ibl esaS(s) ds + U(t),

etdS(t) ICl eSdR(s) ds + V(t)

for nonnegative functions R and S, where U and V are known functions.
Of particular interest for (1.1), (1.2) is the situation where the reduced system

au + by f(x, t),
(1.6)

cu + dv g(x, t),

obtained by setting e 0 in (1.1), has infinitely many solutions (i.e., the coefficient

matrix is singular and the forcing vector is in the column space of that
c

matrix). The special example

(1.7)
a b

c d

1/2 1/2
1/2 1/2

f(x, t) g(x, t)

falls into this category, and arises in a study of the telegraph equation. This
example has been studied in [3], where Gronwall’s inequality is used to prove the
asymptotic correctness of the appropriate expansion. Indeed, if ]b], ]c] < a d
as in (1.7), then the inequalities of (1.5) can be added and Gronwall’s inequality
suffices for the result. (The author has learned recently of work by Fife [4] in which
a significant and large first stepis made towards a general theory for such problems
whose reduced forms have many solutions.)

For positive e the values at (x0, to) of the solution functions u U(Xo, t0;e)
and v V(Xo, to e) of(1.1), (1.2) depend on the data restricted to the fixed triangular



ANALYSIS OF HYPERBOLIC CAUCHY PROBLEM 377

region

{(x,t)’lX-Xol__<Xo +to-t,all0=<t=<to),

which is independent of e, as shown in Fig. 1.

.’.. d.omain of dependence

/__... at (Xo, tO) for (I,I)
>0

.---x

(xo- to,O) (Xo+ o,O)
FIG.

As shown by Whitham [1], however, one expects that the limiting behavior of
u(xo, to;e and V(Xo, e) as e 0 is governed entirely by the data restricted to the
line segment

(1.8) (x, t)’x Xo + (to t) all0 < < toa+d

as shown in Fig. 2. Indeed if we eliminate v

(x’ to) /domoin of dependence

 Xo, in

limit = O, with

x

(Xo+ o-d
b- to’)

FIG. 2

from the system (1.1), (1.2), we find for u the second order equation

(1.9)

2
3t2 (X2 u+ +( a + d)

__
1 (ad- bc)u+ u

+ fft--x f

(a +

df- bg
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with initial data

u Uo(X),

cu [(x, O)- auo(x)- bvo(x)
-U’o(X)+" for t=O.

t e

The line segment (1.8) is then recognized as the subcharacteristic of (1.9) as e 0.
The asymmetry of the limiting domain of dependence as shown in Fig. 2

reflects a certain struggle which occurs between the two equations of (1.1) as
e --, 0. Indeed, these equations may be rewritten as (see (1.10) below)

a- e" -t -b u -b u a- bv -+- a- f x

d-le -- v -+- V -d-lcu -k- d-lg(x,t),

where the first equation carries up data from below and primarily from the left of
the point (Xo, to), while the second equation carries up data primarily from the
right. In the limit e--, 0, that equation loses the struggle which has the smaller
coefficient multiplying its derivative term, so that in the limit e-, 0 the data is
transmitted along the line segment given by (1.8) issuing up from the left if a < d
and from the right if d < a. In the special case a d, the limiting behavior at
(Xo, to) is governed entirely by the time history of the data at x Xo.

Assuming always that (1.3) and (1.4) hold, we show that if the reduced system
(1.6) has infinitely many solutions at the points on the line segment (1.8)(i.e., if the
coefficient matrix is singular and the forcing vector is in the column space of the
coefficient matrix along (1.8)), then the values of the solution functions U(Xo, to e),
V(Xo, to; 5) of (1.1), (1.2) have well-defined (finite) limits as e 0 at any fixed point
(Xo, to) with to > 0, and these limiting values satisfy the reduced system (1.6).
We exhibit in this case which of the infinitely many solutions of (1.6) is selected by
the Cauchy problem (1.1), (1.2) as e vanishes. (See (4.4) below.) On the other hand,
if the reduced system (1.6) has no solution along the line segment (1.8) (i.e. if the
coefficient matrix is singular and the forcing vector is not in the column space of
the coefficient matrix along the line segment (1.8)), then we show that the values
U(Xo, to; e), V(Xo, to; 5) of the solution functions of (1.1), (1.2) become unbounded
like 5- as e 0 for fixed to > 0. Finally, if the reduced system (1.6) is nonsingular,
then the values of the solution functions u, v of (1.1), (1.2) tend to the unique
solution of (1.6) as e --, 0.

In all cases the solution functions u(x, t;e), v(x, t;e) of (1.1), (1.2) exhibit a
boundary layer behavior near 0 as e vanishes, and we obtain uniformly valid
asymptotic expansions in all cases.

We remark finally that we may without essential loss assume (in addition to
(1.3)) that both diagonal elements are positive"

(1.10) a > 0, d > 0.

Indeed, if either a or d is zero, then (1.4) implies also that either b or c vanishes, and
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the resulting four special cases can be handled explicitly; i.e., in these special cases
the Cauchy problem (1.1), (1.2) can be solved in closed form up to simple quad-
ratures of the data. One then finds directly by integration by parts that the stated
results of this paper hold in those special cases. Hence we shall assume (1.10)
whenever convenient.

2. Formal construction of the asymptotic expansions. We seek asymptotic
expansions for the solution functions u, v of(1.1), (1.2) in the form

(2.1)

u(x, t; ) Z {ul(x, t)+ e-(")/uZ(x, t)+ e-(")/u3(x, t)}. e",

v(x, t; )

2 3 2 3where the functions u, u, u, v, v, v, and fl are to be independent of e. The
terms in (2.1) with v -1 are included to allow for the possibility that u and
v may become unbounded as e 0 (for example, if the reduced system (1.6) has
no solution). We might include other negative powers of , but it turns out that
(2.1) suffices (see also [4] in this regard).

Note that we have anticipated in (2.1) that the coupling of the system (1.1)
will likely lead to the same type boundary layer terms e -/ and e -a/ in both u
and v; this is indeed the case. We are naturally led to allow for two different
exponential terms in (2.1) since the nonlinear equation (2.8) below has in general
two distinct solutions satisfying given initial data. As usual we require that (x, t)
and fl(x, t) vanish initially:

(2.2) 0(x, 0) 0, fl(x, 0) 0.

(2.3)

Using now the notation D+_ +_ xx and inserting (2.1) into (1.1) we obtain

au bv e,Z [D+Uv-l+ + 3"
-1

+ e-/ Z [D +Uv_12 Ar (a D+a)u + bv]. e

+ e -/ ID ), + b] "+U,_l + (a D+ f(x,t),
--1

v__l + +
--1

+ e / Z [D_ cu (d D )v ev-i + + ]"
v=--I

+ e-"/ Z --3 + + (a _)] g(x,
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where we have set

(2.4) u- 2 v/-- 2 0 for 1,2, 3.

We now set to zero the expressions multiplying the different exponentials in (2.3),
and then equate coefficients of like powers of e in the resulting equations. In this
way we obtain the conditions:

au bvl {f(x, t)
D+uv- q- q-

0
(2.5)

(2.6)

and

for v=0,

otherwise,

D cu dv ={g(x’t) for v=0,
Uv -+- q-

0 otherwise,
2 )u2 + bv2 0D+uv-1 + (a- D+

D_ vv_12 _+_ cu2 nl- (d D_ a)G2 0 for all v,

O+u_ + (a D+fl)u + bv O,
(2.7)

D_ vv_13 -Jr- cu3v -[- (d D_ fl)v3 0 for all v.

We now require e(x, t) and fl(x, t) to be such that the matrix

a- D+7 b

c d-D_?

occurring in (2.6) and (2.7) is singular for and 7 fl since otherwise (2.4)
along with (2.6) and (2.7) would require

2 2u -=0, v -=0 and uv =0, v -=0

for all v. Hence e and must satisfy the nonlinear first order equation

(2.8) (D+7)(D_?) (aD_7 + dD+?) + ad bc 0

for 7 and fl, subject to the initial condition (see (2.2))

(2.9) 7(x, 0) 0.

One easily checks that the initial value problem (2.8), (2.9) has precisely two
solutions given as

(2.10)

where

a+d+2
+(x,t)

2

a+d-2
_(x,O

2

.t,

.t,

(2.11)

We set

x/(a + d)2 4(ad bc) w/(a d)2 + 4bc.

(2.12) =7+, fl=7-
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so that in particular (2.6) and (2.7) become

(2.13)

2D+Uv_l +
a-d-2

u +

2 Cbl2vD_v_ + +
-a+d-2

for all v,

and

(2.14)

a-d+2
bv O,D+u_ + U +

2

-a+d + 23 cu 3 0 for all vD_ v_ + + v2

As initial conditions we find with (1.2), (2.1), (2.10), (2.11) and (2.12) the
requirements

E Eu(x, o) + u(x, o) + u(x, 0)3. Uo(X),
--1

Z [(x, 0) + (x, 0) + v(x, 0)]. o(X),
--1

which will hold if

(2.15)

’(x 0) + 2(x 0)+ u(x, o)= { Uo(X)
blv blv

0

I(X 0)-- Uv2(X 0)+ Uv3(X, 0)-- { v0(x)
v

0

if v 0,

otherwise,

if v 0,

otherwise.

We find it convenient at this point to distinguish between the two cases
(see (1.4))

(2.16) bc < ad

and

(2.17) bc ad.

In the former case of (2.16) both 7 + and 7- (hence also a and fl) are positive (and
distinct--see (1.3) and (1.4)), while in the latter case of (2.17) 7- (and hence fl)
vanishes identically.

Considering first the case (2.16), we show that the relations (2.4), (2.5), (2.13),
(2.14) and (2.15) can be used recursively to determine unique values for the functions
uiv(x, t) and vi(x, t) for 1, 2, 3, for v > 1, and for all > 0, all x.

Since the linear systems (2.13) and (2.14) are singular, they will have solutions
2for u,2/)v2 and u, v respectively only if the "forcing vectors involving D+u_ 1,

D_ vv_2 and D +u- 1, D_v

_
respectively are in the column spaces of the corre-

sponding coefficient matrices. Hence we have the following necessary
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compatibility conditions"

2=bD_ 2(2.18)
a + d 2

D+uv vv2

and

(2.19)
-a + d + 2

D+u v3=bD_ 3

2

for all v >= 1 and for all (x, t).
Now (2.4) and (2.5) imply with (2.16) the result

(2.20) u (x t)=0 vI (x t)=0 for all(x t)-1

Then (2.15) and (2.20) give initially

U2_l(X 0) "t- U 3 (X 0)"-" 0-1

/)2__ (X 0) + /9
3 (X 0) 0 for all x-1

which with (2.4), (2.13) and (2.14) with v 1 imply necessarily

(2.21) u2_ (x 0)=u3 (x 0)=v2_1(x 0)=v3_1(x 0)=0-1

But now the differential equations (2.18) and (2.19) for v can be integrated
using (2.13) and (2.14) with v 1 to give with (2.21) the result

u2 (x t)=0 u3_ (x t)=0 v

_
(x t)=0-1

(2.22)
v 3_ l(X, t) 0 for all (x, t).

Having obtained u- and v

_
for 1, 2, 3, in the case (2.16), we show

now that the relations (2.5), (2.13), (2.14), (2.15), (2.18) and (2.19) determine
and 1, 2, 3,/f we have already functionsunique values for the functions u v,

and satisfying those relations. In view of (2.16) it is clear that (2.5) deter-Uv- l)v-
mines unique values for u(x, t) and v(x, t) for all (x, t) in terms of the expressions

and and the data. For example, in the case v 0, (2.5) gives (with (2.20))blv- Uv-

u(x, t)
dr(x, t) bg(x, t)

ad bc
(2.23)

v(x, t)
-cf(x, t) + ag(x, t).

ad bc

and in (2.15) we find initially,Using now the values from (2.5) for u vv

(2.24)
u2(x, O) + u3(x, O) known function of x,

v2(x, O) + v3(x, O) known function of x

2 2for all x. On the other hand, (2.13) and (2.14), along with the fact that Uv- 1, v_ 1,
3 andu_ vv_ are assumed already to satisfy (2.18) and (2.19), imply that we need

only impose one of the two relations each of (2.13) and (2.14), since the other two
relations will then automatically hold (recall that the systems (2.13) and (2.14)
are singular linear systems). For definiteness we impose the first relation from
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a and Deach of (2.13) and (2.14), where D+uv_ +Uv-1 are known. In particular,
we obtain from those relations upon evaluating them at 0,

a-d-2
2

uZ(x, O) + bvZ(x, 0)= known function,

(2.25)
a-d+2

2
u(x, O) + bv3(x, 0)= known function

for all x. One easily checks now that the system of four relations in uZ(x, 0),
u3(x, 0), vz(x, 0) and v3(x, 0) given by (2.24) and (2.25) is nonsingular. (The coefficient
matrix is nonsingular moreover it is independent of v.) Hence (2.24) and (2.25)

Uv2(X, 3(X, 0).u(x, 0), vZ(x, 0) and vgive unique initial values for the functions 0) 3

For example, in the case v 0 we find

ug(x, o)
a d + 2IUo(X-22

df(X,adO) bc
O)1

u(x, o)

v(x, o)

(2.26)

v(x, o)

-ib[v(x + cf(x, O) ag(x, 0)]+
ad bc

a + d + 2[u(x) df(X,adO) bc
O)1

b
Vo(X) +

2 ad bc

[ cf(x’O)-ag(x’O)1a + d + 2
Vo(X) +22 ad- bc

c I dr(x, O)- bg(x, O)1+ - Uo(X)-
ad bc

[ cf(x,O)-ag(x,O)]a d+)t
Vo(X)+

22 ad- bc

2c[u(x) df(x,adO)-bg(x,_bc
O)1

It is now possible to integrate the differential equations (2.18) and (2.19)
along with the first relation each from (2.13) and (2.14) in terms of the known
initial values determined by (2.24) and (2.25). In fact, (2.18), (2.19) and (2.13),
(2.14) specify the values of the following directional derivatives;

(2.27)

2
c c )vZ(x t)= specified (known)function,+ (a- d)xx

2 0-- (a d)
c Iv(x t) specified (known) functiont- !

for all (x, t). The equations (2.27) can then be integrated using the initial values
2 and everywhere for >__ 0. Finally thefrom (2.24) and (2.25) to get values for vv vv
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2 and 3 Forfirst relations from each of (2.13) and (2.14) give the values for uv uv.
example, in the case v 0 this procedure gives with (2.26),

a-d+2u(x, )
22

0(x, t)

Uo X
a

-2 dt) df(x t(a d)/2 O) bg(x t(a d)/2, 0)]
Jad- bc

+ Vo
cf(x t(a- d)/2, O)- ag(x t(a- d)/2, 0)

ad bc _]’
-a+d + 2

22

u(x, )

(2.28)

(x, t)

cf(x t(a d)/2, O) ag(x t(a d)/2, 0)-]
ad bc

+ UoX

-a+d+2
2/l

a d tl dJ’(x

Vo X+

a-d+2
22

vo x+ -;--t

a-2 dt) df(x- t(a- d)/2, O)- bg(x t(a- d)/2, 0)
ad bc J’

+ t(a d)/2, O) bg(x + t(a d)/2, 0)-]
ad bc

cf(x + t(a- d)/2, O)- ag(x + t(a- d)/2, 0)-]
ad bc J’

cf(x + t(a- d)/2, O)- ag(x + t(a- d)/2, 0).
ad bc

x/
a d df(x

A

+ t(a- d)/2, O)- bg(x + t(a- d)/2, 0)-]
ad bc J"

Hence we see that in the case (2.16) the above procedure can be used recur-
and for i= 1,2,3, for allsively to determine uniquely the functions u v

v -1, 0, 1,... and for all (x, t) with >__ 0, such that the relations (2.4), (2.5),
(2.13), (2.14) and (2.15) hold, provided of course that the data uo(x), Vo(X), f(x, t)
and g(x, t) are sufficiently smooth.

We now indicate briefly the situation in the remaining case (2.17). In this
case 2 a + d (see (2.11)) so that 7- fl 0 for all >_ 0. Hence the expressions

l(x, t) + v3(x, t) appearing in the expansions of (2.1) canul(x, t) + u3(x, t) and v
be consolidated, and the simplest way to do this is formally to set

(2.29) u(x t) O, v(x,t)=0

I(X, t), I(X, t), 2(x, t) and v2(x, t) arefor all (x, t) and for all v. The functions u vv u
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determined as before using (2.4), (2.5), (2.13) and (2.15) along with (2.29). We again
have (2.18) as a compatibility condition obtained from (2.13). Now, however,

and since the coefficient matrix(2.5) no longer automatically determines u vv
there is singular. But then we have the added compatibility condition obtained
from (2.5);

f dr(X, t) bg(x, t) if v O,
1(X t) bD vv_(x,(2.30) dD+u_

0 otherwise
t)

for all (x, t). Now it is clear that the procedure goes just as before, using now
(2.18) and (2.30) along with (2.4), (2.5), (2.13), (2.15) and (2,29). In particular we
find for v 1 the results (note that 2 a + d)"

u (x t)=

(2.31)
v

_
(x t)=

a+d
x+ t-s) s -bg x+ t-s) s ds,

a+ a+

a+d -cf x+ t-s) s +ag x+ t-s) s
a+ a+

u2_ (x t) O, v2_ (x t)=O

for any (x, t) with _>_ 0. Similarly for v 0 we obtain at any point (Xo, to) with
to_>O,

u+(xo, to)

(2.32)

u(xo, to)

duo(Xo + to(a d)/(a + d)) bvo(Xo + to(a d)/(a + d))
a+d

af(xo + to(a d)/(a + d), 0) + bg(xo + to(a- d)/(a + d), O)
(a + d)2

+ df(x t)- bg(x t)
a+d

+ D_f(x, t) D_D+u[ I(X, t)] ds,
xo + (to s) (a d)/(a + d)

auo(Xo to(a d)/(a + d)) + bvo(xo to(a d)/(a + d))
a+d

af(xo to(a d)/(a + d), O) + bg(xo to(a d)/(a + d), O)
(a + d)2

and associated values for v(Xo, to) and Vo2(Xo, to) obtained directly from (2.5) and
(2.32).

Hence, also in the case (2.17) the above procedure can be used recursively to
and for all i, all v and all (x, t), such that thedetermine uniquely the functions u v

relations (2.4), (2.5), (2.13), (2.15) and (2.29) hold.
We turn next to a proof of the asymptotic correctness of the resulting expan-

sions (2.1) constructed using this procedure.
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3. Proof of the asymptotic correctness of the expansions. Let u(x, t; e) and
v(x, t; e) solve the initial value problem (1.1), (1.2) for _>_ 0 and for any fixed
e > 0, and assume that the initial functions Uo and Vo of (1.2) are 2N + 2 times
continuously differentiable. Assume that the forcing terms f f(x,t) and
g g(x,t) have 2N + 3 continuous x-derivatives and N + continuous t-
derivatives. Then one easily checks (by induction) that the functions u(x, t) and
vi(x, t) constructed in 2 exist and are continuous on >= 0 for 1, 2, 3 and for

and being continuously differentiable.ally= -1,0,1,.-.,N,N + 1, withus vu
Here N is any fixed nonnegative integer.

Let now functions RN+ (x,t;e) and SN/ (x,t;e) be defined for => 0, all
x, and e > 0 by the relations"

N

u(x, t; e) Eul(x, t) + e-x’t)/u(x, t) + e-a(x’/u3(x, t)]. e

v(x, t; )

-+- RN+ l(X, t; e). eN+ 1,
N

,B(x,t)/e. 3y Evil(x, t) + e x"/v(x, t) + e v(x, t)].

-[- SN+ I(X, t; e)-e+ 1,

where e and fl are given by (2.10), (2.11) and (2.12). We have then the following
result.

THEOREM. The functions RN+ and SN+ defined by (3.1) are uniformly bounded
on compact subsets of o < x < + o, >= 0 as e O.

Proof Inserting (3.1) into the system (1.1) and using (2.5), (2.13) and (2.14), we
find that RN + and SN + satisfy the system

eD+R+ + aR+ + bS+ + D+u + e-/D u + e-a/D u 0+ +
(3.2)

eD_ Su + + cRN + "t- daN + -Jr- D_ vv + e-/D_ vv + e-a/D_ v3 O,
where as before D_+ c3/ct + c/c3x. In order to prove that Ru / and Su / remain
bounded as e 0, we replace D+u and D_v in (3.2) with their equivalents in
terms of u / and v/ obtained from (2.5) with v N + 1, giving

3D+(Ru+ u+ 1) + a(R+ u+ 1) @ b(SN+, v+ 1)

+ eD+u+ + e-/D u + e-lS/’:D u 0+ +

eD_(SN+ VaN+ ) + c(Rs+ u+ ) + d(Ss+ v+l)

+ eD_v+ + e-/D_v + e-a/D_ v3 0,
or, defining (x, t) and ,9(x, t) by the formulas

(x, t) R+I(X, t; e) b/1N + I(X, t),
(3.3)

9(x, t) Su + l(x, t; e) v + l(X, t),
where we have suppressed the dependency of and 9 on N and e, we have

(3.4)
e,D+ + a + b + e.D+u+ + e-/D u + e-a/D u3u =0+ +

eD_9 + c + d + eD_vv+ + e-/D-v + e-a/D-v O.

Setting 0 in (3.1) and using (1.2), (2.15) and (3.3), we find as initial
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conditions for and 5 the conditions

(X,0) --U+I(X,0), gP(x,0) --V+I(X,0),

independent of e > 0. (Note that N __> 0.)
We now integrate separately the equations of (3.4) along the appropriate

characteristics to find with (3.5) the equivalent system of integral equations’

e’/(x, t) + u + (x t, O)

b eS,/du+l(x-t+ s,s)ds+- eS"/,(x- + s, s)ds +
e ds

lfO [ du2u(x-t+s s)
q_ eS(a d 2)/2:

ds

(3.6) + e,(,_e+z)/2du(x + s,s)] ds 0

eta/sf(x, t)+ v+ I(X + t, 0)

cf f v (x+t-s s)
+ ea/(x + s, s) ds + ea/ +1 ds

ds

+_ (-.+-/2 dvg(x + t-s,s)
ds

+ e(-.++a/2 d4(s + s, s)] ds 0
ds J

where we have used (2.10), (2.11) and (2.12). We can now use (3.6) to prove that
and remain uniformly bounded on compact sets as e 0; the same result

will then follow for Ru + and Su + from (3.3).
It suffices for this purpose to consider an arbitrary set J of the form (see Fig. 3)

(3.7) J= {(x,t)’lx-l <= L + T- t, all O__< t__< T}

for arbitrary positive numbers L and T and

(2-L,T) (2+L,T)

(2-L-T,O) (2,01 (,+ L+ T,O)

FIG. 3
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for any number ft. For such a set J the assumed smoothness of the data implies
the existence of a constant K such that the expressions uc+l(x- t,0) and

and v+v+ l(X + t, 0) and all derivatives of u, v, u+ appearin in (3.6)
are bounded in magnitude by K, uniformly on J.

Considering first the case (2.16), and increasing the magnitude of K, we
obtain easily from (3.6) the estimates

(3.8)

e’"/lN(x t)[ <=- e"/[ST(x- + s,s)] ds

+K.
1 e -t(2+d-a)/2e

1 + eta/ + +2+d-a

e’a/l(x, t)] --Iclfi ea/l(x + s, s)l ds

et(Z- d + a)/2e 11
2-d+a

1 e -t()-d+a)/2e et(2+d-a)/2e 1
+ eta/ + +2-d+a 2+d-a

where (1.4) and (2.11) imply

(3.9) la dl R,

and where (2.16) implies

(3.10) ,l < a + d.

It is understood in (3.8) that the expression (e 1)/x takes the value at x 0.
The following calculation is somewhat simplified if we first assume (see (3.9))

(3.11) la- dl < A,

or, what is the same thing, bc > 0. In this case we can replace (3.8) with the following
inequalities by increasing the magnitude of K"

(3.12)

e’"/l(x, t)l --Ibllt’ esa/l9(x + s, s)l ds, o
+ K .(1 + g,eta/e + et(’-cl+a)/2e),

=- eSa/l(x + t- s,s)[ ds

+ K.(1 + eeta/ + e"+a-)/2).

Defining functions R(t) and S(t) for 0 =< _< T (see (3.7)) as

(3.13)
R(t) max I(x, t)l,

all (x, t) in J

S(t)= max I(x, t)l,
all (x, t) in J
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we then find from (3.12) and (3.13) the estimates

et"/R(t) < Ibl fl e*a/S(s) ds

+ K .(1 + ee’"/ + et(Z-a+a)/2*:),
(3.14)

daleS(t) < Iclfl eSa/R(s) ds

+ K.(1 + g.e. td/e + et(Z+d-a)/2t:).

Using the second inequality of (3.14) in the right side of the first inequality
of (3.14), we obtain with (1.4) and (3.11) (again increasing the size of K),

ad et-a)/ ea/R(a) dadseta/R(t) < --(3.15)

{ e""-a)/ 1 }+ K 1 + geta/e + et(z-d+a)/2: + a-d

Hence, ifwe define a function P(t) by the formula (again suppressing the dependency
on e > 0)

(3.16)

forO=< t<= T, with

P(t) es(--a)/’: ea/*:R(cr) do ds

a-dp,, eta/:R _q p’,

we then find from (3.15) and (3.16) the differential inequality

ad
(3.17) P"(t) <= - P(t) +

a-d
P’(t) + K {1 + geta/: + et(2-d+a)/2e +

On the other hand we find directly by integrations by parts the identity

(3.18) P(t) fla + d
(e(t-s)a/e-- e--(t-s)a/e) P"(s)

a - d_ P’(s) ----d2 P(s) ds

since P(O)= P’(O)= 0 as follows from (3.16). Since e(t-’)a/- e -(’-)a/’: is non-
negative for 0 __< s =< t, there follows from (3.17) and (3.18) the estimate

(3.19)

P(t) <= d-+- d
(e(t-*)"/ e-(’-s)d/)

(1 + g,esa/e" + es(a-d+a)/2e nt-
eS(a- d)le

a-d
ds.

If a g= d, there follows easily from (3.19), (1.3) and (3.10), the estimate

P(t) <= const, g2(1 + t)et"/,
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which with (3.15) and (3.16) gives

(3.20) R(t) <= const. (1 + T)

for all 0 =< =< T, with the constant independent of e > 0 as e --, 0. On the other
hand, if a d, then (3.19) leads to the estimate

(3.21) P(t) <= const. {e2(1 + t)eta/ + et},
which with (3.15) and (3.16) gives

(3.22) R(t) <_ const. 1 + r + --e

for all 0 < < T and all small e > 0. This last result (3.22) again gives a uniform
bound on R(t) as e 0.

Hence if (3.11) holds, we find in every case a bound

(3.23) R(t) < const.

for all 0 < _< T and for ai1 small e 0.
The second inequality of (3.14) then gives a similar uniform bound for S(t),

(3.24) S(t) <= const.,

where we again used (3.10).
To finish the case (2.16), we only need consider the remaining special case

2 la dl (cf. (3.9) and (3.11)). In this case the same type calculation beginning
with (3.8) gives

ad
eS(a_a)/ ea/R(a)da ds + K(1 + t/e + ee/ + et(a-d)/e),et"/R(t) <=

which as before leads in this case to the estimate (3.21) for P(t) (see (3.16)), giving
again the bounds (3.23) and (3.24).

Hence we finally need only consider the case (2.17). Since (2.29) holds in this
case, we obtain from (3.6) and (2.11) the estimates

t)l <= Ib eS/]_(x + s s) ds + K. (1 + eta/)
,o

da/l_(x t)l < IclI=- ee/’:lN(x + t- s, s)l ds + K. (1 + eee/)
do

uniformly for all (x, t) in J and for a fixed constant K independent of e > 0. Again,
the same type calculation used above (only simpler in this case) leads to uniform
bounds of the type (3.23) and (3.24) for the functions R(t) and S(t) defined as
before by (3.13).

Hence in every case the uniform estimates (3.23) and (3.24) hold, giving with
(3.13) analogous uniform estimates for I(x, t)l and l9(x, t)l for all (x, t) in J and
uniformly for all small e > 0. The theorem then follows directly from (3.3) and
the boundedness (on compact sets) of the functions u + and v + .
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4. Discussion of results. The construction in 2 of the formal asymptotic
expansions along with the theorem of 3 show in particular that the solution
functions u and v of the Cauchy problem (1.1), (1.2) (subject to (1.3), (1.4)) satisfy

(4.1)

u(x, t,e)
1

(x t)+ u(x t)+ e-/u(x t)+ e-t/u(x t) + O(e)--U_

v(x, t; ) lvx__,(x, t) + v(x, t) + e-/v(x, t) + e-t/vg(x, t) + O(e),

where

a + d + w/(a- d)2 + 4bc
O t,

2

a + d- w/(a d)2 + 4bc
fl= 2

and where the remainder terms in (4.1) are O(e) uniformly on compact sets in
-oe < x < +,t>=0ase--,0.

If the coefficient matrix is nonsingular, so that (2.16) holds, then
c

cz and fl are positive for each fixed > O, while u

_
and v

_
vanish identically

(see (2.20)). Since uo and v are given in this case by (2.23), we find from (4.1) for
any fixed > 0 the result

(4.2)

af(x, t) bg(x, t)
lim u(x, t;e)
-o ad bc

-cf(x, t) + ag(x, t)
lim v(x, t;e)
-o ad bc

so that u and v tend in this case to the unique solution of the reduced system (1.6).
If the coefficient matrix is singular, so that (2.17) holds, then (a + d)t

3 3and/ 0, while (2.29) gives uv 0 and vv 0. Hence in this case it follows that

if the reduced system of linear equations (1.6) has no solution for points (x, t) on the
line segment (1.8) for a given point (Xo, to), then the values U(Xo, to; e) and V(Xo, to; e)
become unbounded like e- as e 0 for fixed to > 0. In fact, (4.1) and (2.31) show
in this case that

lime. U(Xo, to;e)
;-0

(4.3)

1

a+d df
a-d

Xo + (to s) s
a+d

bg Xo + (to-s) s ds,
a+d

lime. V(Xo, to;e)
e,0

a+d -cf
a-d

Xo + (to s), s + ag
a+d

a-d
Xo + (to s) s

a+d
ds,
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where these limits will in general be nonzero.
Finally if the coefficient matrix is singular and /f the reduced system (1.6)

has solutions for all points (x, t) on the line segment (1.8) (hence infinitely many),
then the limiting expressions in (4.3) vanish, and (4.1), (2.32) and (2.5) give in this
case (after some calculation, using cf ag, df bg),

lim U(Xo, to;e)

f(xo, to) + duo(Xo + to(a d)/(a + d)) bvo(Xo + to(a d)/(a + d))

(4.4)
lim V(Xo, to;e)
e0

a+d

(a + d)2 fx Xo + a + d
(t s),s ds,

g(Xo, to) euo(Xo + to(a d)/(a + d)) + avo(Xo + to(a d)/(a + d))
a+d

2a [.to a d
+

(a -+- d)2 Jo g, Xo +
a+d

(to s), s ds

for any fixed to > 0, where fx Of/cx and gx cg/Ox. The limit functions
in (4.4) are easily seen to satisfy the reduced system (1.6) in this case. Hence among
the infinitely many solutions of (1.6) the Cauchy problem (1.1), (1.2) distinguishes
in this case the particular solution given by (4.4) as e 0. Note that the limiting
solutions given by (4.4) depend on the data restricted to any neighborhood of the
line segment (1.8) in view of the spatial derivatives ./’ and gx in (4.4).

Aeknowletgment. The author wishes to express his appreciation to a
referee for several valuable comments and suggestions concerning an earlier
version of this paper.
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SINGULAR POINTS OF STURM-LIOUVILLE SERIES*

GILBERT G. WALTER]"

Abstract. The results of Gilbert and Howard on the location of singularities of Sturm-Liouville
series b,u,(x) are extended to the cases when the coefficients satisfy: (i) b, O(rtP), p an integer,
and (ii) lim sup Ibl 1/" > 1. In the first case the series converges to a distribution and in the second
to an ultra-distribution. The analytic representations fi,+-(z) of the u, are defined as appropriated second
solutions to the differential equation. The series b,fi(z) is then shown to converge to an analytic
function which is the analytic representation of b,u,(x). The singular points of this analytic function
are compared to those of the function given by b.t.

1. Introduction. In a 1956 paper, which has had many imitators (including
this one), Nehari devised a method for locating the singular points of an analytic
function given by a Legendre series. Nehari’s method was in turn an adaptation
of a method used earlier by Hadamard for power series and Watson for Neumann
series. This method has been exploited extensively by Gilbert in a series of papers
dealing with the analytic properties of certain partial differential equations
(see [23 for details and bibliography). Recently Gilbert and Howard [3] used the
method for a function given by a Sturm-Liouville series arising from a differential
operator with holomorphic functions as coefficients. This paper presents a pro-
cedure for doing the same when the function to which the series converges is not
analytic (in fact, is not even a function). The procedure is a modification ofNehari’s
which uses the "multiplication of singularities" artifice of Hadamard, in which
integral operators are found which map the given function into a function given
by an associated power series and inversely.

The Sturm-Liouville series we consider are the series of eigenfunctions of
the system

d2u
+ 22u q(x)u, x (0, re),

(1)
dx2

u’(O) hu(O) u’(rc) + Hu(rc)= O,

where q(x) is holomorphic on the entire plane and is real on the real axis.
In the work cited above, Gilbert and Howard studied the location of singu-

larities of functions given by series

Z antln,

where lim sup la, 1/" < and the u, are the eigenfunctions of the system. We
shall study two additional cases, depending on the behavior of the coefficients:

(i) b. O(nP), p an integer,
(ii) lim sup ICnl 1In > 1.

In neither case does the series ( b,u, or c,u,) converge to a holomorphic
function. Thus it is impossible to talk of singular points of functions given by
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394 GILBERT G. WALTER

the series. However we shall see that an associated series bnt or c,ft in
which the ft, are other solutions to the equation corresponding to the same
eigenvalues, does converge to a holomorphic function in part of the plane. It is
the corresponding analytic function whose singularities we locate. Moreover,
this analytic function will turn out to be the analytic representation of the function
(or generalized function) given by the Sturm-Liouville series.

The normalized eigenfunctions u,(x) have the asymptotic expression:

u,,(x) V/- cos nx + O(n- 2)} ._ sin nx {fl(x)n -1 -+- O(n- 2)}, n 1,2, ...,

where fl(x) is continuous on 0, zc] (see Ince 4, p. 273]). We make the additional
assumption that u,(z) satisfies:

(i) lu,(z)[ < C1e’"lm=l for some constants C1
and 01 greater than 0, and that for [Im zl
sufficiently large, [u.(z)[ >= C2ezlmzl22 for
other constants Ce > 0 and 2e2 >

(ii) u,(z)t" has a singular point at most at
whichever of the points e +-iz is on its

circle of convergence.

Both (i) and (ii) are valid (trivially) for systems with constants q. They may
also be shown to be true for a large class of Sturm-Liouville systems (see Gilbert
and Howard [3] for more details).

2. Properties of a second eigenfunction. We define ft,+ (respectively fi-)
to be an eigenfunction of the differential operator vanishing at i (respectively
-ic). Since a second solution to the differential equation (1) is given in terms
of the first by

we see that

"CdC,(z) u(z) u,()

2 fzd,
d andc,.+(z) u.(z)

u.()
_

where d, is a constant to be determined.
Clearly because of the assumption (i) these integrals exist and are independent

of path for Im z sufficiently large in the first integral and sufficiently small in the
second. They may be extended to any complex z which is not a zero of u, by
extending the integration along a contour which avoids those zeros. The value
will be the same for all such contours since the residue of 1/u at such a zero is
zero.

LEMMA. Let

d2 d.
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Then d, is a constant which satisfies Idnl d2, .for all n, some d > 0, and

(i) a.+ (x) f2 (x) u.(x),

1 u.(x)
dx(ii) tiff(z)

x z klm z <

To prove that d, is a constant, we observe that fi is a solution whose
Wronskian with u, is 0. Thus fi is a multiple of u,. But

where the path of integration crosses the real axis at x. Since the integral

i-i (dffu())d is constant in intervals containing no zeros of u, it must equal
the constant factor of the multiple of u. Thus it is constant everywhere and equal
to 1.

It may be observed that d is the Wronskian of with u by differentiating
ffu i(dffu())d. Now assuming that part (ii) has been proved, we use it
to get an estimate for d, namely,

]d] 1 u(x)u’(Z)x_-u(z)u’(x)dx d

for some constant d.
To prove that (ii) holds we observe first that for Im z > O,

O;(z) +
kx-z

where Rk is a semicircle of radius M and center 0 which, together with [- M, M],
encloses z. On the other hand we have

where R is a semicircle in the lower halSplane havin the same radius and
center. Now let M oo. Then

f, a(X) ax
x-z

Thus we conclude that

e-a122MsinO
< M il-e--cO ---zi dO

r/2

=< (const.) e -2122OM/r dO O.
,0

1{;,; (z) o =i --X--Z ooX--Z

1 f Un(X)
dx.

2hi J_ x z

Similarly, we reach the same conclusion for fi-.



396 GILBERT G. WALTER

3. Singularity theorems. We have two theorems concerning the singular
points of Sturm-Liouville series, one for each of the cases mentioned in the
introduction. In both theorems {un} denotes the orthonormal system of eigen-
functions discussed in the introduction and {i} the second solution to the
differential equation discussed in 2.

THEOREM 1. Let {bn} be a sequence of complex numbers such that b, O(np)
for some integer p; )Curthermore, let q)()= b,, I1 < 1. Then"

(i) the Sturm-Liouville series b,u, converges to a distribution f on R;
(ii) the series b,fif(z) converges to a function f+-(z), holomorphic jbr

Im z > 0(+) or Im z < 0 (-) which is the analytic representation off;
(iii) thefunction q)() is singular at , I1 1, =/: +_ if and only ![’either

f+(z) or f-(z) has a singular point in (0, rc)at z fl, where cos fl 1/2(a + 1/).
THEOREM2. Let {c,,} be a sequence of complex numbers such that

lim,_,oo sup lc,I /"= l/p, p < 1;furthermore, let ()= c,", Il < P. Then"
(i) the Sturm-Liouville series c,u, converges to the ultradistribution g

(in the sense of Z’) and moreover g is an analytic functional on Z;
(ii) the series c,gtf converges to a function , +-(z) holomorphic jbr Im z > c,

a constant (+), or Im z < c (-) which corresponds to the analytic fimctional g;
(iii) the junction /;() is singular at 0, 101 p (arg :/: O, r), if atwl only

if either , +(z) or -(z) has a singular point at z fl, where cos fl 1/2(a + l/a).
4. Proof of theorems. The statement (i) of Theorem is known (and easy

to prove). The proof of Theorem 2 is more difficult. In order to show that the
series converges, we shall show that _u,q9 dx 0 for each test function 99
in Z for n sufficiently large (see [8] for properties of this space).

The test functions q in Z are entire functions satisfying

IzlPlq(z)l < Mpeallmzl

for some positive constants a and Mp and all integers p _>_ 0. We may write, for
n sufficiently large (to be specified more precisely later),

u,, dx fit,+, fi[) dx u."+ dx gt dx

where C / and C- are contours above and below the x-axis respectively and
parallel to it. We choose C / such that

a2,2]lmlu.(z)l => Cze
for any z lying on C +. Then .+ (z) for z on C + satisfies

C1 ea’z’2’llmzl d2n fz
< Ce, 2a2);tn211m zl

C2e 2a2’nz] Im 1 d
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for some constant C independent of z and n.
Similarly q(z) satisfies

eaJlmz[
Io(z)l _-< M

1 / izl 2.

Thus whenever (22 1)2,2 > a we obtain

<= Ke {(al- 2oz)2+a}llmzl

which vanishes when IIm zl-+ oo. Since the integrand is holomorphic it follows
that J’c+ ft,+q)d 0 for all n sufficiently large, The same holds for J’c- fi,;-rP de.
Thus u,,q) dx 0 for each q9 e Z and all but a finite set of values of n; whence
it follows that ,1 c,,u,, converges weakly in Z’. Since Z’ is weakly complete,
it must converge to an element g in Z’.

We shall show later that , c,ft-(z) converges for IIm zl sufficiently large.
Assuming this to be true for the moment, we have

(4.1)

,+od ,-q,d,
-oo+ai -ai

which may be expressed as a single integral. (The real number a is taken suffi-
ciently large to ensure that c,gt+, (ai) converges.) Thus g is an analytic functional.

In order to prove the statement (ii) of Theorem we merely integrate by
parts repeatedly"

dz
1 _I u.(x)

dx
2rci (x z)

-1 (oo u,,(x)q(x) u’(X)
dx

2, 2rci (x- Z)2

ll{f_’u"(x)q(x)dx-f_6u"(x) }2-7 2rc--- (x z) (x z)4
dx (cont.)
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1 u(x)q2(x)- u’(x)q(x)dx 6 d
2. (x- ) (- )

1 {f u.(x)(q2(x)-q"(x))
." / ( )

un(x)q’(x)
dxdx + 2

(x- z)

12
u,(x)q(x)

dx + 120
Un(X)

(X Z) (X Z)6d

l{fUn(X)q"(X22r 2rci (x- Z)2
(2r + 1)!Un(X }dx 4-
(x -)z72 dx

where r is any integer such that 2r 2 p + 1. From this equality it follows that

C(z)
--]’’n[-2r Im z 4:0 n 1 2

where C(z) is a bounded function for IIm zl >- e > 0. Since fi(z) has a zero at
z ___i, we deduce that

[fi(z)] ((z)ln1-2r Imz4:0 n= 2 r>(p+ 3)/2

and therefore, using the fact that 2-2 O(n-2), that bfi(z) converges uni-
formly for z in compact sets avoiding the real axis.

To prove statement (ii) of Theorem 2 and to justify the calculation made
in (4.1), we first observe that, for IIm z sufficiently large,

d,
dI(z)l Un(Z)

N C1 e’llmzl’2’2’ 2ndCe -22’2’2’11m1 d

for a constant C independent of n and z, whence it follows that

c.c[(z) +-(z)

for }Im zl sufficiently large. This is the same appearing in (4.1). Therefore this
must be the one corresponding to the analytic functional g.

The statement (iii) is proved using a variant of the Hadamard argument
mentioned in 1. To do this we need to find an integral operator relating
and f+-(z) in the case of Theorem 1, and () and -+(z) in Theorem 2. In one
direction this is easy:

(4.2)

f+(z) bnt(z i 2 b,t" ft(z)t -1’dt

fr q)(t)Re(z t- 1)
dt

2ci
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where/+(z, t) is the function given by the series +u2(z)t" which converges for
IIm zl > 0, Itl < 1, and F is a circular contour inside the unit disk enclosing the
origin. Similarly we have

g---(Z) / l([7)R+(z, t- dr,

where F’ is a contour inside the disk of radius p enclosing the origin.
On the other hand, we have

(4.3)

q)(t)= b,t"= ff-- u(x),? dx
22, T

F(x)(q(x) D2x)"K(x, t)dx,

where r is chosen so large that b,u,(x)/22, converges uniformly in [0,
Each analytic representation /+ of F satisfies P+(x + ie,)- e-(x- ie)

F(x), where convergence is uniform on [0, n] as e --, 0. Thus (4.3) may be written:

qg(t) {/?+(x + iO)- .-(x- iO)}(q(x)- D2)rK(x, t)dx

;v+ .+(z)(q(z)- DZz)K(z,t)dz- fv- -(z)(q(z)- D2)K(z,t)dz,

where F + is the path from 0 to ie to n + ie to n and F- its reflection in the real
axis. We may then integrate by parts on the segments from ie, to n + ie and
ton- i.

For example, on i to n + ie, we obtain

P+(x + ie)(q(x + ie)- D2x)K(x + ie, t)dx

(q(x + i)- DZx)@+(x + ie)K(x + ie,, t)dx + %(t),

where qg(t) represents the integrated terms. Since an analytic representation of F
is given by /+(z)= b,(z)/22, we may replace (q(x + ie)- DZ)@+(x + ie)
by b,gt+,(z)= f+(z). Then denoting by q)l(t) the contribution from the inte-
grated terms as well as the integral over the segments from -ie, to ie and n + ie
to n ie, we obtain

+ i

ff
i

(4.4) o(t) q)l(t) + f +(z)K(z, t)dz f-(z)K(z, t) dz,
ie

where (Pl(t) is not affected by singular points of f + in the interior of (0, n).
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In the other case, we obtain almost the same result"

/(t) c, u,(x) k Uk(X)tk dx

+ ft+. (x)K(x, t) dx
+ai

+ ft2 (x)K(x, t) dx
-ai -ai

(4.5) . c. (x)K(x, t) dx
-.i

a;(x)K(x, t) dx

;ar+ai , + (x)K(x, t) dx f-..i -(x)K(x, t) dx +

if a is sufficiently large.
We now have the basic tool necessary to prove part (iii) of each lemma.

We recall that the only possible singularities of the kernel K(x, t) are at e +

Thus the only possible singularity of the kernel

1 fo K(x, t)
dxK+(z,t)= x- z

is the point e + iz for/ + (z, t) and e -iz for/-(z, t) by the original "Hada-
mard argument" (see [1], [2], [7] for details).

We use the same argument to locate a singular point of f+(z). By (4.2),

f + (z) i q)(t)I + (z, t- ’)
dt

Let us suppose that q has an isolated singularity at e; then by deforming the
contour we can extend f +(z) to any point z on the real axis such that the singular
points of q and/ + do not coincide. They do coincide if e-1 eiZ or
which is therefore the only possible singular point of f+(z). Similarly the only
possible singular point of f-(z) is given by ei= e.

In the same way, if () has an isolated singularity at e, then ,+(z) has a
possible singularity only when e e +i.

To go in the other direction, we assume that either f+(z) or f-(z) has an
isolated singular point at z fl in (0, n). Then either the first or the second integral
in (4.4) gives a function whose only possible singularity is at e +i, since (pl(t)
will not be affected by such a singularity.

Furthermore, we may deduce that f + (z) or f-(z) is indeed singular at z fl,
where cos fl 1/2(e + i/e), provided (p(t) is singular at e. For if neither were
singular at fl, then q)(t) could not be singular at ei or e-i (since cos fl 1/2(e
+ e-i). Furthermore, it follows that if f +(z) or f-(z) is singular at fl, then q is
singular at e.
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In the case of Theorem 2, the same arguments hold, the only difference
being that the singular points in the z-plane are no longer on the real axis.

5. Extensions. A number of fairly obvious extensions of this theory suggest
themselves. For example, extension to orthogonal systems coming from singular
problems is possible in some cases (see [5], for example). In other cases such as
Hermite series, it is not. Furthermore, it would be interesting to delineate exactly
which Sturm-Liouville systems have the property that the corresponding kernel
has singular points only at the two points indicated. Perhaps it is true for all
systems, or perhaps there is an example with an infinite number of singular points.

Another extension is to systems in which q is not necessarily holomorphic.
A different notion of "singular" has to be used in this case, making it more difficult
to establish necessary and sufficient conditions.

Finally we observe that the proof that c,u, converges in Z’ is valid for all
sequences of coefficients {c,}, no matter how fast they might grow. This could
be used to develop a theory which completely removes the distinction between
Sturm-Liouville series and expansions. This has already been done by the author
in the case of trigonometric series in [6].
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HYPERBOLIC EQUATIONS WITH MULTIPLE CHARACTERISTICS
AND TIME DEPENDENT COEFFICIENTS*

GIDEON PEYSER"

Abstract. This paper considers hyperbolic operators of order n in the m + variables(t, xl, ..., Xm)
with multiple characteristics and coefficients depending on the time variable t. The roots of the principal
part of the characteristic polynomial are real. The form of the lower order terms of the operator and
the dependence of the coefficients on are subject to restrictions which depend on the multiplicity
of the characteristic roots. Energy inequalities are developed for these operators. These inequalities
are then used to show that the corresponding Cauchy problem is well-posed and also to derive the
differentiability of the solution.

1. Preliminaries. We consider linear hyperbolic partial differential operators
of order n in m + variables, with coefficients depending on the time variable,
that is, the variable with respect to which the operator is defined to be hyperbolic.
The sheets of the normal characteristic cone may coincide, intersect or coalesce.
Certain restrictions, depending on the multiplicity of the characteristics, are
imposed on the lower order terms and on the time dependent coefficients. We
develop energy integral estimates for these hyperbolic operators and apply these
estimates to show that the corresponding Cauchy problem is well-posed in the
space of square integrable functions. We also use these estimates to derive the
differentiability of the solution of the Cauchy problem.

For strictly hyperbolic operators with coefficients depending on all the
variables, the solution of the Cauchy problem, with the aid of energy integrals,
was given by Gfirding l-3]. In [23 Gfirding treated hyperbolic operators with
constant coefficients and multiple characteristics (that is, not necessarily strictly
hyperbolic), using methods other than energy inequalities. The present author
in l-5] developed energy inequalities for a special class of such operators.

We introduce the operator L(c/&, /c3x) L(/&, /Xl,’’" /Xm) in the
m + variables (t, x) (t, x l, "", Xm), defined by

Il-<n

where (o, 1,’", am), I1 0 / 1 / / m" Corresponding to L we
have the polynomial in z with parameters (1, "’", era),

(2) L(r, )= r" + a(t)r’,
o<n

where e’ -= ((x1, 0m). We define the pseudo-differential operator L by

(3) L L + a(t (i)’.
o<n
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We impose several conditions on the polynomial L(r, 0, under which the
operator L(c3/ct, c3/c3x) is defined to be hyperbolic. The domains under considera-
tion will be the dual domains

V:0<t=<l, - <xi< , i=l,...,m,
and

:O=<t_<_ 1,

H(r, ) will denote the principal part of L(r, 0"
H(r, ) 3" + a(t)r’

Il(4) so <,

(’r /].l(t, ))"’" (’L" /].n(t, )).

ASSUMPTION A. The roots 2i(t, ) are real for all (t, ) V.
We number the roots, for any fixed t, according to increasing order"

)l(t, )... =< 2n(t ). From classical considerations it follows that the roots
are continuous functions of . Regarding the dependence of the roots on we

make the following assumption.
ASSUMPTION B. The roots 2i(t, ) are n 1 times continuously differentiable

with respect to t. Furthermore, the derivatives up to order n 2 of

for all -# j, are uniformly bounded in . More precisely, it is assumed that

(5) ([.(/i- /j)--- Cij(/i- /j),

where the functions Cij(t, ) are n 2 times differentiable with respect to and
these derivatives are continuous and uniformly bounded in V.

It is readily seen that Assumption B implies that if is fixed and two roots
coincide for some value of t, then they are equal for all values of t.

The lower order terms of L(c/c3t, c3/c3x) are subject to certain restrictions,
reflecting the multiplicity of the sheets of the normal characteristic cone of
H(c3/c3t, c3/c3x).

We define the jth characteristic factor by

(6) J

ASSUMPTION C. The pseudo-differential operator L can be written in the form

(7)
k<n-1

where the summation extends over k characteristic factors, k 0, .--, n 1, in
arbitrary order, with coefficients 7i...iu(t, ), continuous and uniformly bounded
in V.

It is clear that the pseudo-differential operator t31 c3, depends on the
order of the characteristic factors. However, we show next that any change in
the order of the characteristic factors introduces additional pseudo-operators
of lower order, of the type occurring in Assumption C.
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LEMMA 1. If 0i1"’" (in is a rearrangement of 1 n, then

(8) (i’’" in (1’’" (n (j,’"jktj,
k<n-1

with coefficients 6j,...j(t, ) continuous and uniformly bounded in V.
Proof We employ a method similar to the one used by A. Lax I4]. Consider

first the case when only two adjacent characteristic factors of c1 , are inter-
changed. It follows from Assumption B that

01 i(i+ On (1 i+ l(i

(1 i-1(ii+ i+ 1/)i+2 n
c31 ci_l i-- c3t c3i+2"’’c3"

(9)
(1 i-1Ci,i+ l(i/i i)i+ 1)c3i+ 2"" n
(1 i-lCi,i+l((i+l i)i+2 n

---01 i-lCi,i+l(i+li+2 (n 01 i-lCi,i+lii+2 n"
Now consider the first term on the right of (9)"

1 (i-lCi,i+l(i+l(i+2 (n (1 (i-2Ci, i+ li-l(i+l(i+2 (n
(0)

+81 8_C,+18+8+ 8,,
where

Ci,i+ tCi,i+ 1"

The second term in (9) can be broken up in a similar way. We continue this
process with each term in (10), successively moving the factors Ci,i+l, C’i,i+l,""
one place to the left. It follows that after a number of steps, involving t-derivatives
of Ci,i+ at most up to order n 2, each term has the required form.

Returning to 8i 3i,, we permute the characteristic factors one at a time,
a process which has just been shown to have the effect of adding lower order terms
of the required form, with coefficients involving the t-derivatives of Cj of order
=< n- 2. This completes the proof of the lemma.

2. Energy inequalities. We shall make repeated use of a well-known classical
lemma. For the sake of completeness we shall include a simple proof.

LFMMA 2. If g(y) is a continuous function and h(y) is a nondecreasing function
r g(s)ds + h(y),in the interval a < y < b, satisfying the inequality g(y) < kYa

k > O, then g(y) <_ ek(y-a)h(y).
Proof Since h(y) is nondecreasing, it follows that for fixed y and a N r/=< y,

(11) g(r/) =< k g(s) ds / h(y).

We denote the right-hand side of (l l) by W(r/). It follows that

d
--w() <= kW().
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Hence,
d
e-"W(rl) <_ O.
dn

Integration with respect to r/from a to y implies that e-krW(y) e-kaW(a) <= O.
Since W(a) h(y), the lemma follows.

We denote by the space of complex-valued functions w(t, x), which are
square integrable in V (V:O =< =< l, - < xi < c). The inner product and
norm are defined as usual by

(w, v) ff we dt dx, dx =__ dxx dxz dxm,
v

(12)
Ilwl (w, w).

Similarly denotes the space of complex-valued functions v(t, ), which
are square integrable in V (V’0 =< =< 1,-oe < i < oe), with inner product
(v, ) and norm 11.

DEFINITION. w(t, X) is defined to be smooth in V if it has continuous derivatives
up to and including order n in the t-variable, and has continuous derivatives
of all orders in the x-variables (that is, if it has the continuous derivatives of the
form (c3/?t)(c3/C?Xl)’... (C3/?Xm)" with 0o < n and all (1,’", am)), and such
that each derivative is o(Ixl-), as Ixl--(Xl2 / / X2m) 1/2 ’’ (, uniformly
in t, for each nonnegative integer N.

Smooth functions in V are defined in the same way.
We shall use the following elementary facts concerning Fourier transforms.

Let ff,(t, ) be the Fourier transform of w(t, x) with respect to the x-variables
(we shall refer to it as the transform of w), given by

1 f_ -ix’w(t x) dxV(t, ) (2rt)m/2
e

X" --- XI "3
t- -Jl- Xm

w e )(,’ implies that v e . Furthermore, if w is smooth, then also v is smooth.
Smooth functions w(t, x) and v(t, ) will be said to satisfy homogeneous data

on 0 if, respectively,

c?
#(O,x) 0 and

(3)

’’()sff,(O,)=O for s=O,...,n-1.

$7. will denote the surface T, - < xi < v. Vr denotes the slab
0 =< __< T, - < xi < . Similarly r and 12r denote the corresponding surface
and slab in the (t, )-space.

Throughout the paper K will denote an unspecified positive constant
depending only on the coefficients and the order of the given operator and on the
number of independent variables.
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LEMMA 3. If #(t, ) is smooth with homogeneous data on O, and ifwe denote

i,(i2 ik Pi,
k <= n,

i2 (ik P2’
thenfor 0 T _< 1,

(14) f IP2vl 2 d <_ Kff 1/311’[ 2 dt d.

Proof

(15) Re {Pl ff’’P-} Re

Integration of (15) over Vr implies that

ff1 1212 d Re {/31 ff. P2 ff} dt d < (I/31 12 + ]2 ]2) dt d.
2

T T
This can be rewritten in the following form"

[P2[ 2 d (P2[ 2 + [l[2) d dr.

We apply Lemma 2 to this inequality and (14) now follows. This completes the
proof.

We consider next the two operators , a, k n 1, and

i, ikik 1’’’ in"
Repeated application of (14) shows that if is smooth with homogeneous data on

0, then

(16) ,i...,ldNK ff li.......#ladd.
We now derive the energy inequalities.
To 1. ff # is smooth wih homogeneous dam on O, hen

(17)

(18)

f < Iil ,,ff’l 2 d<_K ff IE2dt d.
rk -1

Proof From (7), (8) and (16) it follows that for v =< n 1,

I12 + ]i, ,12) dt d.
k<_n-1

Summation of(18) with respect to v from 0 to n yields

ai,’"a,  12d <=Kff
k<_n-

T

Iv[ 2 +
k<_n-1



HYPERBOLIC EQUATIONS WITH MULTIPLE CHARACTERISTICS 407

From Lemma 2, (17) now follows. This completes the proof.
If w(t, x) is smooth in V with homogeneous data on 0, then it follows

from (17) that the transform v(t, ) satisfies

(1.9) I’ 2 =< K , 2.

From Parseval’s theorem it then follows that

(20) Ilwll z KIILwll 2,

We need another energy inequality, stronger than (20), which we proceed
to derive. We multiply both sides of (17) by e-T, where a is a positive constant
at our disposal. Integration with respect to T from 0 to 1, and use of integration
by parts on the right results in the following theorem.

THEOREM 2. If (t, ) is smooth with homogeneous data on O, then for
a>0,

(21)
k<=n-1

Parseval’s theorem, applied to both sides of (21), implies the following
corollary.

COROLLARY. If w(t, X) is smooth in V with homogeneous data on O, then

(22) e- t/Zw 2 (K/)II e- t/2Lw 2.

3. The Cauehy problem. We now consider the so-called strong solution
of the Cauchy problem for the operator L with homogeneous data.

DEFINITION. The function u is a strong solution, in V, of
(23) Lu g, g ,
satisfying the homogeneous data

(24) u(0, x) 0, s 0,..., n 1,

in the strong sense, if there exists a sequence of smooth functions ur)(t, x), satisfying
homogeneous data on 0, such that

(25) Ilu) ull + IILu’) g[[ 0 as r oo.

THEOREM 3. Ifg g/f then there exists a unique strong solution, in V, ofLu g
satisfying the homogeneous data (24) in the strong sense. Furthermore, the strong
solution u depends continuously, in the norm, on the given function g.

Proof Uniqueness and continuous dependence. From (20) it follows that
Ilut)ll2 __< KIILut)II 2, Hence in the limit Ilull 2 __< Kllgll 2. This implies the unique-
ness of the strong solution and its continuous dependence, in the norm, on g.
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Existence. From Parseval’s theorem it follows that the proof of the existence
of a function u e ff, satisfying (25) is equivalent to showing that there exists a
function fie and a sequence of smooth functions r)(t, ) with homogeneous
data on 0, such that for , the transform of g,

(26)

We introduce in

(27)
(’ ) (e-at/21"’ e-t/2)’

Let Jt7 be the subspace of consisting of all functions f for which there
exists a function , e and a sequence of smooth functions ,)(t, {) satisfying
homogeneous data on O, such that

(28) ff’) + v() fll 0.

It is our purpose to show that we can determine a such that W . Since the
norms and [[ are clearly equivalent in W, the existence of the function fi

satisfying (26) will then follow.
From (22) it follows that if f ., and is the function corresponding

to f in (28), then [1[[ (K/)llf[. This implies that is a closed subspace
of Let be orthogonal to all of Then

(29) (f,)=0 for all f e,.

We shall show that 0, which will imply that . From (29) it follows that
(E, ) 0 for all smooth (t, ) with homogeneous data on 0. Let 2t)(t, )
be a sequence of smooth functions such that I) [[ 0. We may assume that
each )has bounded support in the -variables. For every t) we solve the pseudo-
differential equation

(30) ... ,0) )

with () satisfying homogeneous data on 0. We do this by solving the following
system (the superscript r will be temporarily dropped)"

(31)
c3t

with data

(32)
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Explicitly,

(33) 1 exp

The functions 2, n-1, 0, computed recursively, have expressions similar to
(33). It follows that has n 1 continuous t-derivatives in . Since was assumed
to have bounded support in the C-variables, the same holds for 0. We show next
that 0 belongs to the subspace :7. For this purpose we apply the Friedrichs
mollifiers [1] to the function 0 in the -directions. Let j(0 be an infinitely differen-
tiable nonnegative function of with support in the cube =< i < 1, and such
that .[1-lJ(Od= 1. For0<e< lweset

(34)

(35)

Since

Or. e-m j(e-1( ))O(t )d.

The mollifiers satisfy the following simple property"- 1[--,0 as -,0.

it follows from (35) that also

(36) 0- g/ --,0, s=0,...,n.

Now, ?/has bounded support in the -variables. Therefore the smooth functions
0 vanish outside a fixed bounded subdomain of , independently of. This together
with (36) implies that

(37) IILO L0 -+ O.

Hence Lgt belongs to and therefore

(38) (LO, ) O.

Returning to the sequences 0(’) and U), we have from (38) and (17) that

(39)

0 I(LU,
E

k<_n-1

I((r), )1 (K/a) c31 c3,,q (’) I I,,

I(U), ).1 (K/a)I(’)1 I.

Letting r---, , it follows from the strong convergence of U to that
(1 K/a)[[v[[ 2 < 0 Choosing a > K thus implies that [ 0. This completes
the existence proof.
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4. Differentiability. The differentiability of the solution of the Cauchy
problem depends on the differentiability of the right-hand side g of the given
equation (23). In this section we derive the strong (square integrable) differen-
tiability with respect to the x-variables. For this purpose we introduce another
inner product and norm for smooth functions in V:

(40) (v, )(p) f f (1 + 112) dt d,
!

v

(41) v {p)= (, #)p), p positive integer.

The space Jgp is obtained by the completion of the space of smooth functions
in V under the norm (41). Jp will denote the space of the inverse transforms of
the functions in Jp. Hence Jp is the subspace of consisting of all functions
possessing strong x-derivatives of order =< p.

The factor (1 + 112)/2 commutes with and with il ik. Hence it follows
from (17) that for smooth v(t, ) with homogeneous data on 0,

(42) fg < (l+l12)plil
--1

ikl] 2 d<=K ff(1 + ]12)P]] 2 dtd.

Consider the Cauchy problem (23) with homogeneous data (24). If g possesses
all strong x-derivatives of order =<p, then , the transform of g, belongs to p.
From (42) it follows in the same way as in the existence proof of Theorem 3,
that there exists a function e p and a sequence of smooth functions u(r)(t, )
with homogeneous data on t--0, such that

(43)

Since e Jfp it follows that the inverse transform u, which is the strong solution
of the Cauchy problem (23) with homogeneous data (24), possesses all strong
x-derivatives of order =<p.

Next we consider strong derivatives of the solution, including the t-variable.
For this purpose we now assume that p n, that is, g has strong x-derivatives
of order _< n (the order of L). It follows from (42) that

Now, al /t i,l(t ), where 21(t, )= 112,(t, g/Igl) O(Igl). Therefore

< K( L (,_ 1).qt_ / (n))"
(n- 1)

This implies that (c3/c3t)t J{._ 1. Similarly it follows from

1112/ (n-i) g L/ (n-i),

that

(n- 2)

<K IIL (.- 2) +
(n- 1)
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This implies that (3/3t)2/ ;fftT;n_2 Continuing in this way we deduce that for
0 <= s <= n- 1, (c/ct)fi belongs to Z?,_. This implies that all the functions

with So + 1 -[- -[- am n, % < n 1, belong to . Therefore u possesses
all strong derivatives of the form

Since (c3/c3t)"u Lu + terms involving the t-derivatives of order __<n- 1, it
follows that u also possesses the strong nth order t-derivative.

Finally, consideration of the successive derivatives of Lu =_ (c3/?t)"u + g
results in the following theorem.

THEOREM 4. If the coefficients of the hyperbolic operator L (in addition to
the properties imposed by Assumptions A, B and C) have Po continuous t-derivatives
and g possesses all strong derivatives

with So + 1 AV -t- (rn El "31- PO, O(O PO, then the strong solution u of Lu g
with homogeneous data (24), possesses all strong derivatives of order n + Po, with
respect to all variables.

5. Summary. In we consider the hyperbolic operator L(c3/c3t, c3/c3x) with
time dependent coefficients. The corresponding pseudo-differential operator
L L(t?/c3t, i) has the form

where c? (c3/ct) i2i(t, ). 2i(t, ) are the real roots of the principal characteristic
polynomial, and their dependence on is subject to restrictions related to the
multiplicity of the characteristics.

In 2 we derive energy inequalities for functions v(t, ) in the Fourier trans-
form space with homogeneous data on 0" lil c3ikvl[ =< KIv We
use these inequalities in 3 to derive the strong solution of the pseudo-differential
equation Lfi-- with homogeneous data. The inverse Fourier transform of
fi is the strong solution of the Cauchy problem Lu =g with homogeneous
data.

Additional energy inequalities are derived in 4, and these are used to show
the strong differentiability of the solution of the Cauchy problem, provided the
right-hand side g is sufficiently differentiable.
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ON A DIFFERENTIAL EQUATION FOR THE
EIGENVECTORS OF A REAL SYMMETRIC MATRIX*

STEPHEN H. SAPERSTONE"

Abstract. For a given real symmetric matrix, a differential equation is established which has
the property that eigenvectors of the matrix are asymptotically stable solutions for the differential
equation. A Lyapunov function is constructed for this purpose, and subsequently, the regions of
stability for the equation are characterized.

1. Introduction. We consider the question of finding a differential equation
in order to obtain the eigenvectors of a real symmetric matrix A. The question
arose from a problem concerning the estimation of eigenvalues of A. Block and
Fuchs [1] obtained bounds for the eigenvalues. We use these bounds to obtain
our differential equation. In particular, for each real unit vector x, we compute
certain numbers p p(x) and a a(x), which have the property that [p + a,
/ a3 contains some eigenvalue of A. We establish an autonomous differential
equation for x which has the property that a2(x) is nonincreasing along solutions
of the differential equation. The main result (Theorem 6.1) is that the differential
equation admits asymptotically stable solutions of the form, x eigenvector
of A. That is, there is an open subset of the unit sphere (the region of attraction)
such that any solution with initial value in this subset tends to some eigenvector
of A.

The key to our results is the observation that the eigenvalue bound generates
a Lyapunov function, a(x), for our choice of differential equation. (We note that
our choice is certainly not unique. In the addendum, 7, we indicate other possi-
bilities.) The stationary set for the differential equation turns out to be precisely
the set of critical points of a(x) on the unit sphere. This enables us to characterize
the region of attraction.

In fact, the (nonzero) critical points of a(x) are those points on the unit
sphere where the gradient of a(x) is normal to the sphere. These points constitute
the boundary of the region of attraction and are shown to comprise a finite
union of products of lower dimensional spheres.

2. An enclosure theorem for eigenvalues. Denote the real numbers by R
and real n-dimensional Euclidean space by Rn. Let {el, e2, "-, en} be an ortho-
normal basis for R". Then each vector xR may be uniquely written
x- 7=1 iei for some real scalars 1, 2, "", . For any other vector

Y _,’: (iei, we denote the usual inner product by (x, y) ’: li(i, noting
that (ei, ej) iJij the Kronecker delta. Let x denote the usual norm, (x, x)1/2,
and let I designate the n n identity matrix.

The following theorem by Block and Fuchs l provides the framework for
our result. We include the proof, as the notation and computations therein will be
used later on.

Received by the editors July 2, 1970, and in revised form October 29, 1970.
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THEOREM 2.1. Let A be a real symmetric n x n matrix. For any unit vector
x R", define

(Ax, x),

K=A-#I,

a Kx

Then there exists an eigenvalue of A in the interval [ a, # + a].
Proof. Since A is real symmetric, R" has an orthonormal basis of eigen-

vectors for A. In particular, A has real eigenvalues {21, 22,’", 2,/ and a corre-
sponding set of orthonormal eigenvectors {el, e2, ..., e,} such that Ae 2ie,

=< =< n. Consider any vector x 2i=1 iei with I]x][ 2 2i=1 /2 1. Then

(Ax’x5--(i=1 i/iei’i=l iei) i=1
/i/2’

and

(2.1)

But

o2 Kxll2 k i2iei-k iei[
i=1 i=1

(ti- #)iei (/i- //)2/2.
i=1 i=1

(/i- fi)2/2 min (i- )2.
i=1

Hence there is some eigenvalue 2i satisfying (2i -/)2 __< a2. Consequently, there
is some eigenvalue of A in the interval [/ a, # + a].

3. A differential equation for the eigenvalues of A. We note that #, K and
a2 depend on x. In the event that x is a unit eigenvector of A, it follows that #
is the associated eigenvalue. Thus, if some initial choice of Xo R" is subsequently
made to vary as a function of time, x(t), R, x(O) Xo, so as to reduce a2 con-
tinuously and monotonically to zero, then x(t) will converge to an eigenvector
of A. (In fact, we shall show that a2 can be chosen as a Lyapunov function which
is strictly decreasing along the trajectories, x(t).)

Specifically, let us represent x as a differentiable function of t, x x(t) with
x(t) lying on the unit sphere S"- {x R"" x 1} for all R. To emphasize
the dependence of a2 upon x, we write a2 a2(x). Then

d d
-dTa (x)= <Kx,Kx) 2<K2 + Rx,Kx),

where, represents d/dt. Noting that R -1 and fi 2(Ax, 2), we have

1_ _d 0.2(X) (K2, Kx) 2(Ax, Yc)(x,Kx)
2 dt

(K2x, 2)

since (x, Kx) 0 and K is symmetric.



EQUATION FOR EIGENVECTORS OF REAL SYMMETRIC MATRIX 415

To insure that O’2(X(t)) is monotonically decreasing, we require (K2x, 2) < O.
Thus 2 must have a component in the direction of -K2). Since x is a unit vector,
(x,) =0.

We set

(3.1) 2 oKZx + fix
for some < 0 and fl g= 0. Taking the inner product of x with each term in (3.1),
we find that fl -o(K2x, x} -00.2. Thus

(3.2)

Furthermore,

2 z(K2 0.2I)x.

ld
2 dt

--0.2(X (K2x, )

(3.3) (K2x, oK2x 00.2x)
o([]K2x 2 a2(K2x,x))

(llK2x 2 Kxll4).

We observe that by the Cauchy-Schwarz inequality,

K2X 2__ Kx 4__ K2X 2__ (K2x,x)2
(3.4)

>= K2x 2_ K2x 2 x 2__ O.

If we choose 1 and recall that K depends upon x, then we obtain the
autonomous differential equation (from (3.2)) on S"-,

(3.5) dx= _(U2x Kx ix).
dt

Now we demonstrate that the eigenvectors of A are solutions of (3.5). In
fact, we have for x S"- 1, Kx 0 if and only if x is an eigenvector of A. So let x
be a unit eigenvector of A with eigenvalue 2. Then

Kx Ax- laX 2x- (Ax,x)x 2x- 2x =O.

Conversely, if Kx 0, then Ax lax. Thus x is an eigenvector of A with eigen-
value la. It follows that x satisfies (3.5).

We can even make a stronger statement when x is an eigenvector of A.
LEMMA 3.1. Suppose x S"-1. Then x is an eigenvector for A if and only if

K2x O.
Proof. Clearly from the argument preceding this lemma, if x is an eigenvector

for A, then K2x K(Kx)= K(0)= 0. Conversely, let x e S"-1 and Kix--O.
Then A(Kx) laKx. Since (Kx, x} (Ax lax, x} (Ax, x} la(x, x} O,
we obtain (AKx, x) 0. Expanding this we have

0 (A(A laI)x, x5
(A2x, x5 la(Ax, x5
IIAx 2 122.
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But this is precisely 0
.2 since

(7
2 Kx 2 (Ax #x, Ax #x)

lAx 2 2.
Thus, 0.2 iiKx 2 0. Hence Kx 0, so x is an eigenvector of A.

4. The stationary set for the differential equation. We now have that if
x @: S is an eigenvector of A, the right-hand side of (3.5) is zero. (Later we shall
show that the eigenvector solutions are asymptotically stable.) We proceed to
characterize all the points

M {x e S"- 1. KZx 0.2X 0}
for which the right-hand side of (3.5) vanishes, the stationary set for (3.5). Let
the distinct eigenvalues of A be 71,72, Ya with multiplicities m l, m2, ma.
Denote by Ek the eigenspace of 7k, that is, E {x R":Ax 7x}. The dimension
of Ek is m. Each of the Ek has a basis of vectors drawn from {ei}’= hence the
subspaces {E}= are mutually orthogonal. For any x e R", we have x Z=I x,
x e Ek, and (xj, x) 0 whenever j = k. The following theorem characterizes
the set M (see [3] for a related result).

THEOREM 4.1. Let x Sn-1. Then Kzx 0.2x if and only if exactly one oj
the following holds:

(i) x is an eigenvector oJ" A,
(ii) x x.i + x, x2 E, x E,j:/: k, and x 2

xk
2 =1/2. This repre-

sentation is unique.

Proof Suppose K2x 0.2x 0. Consider K2x. We have for x = iei,
x not an eigenvector,

K2x A2x 2#Ax + ]12x

(4.!) L ).ei- 21 L i2ei + la
2 L iei

i=1 i=1 i=1

Then
L (Ji k/)2iei
i=1

K2x 0.2x {(2i- l)2 0.2}ie 0
i=1

implies that for all those nonzero , 0.2 (/]’i- 1)2. Denote by 1 those indices
such that 4= 0. Set

I+ {iI’2 =# + 0.},
I_ {it I’2 # a}.

In fact, let the number of indices in I + and I_ be m+ and m_ respectively. Thus,
x is such that # + 0. and # 0. are eigenvalues of A with multiplicities m + and m_
respectively. However, for a given x e S"-1, at most, two distinct eigenvalues
can satisfy (2 )2 0.2.
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Now x M implies

x Z iei + Z iei
iI il

uniquely. Letting x + and x_ denote the first and second sums respectively in the
expression above for x, we have

Ax= Z 2iie, + Z 2iiei
iI iI-

( + ,)x + + ( ,)x_

#x + o(x+ x_).

Moreover, taking the inner product (Ax, x) we find that

(Ax,x) la + a(x+ x_,x+ + x_)
2 2),=+a( x+ x_

since x+ E +, x_ e E_, the respective eigenspaces for # + o and/ o. (Ax, x)
2 2 X2is defined as St so we must have x+ x_ =0. Butl 1;therefore,

(4.2) x+ 2 IIx- 2 .
Conversely, let x satisfy condition (ii) of the theorem. Letting x xj + xk,

we obtain after an easy calculation,

(4.3) K2x cr2x (7j 7/,)2x,

where 7j, are the eigenvalues associated with the eigenspaces of x.i and x.
Remark 4.2. Condition (4.2) represents the product of two spheres in S"-1,

each of radius 1/2. In particular, if m+ 1, then x+ 2 1/2 represents the O-sphere,
that is, just the two points + 1/x/. In general, every point x of M lies on some
product of spheres, Smj- x Sm’- 1, where x xj + x, and m and m are the
multiplicities of the eigenspaces containing xa and x. Taking all such combina-
tions xj + x over all pairs of eigenspaces, we have that M consists of a finite
union of products of spheres of the type indicated above.

Example 4.3. For purposes of illustration of the last theorem, we consider
the case in which all the eigenvalues of A are distinct. Therefore if x eM,
x i= {iei, then no more than two of the {{i}i= are nonzero. If only one of
the {{i}i=, say {io, is nonzero, then {.2,o 1, hence x _+ eio is an eigenvector.
If, say, {i and { are nonzero (for some 4= j), we must have 2i =/ + o and

2 /t- a (or vice versa) Furthermore, 2 2__ 1/2.{ Thus x must be of the
form

+/- ei t- - ej.

This, of course, is equivalent to the product of two O-spheres. It follows that M
consists of all such points for all i,j 1, 2, ..., n, -= j, along with the eigenvectors
of A.
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5. The Lyapunov function. We now turn to an examination of a Lyapunov
function for (3.5). We choose for this function the quantity a2(x), and henceforth
will usually denote it by l/(x). By definition,

V(x) Kx 2>__0

and with 1, from (3.3) and (3.4) we obtain

(5.1) 12(x)-- -( g2xl] 2 KxII 4) =< 0.

The term 12 represents dV/dt along trajectories x(t). Observe that since

IIK2x Kxll2xl 2-- IIKZxll 2 gxll ,
the set of x S"-1 for which 12(x) vanishes is precisely the set M of stationary
points of the differential equation (3.5).

A comment on this equivalence is in order. We know in general that

12(x) (gradV,

where gradxV is the gradient of V evaluated at x. Suppose, for some x e S
which is not an eigenvector of A, that l)’(x) 0. If 2 - 0, we conclude gradxV is
normal to S at x since 2 is tangent to S at x. But it is easily verified for any
x e S that gradV 2K2x. Thus, if l?(x) 0 and x is not an eigenvector of A,
there exists a nonzero scalar p for which 2K2x + px 0, i.e., K2x is collinear
with x. Taking the inner product with x yields p =-21Kx 2. Thus,
K2x Kxl 2x 0, or x e M. It follows that we must have 2 0.

Now consider the set Z of critical points of V(x) on S 1. Let g(x) x 1.

Z {x e S 1. grad (V + r/g) 0 for some e R}.

Z contains all those points of S"-1 where V has a relative maximum, relative
minimum, or saddle point. Moreover, we know in general that Z is characterized
by those points at which gradxV is normal to S"-1. Therefore, Z M.

Remark 5.1. We observe the following:

V(x)- IIKxll 2-- (Kx,Kx)= (K2x,x).

When x is not an eigenvector of A, we use the Cauchy-Schwarz inequality on
(K2x, x) to obtain

V(x) <= IIK2xII.
Moreover, we get equality whenever K2x and x are collinear. That is, V(x) is
extremal when gradxV is outwardly normal to S"-1. This yields, as usual,
K2x o-2x.

By a straightforward, albeit long calculation, we can derive an alternative
expression for V(x), more useful than (2.1). When x e S"- we obtain

(5.2) V(x)=
j=li=l

a homogeneous polynomial of degree 4. Restricting ourselves to M, we can
compute the extremal values for V(x). For any x not an eigenvector, we have
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x xj + xk uniquely, with /j and /k the associated (distinct) eigenvalues. Then
(4.3) provides

v(x) - 0.
In particular, V(x) is constant on each product sphere of M.

6. Proof that the eigenvectors of A are asymptotically stable. Define for the
distinct eigenvalues ,x, 72, "’", 7d of A,

d

G {x Sn-l" g(x) < 1/4(’j k)2}.
j,k=l
j:C:

Then G U d Gi where Gi is the open (in S"- 1) component of G which contains
i=1

Ei Yl S"-1. (Except in the case of S, this set is connected.)
THeOrEM 6.1. The set of unit eigenvectors of A is asymptotically stable.

Equivalently, suppose x(t; Xo) is a solution of (3.5)for any initial value Xo G,
so that x(0; Xo) xo. Then lim,_,oo x(t xo) E fq S .

Proof. Letting S denote E Yl S 1, we have l/(x) 0 on Si, V{x) > 0 on

Gi\&, 12(x) 0 on S, and 12(x) < 0 on Gi\Si. Then V is a Lyapunov function
for (3.5) and by a result of Lyapunov (see [2, pp. 296-297]) every solution x(t;xo)
of (3.5) with x(0; Xo) xo Gi tends to S as -+ m.

7. Addendum. Our choice for the differential equation rested on selecting
-1. This is convenient, but by no means is unique with respect to finding a

differential equation which admits asymptotically stable solutions of the form:
x eigenvector of A. In fact, let

(7.1) 0
KX 2

2 IIK2x 2

This yields a simple differential equation for a
From (3.3) we obtain

2 (or V) along trajectories of (3.2).

d
__0.2 0.2.
dt

Thus

(7.2) V(t) 0.2(t)= 0.e-’,

where 0.g is a positive constant. Thus V is strictly decreasing along all (non-
stationary) solutions of (3.2). The author has considered this case for a 2 x 2
matrix A, and obtained, not unexpectedly, more rapid convergence to eigen-
vectors.
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APPELL FUNCTIONS AND MULTIPLE AVERAGES*

B. C. CARLSON]-

Abstract. Iff is an analytic function of one complex variable, two applications of an averaging
process produce fromfan analogous analytic function (b, Z, fl) depending on a rectangular matrix
Z of complex variables and on two sets of complex parameters, one b-parameter being associated with
each row of Z and one fl-parameter with each column. Special cases ofo include the Appell functions
F, F2, and F and the Lauricella functions F and FD. Transformations of these functions are shown
to be equivalent to the symmetry of 0- under permutations of the rows or columns of Z. Differential
equations, series expansions, and a Cauchy integral formula are given for -. A different type of
multiple average, obtained by averaging a function of several complex variables f(zl,..., z,,) with
respect to each variable separately, is denoted by F(B, Z), where B and Z are matrices of parameters
and variables, respectively. The transformations of Lauricella’s Fa are equivalent to permutation
symmetries of F(B, Z).

1. Introduction. By averaging an analytic function f(z) of one complex
variable over the convex hull of {zl, ".’, Zk}, we produce an analytic function of
several complex variables with properties quite analogous to those of f [4].
Because the weight function used in the averaging involves complex parameters
b1,-", bk (the parameter bi being closely associated with the variable zi), the
average is denoted by F(b, z), where b and z are k-tuples. Iffis taken to be a power
or exponential function, F is a hypergeometric or confluent hypergeometric
function. In particular we obtain in this way the special functions known as 2F1,
1F1, Appell’s F1, Lauricella’s FD, and Legendre’s elliptic integrals of all three
kinds. In [5] it is shown that many known transformations of these functions are
equivalent to the symmetry of F(b, z) with respect to simultaneous permutations
of the components of b and z.

In the present paper we extend these considerations to multiple averages,
especially a double average which changes f(z) into a function (b, Z, fl), where one
b-parameter is associated with each row and one fl-parameter with each column
of the rectangular matrix Z. Among the special functions reached in this way are
Appell’s F2 and F3 and Lauricella’s FB. The transformations of F2 into itself are
shown to be equivalent to the symmetry of under permutations of rows and
columns. Moreover, F and FD also have representations in which Z is a matrix
with two rows, and symmetry under interchange of these rows is equivalent to the
Euler transformation which was not identified as a permutation symmetry in [5].
Some properties of and its special cases are discussed, including differential
equations, a number of series expansions, and an analogue of Cauchy’s integral
formula.

In 7 we consider more briefly a different type of multiple average, starting
from an analytic function f(z, ..., z,)of several complex variables and averaging
with respect to each variable separately. The result is a function F(B, Z) in which
each element of the matrix B is a complex parameter associated with the corre-
sponding element of the matrix Z of complex variables. Lauricella’s FA can be

Received by the editors September 22, 1970.
]- Departments of Mathematics and Physics, Iowa State University, Ames, Iowa 50010. This

work was performed at the Ames Laboratory of the U.S. Atomic Energy Commission.

420



APPELL FUNCTIONS AND MULTIPLE AVERAGES 421

represented as either type of multiple average, but the notation afforded by this
second type is much more convenient. The transformations of Fa into itself are
shown to be equivalent to permutation symmetries.

A quite different approach to special functions of several complex variables,
which is closely connected with homogeneous convex cones but apparently not
with Appell functions, can be found in [7] and the earlier papers cited therein.

2. Double averages of functions of one variable. Let Z be a k x matrix
with complex elements Zij. Let u (u l, ..., uk) be an ordered k-tuple of real
nonnegative weights with ui 1, and similarly for v (v l, "., v.). We define

k

(2.1) u. Z. I) Z 2 bliZijl)j,
i=lj=l

(2.2) u.
i=1

(2.3) iZ v Zov, i= 1, 2, k.
j=l

If Zj is regarded as a point of the complex plane, all these convex combinations
are points in the convex hull of {Zll,’", Zk}, denoted by H(Z).

Let b (bl, , b) be an ordered k-tuple of complex numbers with positive
real parts (signified by Re b > 0), and similarly for fl (ill, "’", ft,). We define

(2.4) c
i=1 j=l

Let E be the standard (k 1)-simplex with vertices (0, 0, ..., 0), (1, 0, ..., 0), ...,
(0, 0, ..., 1). On E we define the measure

,,-1 du du,,, dul du,_l(2.5) d#,(u) ui ui
i=1 i=1

and similarly for d#a(v). By g(u)d#,(u) we shall always mean e g(u)d#,(u).
DEFINITION 1. Let f be holomorphic on a domain D in the complex plane. If

Re b > 0, Re fl > 0, and H(Z) c D, we define

(2.6) (b, Z, fl) f f(u Z v)d#b(u)d#t(v)

for any k, 2, 3, 4, .... We define .-’, or in general ,"), n 0, 1, 2, ..., by
replacing f in (2.6) by f’ df/dz or j’") d"f/dz", respectively, where f{0) f and
fl) f,. If k or is unity, the corresponding integration is omitted and is
therefore independent of b or ill, respectively. If k 1 we define , f.

As in [4, Theorem 1] it follows immediately that ,- is holomorphic in the
elements of b, Z, and on its domain of definition. Also as in [4], , can be con-
tinued analytically in the parameters and variables so long as c =/= 0, 1, -2, -..,
7 =/= 0, 1, -2, ..., and all Zj remain in D, provided that D is simply connected.
Note that

(2.7) o(b, Z, fl) f() if Zj for all and j.
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If 1, then f(b,Z, fl)= F(bl, ..., bk;Z, ..., Zkx), where F is the single
average discussed in [4], and similarly if k 1. Moreover, by performing one of the
integrations in (2.6), we find

if(b, Z, fl) F(b, b; 1Z. v, ..., Z. v) d#t(v)
(2.8)

j F(I, bl. Z1,... lg. Z) dl.lb(U).

From the symmetry of F it follows that f has these properties.
PROPERTIES 2.9.

(i) Row symmetry (symmetry in the indices 1,..., k which label the b-
parameters and the rows of Z);

(ii) Column symmetry (symmetry in the indices 1,..., which label the
fl-parameters and the columns of Z);

(iii) Transposition symmetry: i(b, Z, fl) i(fl, 2, b),
where Z is the transposed matrix with elements Zij Zji. Other properties of F
imply corresponding properties of i. In particular [4, p. 128], a vanishing b-
parameter can be omitted along with the corresponding row of Z, and two or more
identical rows can be replaced by a single row if the corresponding b-parameters
are replaced by their sum. Similar statements hold for fi-parameters and columns.

Corresponding to the particular functions z and e=, we define

(2.10) t(b, Z, fl) f f (u Z v)’ d#(u) d#l(V),

(2.11) 9(b,Z, fl) f f e"’z’ d#(u)

In (2.10), is any complex constant and the domain D in Definition is the complex
plane cut along the nonpositive real axis. If 2 is a complex constant, let 2Z and
Z + 2 denote the matrices with elements 2Zj and Zj + 2, respectively; note that
the rectangular matrix with all elements unity is to be denoted here by 1. The
following homogeneity properties are then obvious:

(2.12) ?,,(b, 2Z, fl) 2’ot(b, Z, fl), (b, Z + 2, fl) eX,(b, Z, fl).

So also is the binomial theorem for O-polynomials,

Z-+- 2, fl) (..)n-mm(b Z, fl),(2.13) ,(b,
m=0

n =0,1,2,...,

and the relation of confluence,

(2.14) (b, Z, fl) lim ,(b, 1 + t-Z, fl).

3. Hidden symmetry of Appell’s F2. For the notations and integral repre-
sentations used in this and later sections for various hypergeometric functions, we
refer to [1] and I6]. Comparison with (2.10) gives the following identifications,
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(3.1)

(3.2)

(4.1)

wherein t(b, Z, fl) is written in the more explicit form t(bl,..., bk;Z;fll, "",

V2(a, b, c, 7 x, y ,8_a(b, c b;Z;fl,7 fl),

1-y 1

aF(a,b,;c,7;z) _(b,c- b;Z;,7 ),

Z
1

Although (3.2) fails to display the symmetry of aF in its parameters, (3.1) and
(2.12) show that

-o(bx,by;Z;flz,flw) (y + w)-aF2 a, bx,flz;bx + by, fl + flw "y
x w -)

(3.3)
’Y + w’y + _’

y+z

The row and column symmetries of (see Properties 2.9) imply that the expression
containing Fa must be symmetric in x and y and symmetric in z and w. These two
symmetries, together with their product, are readily shown to be equivalent to the
three transformations of F into itself [6, 5.11].

The symmetry of F will be treated again in 7 from a different point of view
which allows an extension to Lauricella’s F.

4. Properties f restdete -fuetis. The function (b, Z, ) has some
special properties if -c or -7 (see (2.4)). From the formula [4, (3.21)

_(b, ?,
i=1

it follows by (2.8) that

(4.2) -c(b, Z, [3) f -[ (iZ v) -b’ d#a(v), Re/3 > 0.
i=1

This function has two obvious properties.
PROPERTY 4.3 (Row homogeneity). -c is homogeneous of degree -b in

the elements of the ith row of Z, for 1,2,..., k.
PROPERTY 4.4 (Unit row property). _(b,Z, )= _,(b’,Z’,), where

Z’ is distinguished from Z by an extra row with all elements equal to unity
and where b’= (b,..., bk, c’-c). The value of c’ is arbitrary except that
c’ - 0, -1, -2,

Column homogeneity and a unit column property for

_
follow by Pro-

perties 2.9.
If -c -7, then t has both row and column homogeneity and will be

denoted by with no subscript. That is, if c 7 we define

(4.5) ,(b, Z, fl) _c(b, Z, fl), c 7.
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This function provides a useful standard form, which we shall call the bare form,
in which to express Nt whenever -c, for we can apply the unit row property
and choose c’ 7. Similar remarks apply whenever -7. The bare -function
has the integral representations

(4.6)

(b, Z, fl) (,Z. v) -b’ d#(v)

(U" Zj) -Bj d#b(u

(Re/3 > 0)

(Re b > 0).

5. Applications to hypergeometric functions. From the integral representation
[6, (2.1(10))], we find

2Fl(a, b; c; z) N?_,(a; 1 z, 1 b, c b),

where the elements of the row matrix Z are displayed and we have chosen the
immaterial row parameter to be a. We can therefore use the bare form:

1 z 11(5.2) 2F(a, b" c; z) N(a, c a; Z b, c b), Z
1 1

The symmetry of 2F1 in a and b, which is conspicuous in the series representation
but not in the usual integral representation, is plain from the transposition sym-
metry, Property 2.9 (iii), of N. Substitution of (2.10) gives a manifestly symmetric
integral representation of 2F which is due to Erd61yi [6, (2.4(1)).

The homogeneity properties of imply with (5.2) that

(5.3)
2Fx ax, bl;C; 1

Z= a+a=c=b +b2.
Y

XlY2

XzYl

Row and column symmetries ofN show that the members of the first equation are
symmetric in x and y and symmetric in the indices 1 and 2. These two symmetries
and their product are equivalent to three transformations of 2F1 [7, (2.1 (22), (23))].

From the representations of Appell’s F3 and F by double integrals [1, p.28],
we find

(5.4)
1%(, ’, fl, fl’ , x, y) _,_,,(, ’ z fl, fl’, , fl fl’),

Z=
1 1-y

F(x, fl, fl’ 7 x, y N_(o; 1 x, 1 y, 1; fl, fl’, 7 fl fl’).
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In the first case we have c e e’. In the second case the elements of the
row matrix Z are displayed and we have chosen the immaterial row parameter so
that -c -e. Thus the bare form can be used in both cases:

(5.6)

(5.7)

1-x 1 1

Z-- 1 1-y 1

1 1 1

F,(a, fl, fl’ Y x, Y) (,7 a Z fl, fl’, 7 fl fl’),

1 x y
Z-

1

Equations (5.6) and Properties 2.9 exhibit the symmetry of F3 under interchange of
z, ’ with fl, fl’, a symmetry which is conspicuous in the series representation but not
in the usual integral representation nor in (5.4). Equations (5.7) and (4.6) show that
F has a representation by a single integral as well as one by a double integral.

If F3 is restricted by the condition 7 + ’, the third row of Z in (5.6)
can be omitted because the corresponding row parameter vanishes. We then use
column homogeneity to obtain

(5.8F3(, ’, fl, fl’; + ’;x,y) (1 y)-’(, ’; z; fl, fl’, + ’- fl fl’),

Z= [1-x (l-y)-11]l
Comparison with (5.7) puts the restricted F3 in terms of F1 and thus gives a very
simple proof of [6, (5.11(11))].

The homogeneity properties of imply also that

3

..(ax, ay; Z; b l, b2, b3)
(5.9)

X1 X2 X31Z--
Y1 Y2 Y3

ax, b b2 c; 1 xlY3 1 x2Y3)YlX3 YZX3

ax + ay c b + b2 -k- b3

Row and column symmetries of show that the expression containing F must be
symmetric in x and y and symmetric in the indices 1, 2, 3. These symmetries are
readily shown to imply the five transformations of F into itself [6, 5.11].

IfF2 is restricted by the condition e 7’ (or e 7), (3.1) can be replaced by the
bare form:

G(, fl, fl’ ,, x, y) (fl, , fl z fl’, fl’, , ),

Z- [1-x-y 1-x 1].1-y 1 1

Using homogeneity in the elements of the first column of Z and comparing with
(5.7), we can put the restricted F2 in terms of F, as in [1, (10), p. 35].
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The generalizations of Fa and Fa provided by the Lauricella functions FB and
FD can be put in the bare form also"

FB(O{1, "’", Zn fl "’", fln ’ X1, "’’, Xn)

(,’", ,,- , n;Z;fl,’’’, ft, -- fl
(5.11)

1 11-xa
1 1 X2

1 x. 1

1 1

V,,( fl ,fl,;;x,... ,x,)= (,V Z fl fl, fl

15.2) Z
1 1

The expression for FB shows the symmetry in cz and fl which is conspicuous in the
series representation but not in the usual integral representation [1, p. 115]. The
transformations of FD [1, p. 116] can be identified as row and column symmetries
in the same way as in (5.9).

In place of Fo or F1 it seems preferable to use the equivalent R-function in
which symmetry has already replaced all but one of the transformations. Since the
R-function is an ’-function in which Z is a matrix with one row, it can be put in the
bare form as follows:

(5.13)

R_,,(b 1, bk Zl Zk) -,(a Zl Zk bl ..., bk)

.(a, c a; Z; b l, bk)

Z ZkZ--
1

Replacement of by the second integral representation in (4.6) gives the repre-
sentation of R by a single integral [4, (4.22)]. It follows from the column homo-
geneity of that

(5.14)
(a,c--a; Z; b1,... b)= II w[-b’R (b ...b"1

i=1

W Wk

Z1 Zk

W Wk

While the column symmetry of ’ is the same as the permutation symmetry of R,
the row symmetry of is equivalent to Euler’s transformation [4, (4.23)]. Replace-
ment of’ in (5.14) by the first integral representation in (4.6) gives at once a formula
[3, (6.12)] which has practical applications in evaluating elliptic integrals connected
with ellipsoids.
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6. Properties of double averages. Iff has the Taylor series

(6.1) f(z) ot,,(z- 2)", ]z- 2] < p,
n=0

we find from (2.8) and [4, Theorem 2] that

(6.2) if(b, Z, fl) e,g,(b, Z 2, fl),
n=0

IZ- 21 < p,

where IZI max {IZal, ,’,, IZl} and c, 7 4: 0, -1, -2.--. In particular we
have

(6.3) _.(b, Z,

1
(6.4) 9(b, Z, fl) ,--o ’"(b’ Z, fl), IZl < .

It is obvious from (2.10) and (2.11) that

(6.5) ,(b, Z, fl) R,(b, z)Rt(fl, ), Zij z,j,

(6.6) .5/(b, Z, fl)= S(b, z)S(fl, ), Zj z + ,
where the stated conditions apply to all matrix elements Zij. By (6.6) and [4, (4.18)],
a product of two Bessel functions Ju(x)J(y) can be expressed as an ,9<function.
From (6.3), (6.4) and (6.5) we obtain the bilateral generating relations

(6.7) _,(b, 1 Z, fl) , (a, n)
R,(b z)R,(fl, ) Z,j z,j,

n=0 rt!

where [Z[ < 1, and

1
(6.8) 5/(b, Z, fl) . R,(b, z)R,(fl, ), Z,j zj.

n=O

In both cases it is assumed that c, 7 va 0, 1, -2,
In the first equation of (2.8) we put Zij z + and use [4, Theorem 6] to

obtain

(6.9) if(b, Z, fl)= F(")(b, z)R,,(fl, ), Zij z + .
n=0

It is assumed here that f is holomorphic on a simply connected domain D contain-
ing the p-neighborhoods of zl, ..., zk, where p is a positive number such that
Ilmax < O" A special case is the generalized binomial series,

(6.10) ,(b, Z, fl) R_,(b, z)R,(fl, ), Zj zi + ,
where D is now the complex plane cut along the nonpositive real axis.
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From (2.8) and [4, Theorem 5] we conclude, with the help of analytic con-
tinuation, that , also has a generalized Cauchy formula,

(6.11) (")(b, Z, fl) f(t)N_._ ,(b, Z, fl) dt,

n 0,1,2,...

All the matrix elements of Z are required to lie in the inner region of the positively
oriented rectifiable Jordan curve y, and f is assumed to be holomorphic on ,/and its
inner region.

If we denote briefly by o(bi + 1) the result of replacing one parameter bi by
bi + 1 in ,(b, Z, fl), we find from (2.8) and [4, (2.9)] that

(6.12)

If Dij c/cZj, the analogue of [4, (2.8)] is

(6..13) Dijff =--’(bi + 1,flj + 1).
c7

Equations (6.12) and (6.13) imply

(6.14)

From the last equation we deduce as in [4, Theorem 6] that

(6.15) (b,Z + 2, fl)= @(")(b,Z, fl)., I1 < p,
n=0

provided f is holomorphic on a simply connected domain containing the p-
neighborhoods of Zll, "", Zk.

We mention finally the system of second order differential equations satisfied
by -. It follows from (6.13) that

(6.16) DimDj. DinDjm
i,j=l,...,k,

Also, a calculation which is too long to reproduce here shows that, for i,j 1,.-., k,

(6.17) 2 (Zirn Zjn)OimOjn - hi Ojn- bj 2 Oirn’ "--O.
tn=l n=l n=l m=l
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Transposition symmetry (Property 2.9(iii)) then implies, for m, n 1, ..., n,

(6.18)
k k

Z Z (Jim- Jjn)DimDjn "-]- m 2 Djn n Z Dim’ "--O.
i=1 j=l .i=1 i=1

7. Other types of multiple averages. The double average in (2.6) is readily
generalized to a triple average,

or even higher averages. Many properties of the double average have straight-
forward analogues for these cases, but the notations are rather cumbersome.
Appell’s F4 can be written as a triple average of a power of z by using a representa-
tion by a double integral [6, (5.8(4))3 together with (4.1), but the result seems to
have no very simple features to recommend it.

A second kind of multiple average is reached by starting with a function of
several variables, say f(zl,..., z,), and averaging each variable separately"

F(B, Z) f f f(u(1’. z(l’, u(’’ z(’,) d#(b(1,, U(I’)(7.2) d#(b’) bl(n))

where u(J)" z(J) Zi u(J)7"(J)"i-i and ulJ). forj 1, n. We write dl2(b, u)in place
of d#b(U) for typographical convenience. In general, B and Z are arrays of para-
meters and variables with columns b(1), b(") and z(1), z"), respectively.
However, in the cases of principal interest every column has the same number of
elements, say k, and B and Z are then rectangular matrices with elements Bj blJ)
and Zii zl"i) for 1,..., k andj 1,..., n.

The second type of multiple average can be expressed in terms of the first if
f(zl,’", z,,) depends only on the sum zl + + z,, for we then have

u z + + Z"" Z ul 1’’’"
(7.3)

W/... zll)+ + z").

However, the notation used in (7.2) seems preferable if n > 2.
Choosing f(zl, "’", z,,) (zl + + z,,)t, we define

.("" .I Eu(X)" z(’) +"" + u(")" z(’)lt dtz(b()’ u(1)) dlz(b(")’ ft(n))’Rt(B, Z)

(7.4)

where the elements of B have positive real parts and the convex hull of the set of
elements of Z is contained in the plane cut along the nonpositive real axis. In
addition to being homogeneous of degree in the elements of Z, the R-function
plainly has column symmetry if the columns of B and Z are permuted together. It
has also symmetry within columns" the elements of the ith columns ofB and Z may
be permuted together without changing the value of the function. This implies
row symmetry but not symmetry within rows. Finally, no change is produced
by adding 2 to all the elements of one column of Z and subtracting 2 from all the
elements of another column.
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Because the structure of the matrix Z in (3.1) is like that of W in (7.3) with
n 2, Appell’s F2 can be expressed in the form (7.4):

(7.5)
Fz(e, fl,//’;7, 7’;x, y) R_(B, Z),

Z---
-/ ’-y’ 0

The generalization of F2 to n variables known as Lauricella’s FA has an integral
representation [1, p. 115] which shows that

FA(Ot, fl,, ft,; 7x, 7,; xx, "", x,) R_(B, Z),
(7.6)

B= fix /n
Z

71--1 ’))n--fin 1 0 0

Conversely, we have

R_,(B, Z)- (,Yi)-"
FA(a, b 1,..., bn" b + bl,..., bn + b;, (Yl X l)/Yi,’", (Yn Xn)/Yi),

(7.7)

B= Z=
b’n Yl Yn

wherey y + + y,,. To show this, we subtract y from both elements of the
ith column of Z and add it to both elements of the first column for 2, 3, ..., n.
We then use homogeneity and compare with (7.6). The symmetry within columns
of the R-function is equivalent to the transformations of Fa into itself [1, p. 116].

Because F(B, Z) and R(B, Z) are obtained by averaging one variable at a time,
their general properties closely resemble those of the case n l, which was
discussed in detail in [4], and the methods used there can be used again here. We
mention only the system of differential equations satisfied by F(B, Z), in which

Dim /(Zi

(7.8) (Zim Zjm)Di,,Dj,,F + Bi,,Dj,,F- BjmDi,,F O,

for i,.] 1,... k and m 1,..., n.
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DISTRIBUTION DERIVATIVES OF FUNCTIONS
HARMONIC IN THE UNIT DISC*

PETER WOLFE$

Abstract. Let u(r, O) be harmonic for < and continuous for =< 1. Without additional smooth-
ness assumptions on f(O)= u(1, 0) we cannot infer anything about the normal derivative of u on

1" limr-l_ (f(O) u(r, 0))/(1 r). The purpose of this paper is to show that this limit exists, for
arbitrary continuous 2n-periodic f, as an element of a Sobolev space of index 1. We also show that
(c3/c3r)u(r, O) tends to the same limit in the same sense.

1. Introduction. Let u(r, O) be harmonic for r < and continuous for r =< 1.
Without additional smoothness assumptions on f(O)= u(1, 0) we cannot infer
anything about the normal derivative ofu on r 1 limr_ 1- (f(O) u(r, 0))/(1 r).
The purpose of this paper is to show that this limit exists, for arbitrary continuous
2n-periodic f, as an element of a Sobolev space of index 1. We will also show
that we obtain the same result if we consider limr_ 1-(c/cr)u(r, 0).

2. The spaces W2
DEFINIXION. W {flf is absolutely continuous on [- n, hi, f(- n) f(n),

f’ L2[-, ]}.
Forf6W we define .f 2 f,w f + 2. Standard arguments show

that W is complete under this norm and hence is a Hilbert space. In what follows
we will be dealing with Fourier series. The symbol will denote that the sum is
taken over all integers while the symbol ’ will denote that the sum is taken over
all nonzero integers.

THEOREM 1. Let g L2, g 2 Cn einx" Then g WI if and only if
(2.1)

Proof Suppose (2.1) holds. Consider h ’ inc,ei"x. By (2.1), h L2 hence
hL. A computation shows g(x)= g(-n)+ f._h(t)dt. Thus g’= h and
g(n) g(-n). Therefore g W21

Conversely, suppose g e W21 Then g’ L2, g’ a,e"_inx with [d,] 2 < c.
But d, inc,. Thus

COROLLARY 1. If g W,
(2.2) IIg 2 2n y’, Ic.12(1 / n2)w&

COROLLARY 2. Ifg W, g c,ei"x, the series converges to g in the topology
of wl .

DEFINITION. We define W-1 to be the topological dual of W21. For f W2,
(/) wfl we write b(.f) as (f, b).

Iff W2, g L,

-f(t)g(t)dt __< f I, g L2 f Iw gll.2.
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Thus the mappingf -,.f(t)g(t)dt defines an element of W- which of course
we denote by g; (f, g) f(t)g(t)dt. In particular, if g (1/(2rt))e -i"x, then

(2.3) (f, g) c,.

If f 6 W2 g 6 L2, then f’ 6 L2 and

f f’(t)g(t)dt

Thus the mapping f-, -f’(t)g(t)dt defines an element of W-1 which we
denote by g’;

(f g’) f’(t)g(t) dt.

THEOREM 2. Let el) W Then dp is the weak limit of

Proof Let f W2 f c,ei"x. Then using (2.3), we have

lim
n ikl<_n

lim f, 2 <ei, 4)e-x
n ikl

lim (f,

THEOREM 3. Let {bk}kZ be a set of constants. For n O, 1, 2,... set

bke- ikx.n 2 Ikl n
Then"
(a) If {.} converges in the weak topology of W , then

(2.4) ’ Ib,lZ/n2 < oo.

(b) If (2.4) holds, then {b,} converges in the strong topology of W 1.
COROLLARY. Let q5 W] 1. Then

1
(2.5) b bae -’,

(2.6) ba (ei, c}.

The series converges in the strong topology of W-1. The constants ba satisfy
(2.4). Conversely, if we are given a set of constants satisfying (2.4), then (2.5)
defines an element of W-1.
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Proof of Theorem 3. (a) Let f c,ei"’. Then

Z b(f,e-i’) Z bc.

Thus Z bc converges for every set {c}z satisfying (2.1). This implies (2.4).
(b) Let f ceix. Then if n > m,

I<L,--m>12=l Z bkCkl2
m<lklNn

=< Ib12k -2 Ic,12k2
m<lkl <n m<lk <n

=< ib12k -2 f w,
m<lkl<=n

Thus [b, bm 2 < IbklZk-2 0 as n, rn oWI m<lkl<_n
We can now derive an expression for the norm of an element of W_;-. Let

b W-, b (1/(2)) b,e -’. Letf W,f Cke"x. Then

Ibl____2

2(I(J4))l 2 bkCk 2 <-1 +k2"2rclckl 1 +k2)

with equality holding if Ck 2k/(1 + k2) for all k Z. Hence

1 Ibkl 2(2.7) 4112w- 1 + c2"

THEOREM 4. Let 49 I/V; have the representation (2.5). Then (1/(2rc))bo
+ g’, where g L2

Proof. Let

, b ikxg -- i---e
By (2.4), g e L2. If f e W2 f Cke’kx, then

f, g’ + -}-- bo ckb (f

3. Generalized normal derivatives of harmonic functions.
THEOREM 5. Let u(r, t) be harmonic for r < and continuous for r <= 1. Let

j’(t) u(1, t) have the Fourier series (1/(2re)) c,e -i"t. Let

2(3.1) b Inlc,e-i"’ W
Then

r(r,.)= in W; 1,(3.2) 12
cu

(3.3) lim f u(r,
dp in W;1

r--*l- r
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Proof. For r < 1 we have

_i.trl.u(r t) - 2 c,e

Thus

cu_7 (r, t) 1 , Inlc,e-/.,rl,i-1

Hence

6bl
(F t) -f -int{FIn]-1

By (2.7),

6u 2

2’ --12_r (r, < Icnlelrlnl -1 1
w 2t

For 0 < r < 1, IrI"1-1- II 2 < 1. Given e > 0 we can find N such that 1nl>__NlCn] 2

__< roe. Thus

w-, 2g 0<lnl<N

The first term on the right can be made less than e/2 by taking r sufficiently close
to 1, proving (3.2).

To prove (3.3) we note that

f(. u(r,. , c,e- "’1-r 2z 1-r, _i.,l r!.l_
2re c.e nl r < r.

The proof of (3.3) then proceeds as above.
Remark 1. The distribution b given by (3.1) is the distribution derivative of

the function represented by the Fourier series conjugate to that of f (see [1]);
i.e., g’, where g (1/(2re)) ’ sgn (n)Ge-i,, L2.

Remark 2. It is clear that we get the same results if we assume only that the
function u(r, t) is harmonic for r < and has boundary values in L2.

Acknowledgment. The author would like to thank the reviewer for his sugges-
tions on how to simplify the presentation. The proof of Theorem 5 presented
here is based on a suggestion made by the reviewer.
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ASYMPTOTICALLY ALMOST PERIODIC SOLUTIONS OF A
NONLINEAR VOLTERRA SYSTEM*

R. K. MILLER"
Abstract. This paper studies forced almost periodic oscillations in a nonlinear system of two

Volterra integral equations. It improves certain results in an earlier paper on the same topic in two
ways. First it is shown that the oscillatory solution is Lyapunov stable under small perturbations in
the coefficients of the equation. Secondly, it is shown that whenever the coefficients are quasi-periodic
and analytic, the almost periodic oscillation is in the same class.

1. Introduction. In this paper we study forced oscillations in a nonlinear
system of Volterra integral equations of the form

Xl(t f(t) al(t S)gl(S, XI(S), X2(S))ds a2(t s)g2(s, Xl(S), x2(s)) ds,

(1.1)

x2(t) f2(t) a2(t S)gl(S, Xl(S), x2(s)) ds al(t s)g2(s Xl(S), x2(s)) ds,

where the functions f(t) and gi(t, x) are asymptotically almost periodic in t. In
an earlier paper [1] sufficient conditions were given so that the solutions x l(t)
and Xz(t tend to certain almost periodic limiting functions Pl(t) and Pz(t) as
t- oz. In this paper we shall improve the previous results in two ways. First,
in 2 it will be shown that this oscillatory behavior is stable under small pertur-
bations in the functions f and gi; that is, the solution of the perturbed problem is
oscillatory and is near the solution of the unperturbed problem. Second, in 3
below we give rather weak sufficient conditions in order that the limiting functions
Pl(t) and Pz(t) be analytic in t.

System (1.1) arises in a natural way from the initial boundary value problem

u Uxx, > O, 0 < x <
(1.2)

u(O,x)= F(x), O < x <

Ux(t, 0) gl(t, u(t, 0), u(t,

Ux(t, ) -g(t, u(t, 0), u(t, ))

for all > 0. In particular, we have in mind boundary conditions motivated
by C. C. Lin’s theory of superfluidity (see [2], [3] or [5]):

(1.3)
gl(t,xl) Bl(xl cl sin kit)3,

g2(t, x2) B2(x2 c2 sin k2t) 3.

As an application of the results proved here and in 1] we shall prove the following
result.
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THEOREM 1. Consider the problem (1.2)-(1.3) with Fo C2[0, g]. Then given
any B > 0 there exists e > 0 such that if[B B[ < e for 1, 2 and if F C2[0, n]
with

2

max [F)(x)- F(J)(x)[ < e,
j=0

then the boundaryfunctions u(t, O) and u(t, n) tend asymptotically as -, oo to almost
periodic limiting functions Pl(t) and Pz(t). The functions u(t, 0), u(t, n), Pl(t) and
Pz(t) all vary continuously with F, B1, B2, C1 and C2. Moreover, each Pi(t) has the
,form Pi(t)= Pi(klt,kzt), where Pi(01,02) is real analytic in (01,02) and is 2n-
periodic in each of its two variables.

An outline of the proof appears in 4 below.

2. Perturbation results. System (1.1) may be written in the vector form

(E) x(t) f(t) A(t s)G(s, x(s)) ds,

where A(t) is the appropriate 2 x 2 matrix (see (A1) below) and x, f(t) and G(t, x)
are the appropriate two-dimensional column vectors. The vector norm used in
this paper will always be

X
Ix] max {Ix11, [X21} when x

X2

The symbol Q will always denote the special matrix

Q=2-a/2 11 -11).
Note that Q Q* Q- and also that Q x//, where is the matrix norm
compatible with the vector norm given above. Furthermore, if A(t) is any matrix
satisfying assumption (A1) below, then

QA(t)Q diag (al(t) + a2(t), al(t)- a2(t))

is a diagonal matrix. For any N > 0, let AN(t) NQA(t)Q. Let RN(t) be the resolvent
of AN(t), that is, RN(t) satisfies the matrix resolvent equation

(RE) R(t) A(t)- A(t- s)R(s) ds

when A(t)= AN(t). The following result was proved in [1, Lemma 1].
LEMMA 1. Suppose AN(t) and Ru(t are the junctions defined above. Then RN(t)

exists, is continuous and is positive definite for all in the interval 0 < <
Moreover, RN(t diag (21N(t), 22N(t)) is a diagonal matrix with components which
satisfy the relations

21N(t) dt 1, ’22N(t) dt < 1.
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The change of variables x Qy + f(t) may be used to transform (E) to

y(t) -Q A(t s)G(s, Qy(s) + f(s)) ds

NQA(t s)Q{QG(s, Qy(s) + f(s))/N} ds

or

y(t) AN(t s)GN(s, y(s)) ds,

where AN(t) is the matrix defined above and

GN(t, y) QG(t, Qy + f(t))/N.

The resolvent RN(t) and the variation of constants formula for integral equations
may now be used to rewrite this equation in the equivalent form

(EN) y(t) ;i RN(t s) {y(s) GN(S, y(s))} ds.

Assume that the coefficient functions f, G and A in (E) satisfy the following
hypotheses"

az(t) 1 + 2 (-1)" exp (- nZt)
n=l

(A1) al(t 1 + 2 exp(-nZt),
n=l

and

al(t) a2(t)]A(t)=
a2(t) al(t)].

(A2) f(t) is continuous and bounded on 0 <__ < .
(A3) G(t, x) is continuous in (t, x) for all >= 0, Ix[ < , and G is locally

Lipschitz continuous in x.
(A4) The function G(t, x, x2) has the special form

G(t, Xl,X2)
\g(t, xgl’

where g(t, y) is an odd nondecreasing function of y which is bounded in
(-o, ) uniformly for y on any compact subset of (-o, ).

The following hypotheses are related to (A4)"
(A5) There exist positive numbers N and K such that if lYl <- K, then

lY GN(t, Y)I < K uniformly for all (-or, o). Here y R2 is a two-
dimensional column vector and GN is the function defined above (EN).

(A6) There exist positive numbers N, Ko and K such that if lyl =< K, then
[y GN(t y)[ =< Ko < K uniformly for all (-, ).

The proof of Lemma 3 in 1] is actually a proof of the following stronger
result.
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LEMMA 2. Suppose G satisfies (A3) and (A4) and b sup {If(t)[ "t => 0}. Then

for any M > x// b and jbr any e in the interval 0 < e < b there exists a number
N > 0 such that tA5) is true with K M + e. Moreover, ifL is a constant such that

L >- sup {[G(t,y)[’- < < oc, Ix[ __< 5M},
then N depends only on the numbers M, and L.

Using Lemma 2 we now prove the following lemma.
LEMMA 3. Suppose G satisfies (A3) and (A4). Then G satisfies (A6), where

N and K K1 are the numbers obtained in Lemma 2 above.
Proof. Let K K and N be given by Lemma 2. We must show that there

exists a number Ko < K1 such that (A6) is true. For a contradiction we suppose
there is no such Ko. Then for each positive integer n there exist numbers y, and t,
such that

Y, G(t,, Y,)I K 1/n.

By possibly taking a subsequence we may assume that y, ---, Yo, GN(t,, y,) go
and f(t,) fo as n --. . Note that lYol =< K. Define x, Qy, + f(t,) so that
x, xo Qyo + fo.

Write Xo and 7 NQgo in terms of their components,

Define

Xo col (xol, Xo2), y NQgo col (Yx, ’2)"

0 ifz --0,

g*(z)= 1711 ifz=lxo11,

IY2[ if z

Extend g*(z) linearly between the points 0, [Xol[ and [Xo2[, extend g* as a constant
on the remaining part of the half-line z _> 0 and let g*(-z) -g*(z) when z < 0.
Define G*(x 1, x2) col (g*(x 1), g*(X2)) for all x and x2. Note that G*(xo) NQgo.

The function G* defined in this way satisfies (A3) and (A4) and has the same
upper bound L as the function G in Lemmas 2 and 3. Since [Yo[ N K, then Lemma 2
implies that

[Yo QG*(Qy + fo)N-1[ < K.

On the other hand, it follows by the construction of G* and the choice of Yo and go
that

[Yo QG*(Qyo + fo)N- 1[ [yo QG*(xo)N-1[

lYo gol >= K.
This contradiction completes the proof.

The following boundedness result was proved in [1, Theorem 4]. Its proof
depends on Lemma 1, the equivalence of (E) and (EN), and a fixed-point theorem.

THEOREM 2. Suppose (A1)-(A3) and (A5) are true. Then the unique solution x(t)
of (E) exists and satisfies Ix(t)l <-_ K for all >_ O.

This result may be improved as follows.
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THEOREM 3. Suppose (A1)-(A4) are true and b sup {IF(t)l ’t => 0}. Consider
the perturbation problem

(PE) X(t) F(t)- A(t- s){G(s,X(s)) + P(s,X(s))} ds,

where P is continuous in (t, x). Thenfor any e, > 0 there exists a number c5 > 0 such
that if

sup {IP(t, x)l "t >__ O, IQ(x F(t))l < x/b + e} < 6,

then the solution X(t) of (PE) exists for all >= 0 and satisfies the inequality

IQ(x(t)- F(t))] =< ,,/2b + e.

Proof Define H(t, x) 6(t, x) + e(t, x) and let H(t, y) QH(t, Qy + f(t))g- 1.
Given K1 x/b + , choose N and Ko using Lemma 3. Choose
6 < N(K1 Ko)lOl-1 so that

[QP(t, Qy + F(t))N-[ <= IQIbN- < K1 Ko.
If lyl <- K1, then by the choice of 6 one has

IHx(t, Y)I -< IGN(t, y)[ + IQP(t, Qy + F(t))N-11
<K +(K1-Ko)=K.

Thus H(t, x) satisfies (A3) and (A5). Now apply Theorem 2 above.
THEOREM 4. Suppose the coefficients j; A and G of(E) satisfy (A1)-(A4). Define

Ilfl[ sup {[f(t)[:t >= 0}. Suppose that given any A > 0 there exists a positive,
continuous, increasing function z(u) such that

{g(t, u + x)- g(t,x)}/u (lul), lul >_- A,

uniformly for all >= 0 and all x such that [Q(x f(t))[ _<_ x/ f / 4. Then given
any e > 0 there exists a positive number 6 such that whenever"

(i) F(t) is any continuous function satisfying f-F-sup{lJ’(t)
-F(t)’t >= 0} < 6,

i) P(t, x) is any continuousfinction satisfying sup {IP(t, x)l "t >= O, ]Q(x f(t))l
__<x/2 f +4}<6,

(iii) X(t) is the unique solution of (PE);
then Ix(t) X(t)[ <_ e for all > O.

Proof Define y(t) x(t) X(t), q)(t) f(t) F(t)and H(t, y) G(t, y + X(t))
-G(t, X(t)). Then one has

y(t) q(t)- A(t- s){H(s, y(s))- P(s, X(s))} ds,

or, symbolically,

y o A {/-/(y) e(x)}.
Let Y Qy, AN NQAQ and HN(t, Y)= QH(t, QY)N-1 SO that

(2.1) Y (Qq + AN * Y- HN(Y) + QP(X)}N-1) AN, y.



440 R.K. MILLER

If Rn is the resolvent of AN, that is

(2.2) Rn=AN-AN,Rn,

then any equation of the form Y S AN * Y may be written in the equivalent
form Y S Rn * S. Applying this to (2.1) and using the relation (2.2) one can
calculate

(2.3)

or

Y Qq + AN
-Rn

Y Qq)- Rn

{Y- Hn(Y + QP(X)N-’} Rn* Qq)

AN {Y- Hn(Y + QP(X)N-1},
Qq + Rn, {Y- Hn(Y + QP(X)N-’}

(2.3’) Y(t) Qq(t)- Q Rn(t- s)q(s) ds

+ Rn(t- s){Y(s)- Hn(s, Y(s))+ QP(s, X(s))N-1} ds.

Define SO {(t,x)’t >= O, ]Q(x F(t))l <= x/llF]l + 1} and let S1 {(t,x)"
>_O, IQ(x-f(t))[ <v/ fll +4}. Ill]q) f- F[[ < 1, andif(t,x)So, then

IQ(x f(t))l <= IQ(x F(t))l + IQ] f- F

=< x/][/]] + 4.

Therefore, So S, if p[[ < 1. By Theorem 3, there exists a number o > 0 such
that if IP(t, x)l < o on So, then X(t) exists for all => 0 and (t, X(t)) So.

Write H(t, x) in the form H(t, x) col (Mix m2x2) where

M(t, x) {g(t, xj + Xj(t)) g(t, X(t))}/xj,

Then Y- Hn(t, Y) can be written in the form

M1 +M21 2--N-
Y- HN(t, Y)= A(t, Y)Y, A

M1 M2
2N

j= 1,2.

M1 +M21-
2N

If M(t,x) col(Ml(t, xl), M2(t, x2) and if ]M(t, QY)I < N, then the norm of the
matrix A is IAI 1 IM(t, Q Y)I/N max { 1 M1/N, 1 Mz/N}. For any
number K > 0 if]Y] K/2, then since ]A] < one has ]A
=< K, then either IY1 + Y21 or[Y1 Yz] >- K/2. Therefore, the hypotheses of the
theorem imply that IM(t, Q Y)I >= a(K/2) > 0 for some function a(u). This means
that

Y- Hu(t, Y)I 1 a(K/2)/N, K/2 <= YI -< K.



SOLUTIONS OF A VOLTERRA SYSTEM 441

Consequently, for any given e > 0, if K e/w/, then there exist positive numbers
N and Ko such that if lYI =< e/w/, then IY HN(t, Y)I =< Ko < e/xf. The number
6 in the conclusion of the present theorem will be chosen so that 6 =< min {6o, 1 }
and such that 41If- FII / 2IP(t, x)IN- <= 66 <= e ,fKo for all (t, x) S.
For this choice of 6 we shall show that ly(t)l Ix(t)- X(t)l =< e for all _>_ 0.
Equi.valently, since Q Q- and IQI w/, then we may show that Y(t)[ IQ(x(t)

xlt))l __<
Let W {z C[0, )’lz(t)l -< e/w/ for all _>_ 0} and let TZ be the map

defined by the right-hand side of (2.3), that is,

TZ(t) q)(t)- R(t- s)q)(s) ds

+ Rc(t s){Z(s) Hu(s, Z(s)) QP(s, X(s))N- 1} ds.

By Lemma 1 above, R 6 L1(0, oo) and y ) [Rc(t s)[ ds =< 1 for all >= 0. Therefore,
ifzW,

ITZ(t)l <= ,v/llqll / /[loll IRu(t- s)l ds

+ N- x// max IP(t, x)l IR(t s)l ds + IRN(t s)lKo ds
S

=< 2,fll q + max IP(t, x)lN -1 + Ko
S

__< __<
This shows that Tz W if z e W. If the space C[0, oe) is given the topology of uni-
form convergence on bounded subsets of [0, oe), then it becomes a locally convex
linear topological space with the additional property that T: C[0, o) C[0, oe)
is a completely continuous map. Since W is a closed bounded convex subset of
C[0, oe) and T maps W into itself, then the Schauder fixed-point theorem applies.
This means that (2.3’) has at least one solution g(t) such that Y(t)l _-< /x/ for all

>_ 0. But the function H(t, Y) is locally Lipschitz continuous in Y so that the
solution of (2.3’)is unique, that is, Y(t)- Q(x(t)- X(t)).

3. Quasi-periodic functions. Let kl,k2,’", km be positive constants
which are linearly independent over the integers. Let k denote the vector
k (k, k2, kin) with m >= 1.

DEFINITION. A function q(t) will be called quasi-periodic with fundamental
frequencies k if and only if there exists a function @(0)= (01,02,.", 0,,)
continuous in 0 and periodic in each variable Oj of period 2n such that

(p(t) (kt) (k t, k2t, kmt),

Each quasi-periodic function is easily seen to be almost periodic. If m 1
so that k k l, then the quasi-periodic function is actually periodic.

According to the results in [1] if x Qy + f(t), then for any N > 0 the
function y(t) solves (Eu). Conditions are given in [1] which guarantee that y(t) tends
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asymptotically to an almost periodic function p(t), where

(3.1) p(t) f’ R(t- s){p(s)- G(s, p(s))} ds,

The function p is the unique solution of (3.1) if N is sufficiently large.
The aim in this section is to give sufficient conditions in order that p(t) P(kt)

is quasi-periodic and P(O) is analytic in 0. Assume:
(A7) G(t, x)---7(kt, x) and f(t)= q)(kt) are quasi-periodic in with funda-

mental frequencies k. Moreover, 7(0, x) and q)(0) are real analytic func-
tions of (0, x) and 0 respectively in regions

(3.2)
U(&o) {(0, x)’lIm Ojl, IIm xl < 8o, -oo < Rexi, Re0j< o

for 1 _<_ j __< m and 1,2}

and

(3.3) D(6o) {0"llm 0jl </io,- o < Re 0j < for 1 =< j __< m}.

Under this assumption it follows that the function

7u(kt, y)- QT(kt, Qy + q(kt))N -1

is also quasi-periodic and analytic in U(6o). If the solution of (3.1) was quasi-
periodic, say p(t) P(kt), then (3.1) could be rewritten as

es(s){P(kt- ks)- 7(kt- ks, e(kt- ks))} ds.

Since k (k, k, ..., k) is a vector of linearly independent frequencies and P(O)
is continuous in O, then this is equivalent to the equation

(3.4) P(O)-- fo R(s){P(O- ks)- 7u(0- ks, P(O- ks))} ds.

Conversely, if P(O) is any continuous solution of (3.4) such that P(O) is 2n-periodic
in each variable 0j, then p(t) P(kt) will solve (3.1). Therefore, our problem is
reduced to finding an analytic and periodic solution of (3.4).

For any 6 > 0 the symbols D(5) or U(5) will denote regions defined in the
manner of (3.2) and (3.3). Using this notation we now prove the following theorem.

THEOREM 5. Suppose (A1)-(A3) and (A6)-(A7) are true. Then there exists a
> 0 such that (3.4) has a solution P(O) which is real analytic in 0 D(6) and 27-

periodic in each variable 0.
Proof Let N, Ko and K1 be the numbers given by (A6). For any in the

interval 0 < 6 < 6o let if(b) denote the set of functions Z(O) real analytic in
0 e D(8) and 2u-periodic in each variable 0j. If f(/i) is given the topology of uniform
convergence on compact subsets of D(8), then this family becomes a locally convex
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linear topological space over the real numbers. Define

S {Z (6)’lZ(0)l K for all 0 D(6)},

where K is the constant in (A6). Then S is a closed, convex, nonempty and compact
subset of(6). Since (A6)is true for G(t, x) 7(kt, x)and since k (kl k2, kin)
is a vector with linearly independent components, then

lY y(0, Y)I Ko < K if lYl <-K, (0, y) v(6),

and (0, y) is real. By continuity there exists a number 6 with 0 < 6 < 6o such that

lY T(0,y)I :< K1 if lYl <- K1 and (0, y) U(6),

where (0, y) is now allowed to be complex. This is the appropriate 6.
For any Z S define

TZ(O) R(s){Z(O- ks)- 7(0- ks, Z(O- ks))} ds, 0 D(6).

By Lemma 1 above, the matrix R(t) El(0, oc.3) with f IRa(t)] dt =< 1. This means
that TZ(O) is well-defined, TZ if(b) and

rZ(O)l < Ie(s)lK ds <= K.
In particular, T maps S into S continuously. By the Schauder fixed-point theorem
T has a fixed point.

4. Outline of the proof of Theorem 1. The results in 2 of 13 show that
(1.2) is equivalent to (E) with x(t) u(t, O) and x2(t) u(t, n), with

Fo Fof(t) -2- + F, exp (- nZt), fz(t) -- + F,(- 1 exp (- nZt)
n=l k=l

and with

_2 F(x) cos nx dx.F.

It is easy to prove that fl(t) andfz(t) vary continuously in the uniform norm over
0 =< < as F varies in the norm of C2[0, rt]. The results in 2 above show that
x l(t) and Xz(t vary continuously (again in the uniform norm over 0 =< < )
asfand g vary.

The results in 6 of [1] are sufficient to see that x(t) and x2(t) are asymptotic
to almost periodic functions p(t) and p2(t) such that p(t) col (p(t), p2(t)) solves
(3.1). If k and k2 are linearly independent, then Theorem 5 above implies that
p(t) is analytic and quasi-periodic with fundamental frequencies k and k. Finally,
note that since ]p(t) x(t)l 0 as , where p(t) is almost periodic and x(t)
varies continuously with f and g, then p(t) varies continuously (in the uniform
norm over - < < v) with f and g. If k and k2 are linearly dependent over
the integers, then the same conclusion follows but with p(t) a periodic function.
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FIELDS DUE TO ELECTRONS ON AN ANALYTIC CURVE*

J. KOREVAARf AND T. GEVECI:I:

Abstract. Let D be the interior of a simple closed analytic curve C and let z,1, ..., z,, be points
on C. Assuming a logarithmic potential, the electrostatic field due to electrons (charges -e) at the
points Znk may be represented as (the complex conjugate of)

eE,(z)-
k= Znk Z"

The authors give necessary and sufficient conditions under which E.(z) 0 as n uniformly on the
compact subsets of D. For equilibrium distributions of electrons (thinking of C as a conductor) the
fields eE,(z) tend to a limit eE(z) holomorphic in the closure of D. The limiting field is identically zero
if and only if C is a circle. For general analytic C, the limiting field is of the same order of smallness
as the field due to a single electron outside D.

1. Introduction and results. Let D be a bounded simply connected region
in the z-plane, C its outer boundary (that is, C is the boundary of the unbounded
component of the complement of the closure of D). Suppose we place electrons
(charges e,) at points Z,k, k 1,... n, of C. Assuming attractive forces inversely
proportional to the distance and using appropriate normalization, the force on a
charge 1 at the point z is given by the complex conjugate of the expression

(1.1) eE,,(z) e
k= Znk Z"

Ignoring the complex conjugation and the factor e, we shall usually refer to E,(z)
itself as the field due to electrons at the points Z,k.

It follows from work of G. R. MacLane [5], M. D. Thompson [9] and the
first author 3], 4] that electrons placed at conformal images of nth roots of
unity, or shifted nth roots of unity, produce a small field in D in the sense that

(1.2) E,(z)O asn

uniformly on every compact subset of D. If C is not a rectifiable Jordan curve,
n may have to run through a subsequence {n} of the positive integers [3]. The
conformal mapping used goes from the exterior of the unit circle F in the w-plane
to the exterior of C and takes infinity to infinity.

A family of sequences of points

(1.3) z,,...,z,, onC, withn=nj

and such that (1.2) holds is called asymptotically neutral relative to D [3], [4], [10].
In this paper we characterize the asymptotically neutral families for those sets D
which are the interior of an analytic Jordan curve C. It turns out that the asymp-
totically neutral families on C are precisely the conformal images of the asymptoti-
cally neutral families on the unit circle F.
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Thinking of the analytic curve C as a conductor, one will be particularly
interested in the fields E,(z) produced by equilibrium distributions of n electrons
on C. In this case the points (1.3) are nth Fekete points, that is, points Zl, ..., z,
on C for which l-Ij<klzj zkl is a maximum (the potential energy is a minimum
for such a configuration). Using recent work of C. Pommerenke [7], [8], we show
that with the fields E,(z) corresponding to nth Fekete points there is associated a
function E(z), holomorphic in the closure of D, such that

(1.4) E,,(z) E(z) as n oo

uniformly on every compact subset of D. We show also that E(z) is the zero function
if and only if C is a circle. Thus if C is not a circle, the limiting field E(z)corre-
sponding to equilibrium distributions is not as small as the limiting field
corresponding to conformal images of roots of unity!

However, the limiting field in the case of equilibrium distributions is quite
small from a physical point of view. Reintroducing the factor e as in (1.1) when
discussing fields due to electrons, the limiting field will be given by eE(z); hence
it is of the same order of smallness as the field e/(Zo z) due to a single electron
at a point z0 outside D. One should be perfectly safe inside a two-dimensional,
analytic Faraday cage!

It would be interesting to consider the extension of the above results to
nonanalytic curves. The corresponding three-dimensional problems appear to
be much harder, although some initial results exist 6].

2. An auxiliary polynomial representation theorem. Let C be an analytic
Jordan curve in the z-plane, D its interior. Let

al(2.1) (I)(w) aw + ao + +
W

be one of the analytic functions which map the exterior of the unit circle F in the
w-plane one-to-one and conformally onto the exterior of C in such a way that
infinity goes into infinity. There will be numbers r < such that (I)(w) is analytic
and univalent for [w[ > r (cf. I2, p. 346]); the smallest such r will be called p. For
r > p, the positively oriented circle [w[ r will be denoted by Fr, its image under
the mapping z (I)(w) will be called Cr, and the interior of Cr will be called D

For z in D and [w[ >= r one has the Laurent expansion

1
K.(z)w-"-(2.2)

(I)(w)- z p=0

where the coefficients

fv wp dw(2.3) Kp(z) (w)
are independent of r. It is easy to see that Kp(z) is a polynomial of degree p. For
r > p and z in

(2.4) [K,(z)[ < .p+l(z)
where 6r(z) is the distance between z and
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We shall prove the following expansion theorem of which certain aspects
could be obtained from the general results in the book by R. P. Boas and R. C.
Buck [1, Faber polynomials and related material, pp. 57-60].

THEOREM 1. Every holomorphicfunction F(z) in D can be represented in theform

(2.5) F(z) bpKp(z)
p=0

with coefficients bp such that

(2.6) bp=O(eap) as p

jbr every number 6 > O. A given F(z) has only one such representation, and for
p<r<l,

1 fr F{O(w)}O’(w)w-P-1 dw(2.7) bp

Proof (i) Let F(z) be holomorphic in D. Then for p < r < and z in Dr,

1 fc F(()dF(z)
( z

y F{dO(w),,(w dw.
2ti @(w) z

Substituting the uniformly convergent expansion (2.2) one obtains (2.5) with co-
efficients bp given by (2.7). The coefficients bp are clearly independent of r, hence
(2.5) holds for all z in D. Since r may be taken arbitrarily close to 1, the bp of (2.7)
satisfy the estimate (2.6) for every 3 > 0.

(ii) It remains to prove the uniqueness of the representation (2.5) subject to
condition (2.6). Suppose that

Z bpKp(z) 0 in D,
o

where the bp satisfy (2.6) for every di > 0. Then by (2.3), taking p < r < 1 and
introducing the function G(w) o bpWp, we have

G(w) dw 0 z in D(2.8) I)(w)
It is no restriction to assume that the origin z 0 lies in fhD. Expanding
1/{(I)(w) z} in powers of z, equation (2.8) then implies that G(w) is "orthogonal"
to all negative integral powers of I)(w) on Fr. We shall show that as a consequence,
G(w) is orthogonal to all negative integral powers of w on F

Let p s r and let V denote the exterior of C. By Runge’s theorem, every
holomorphic function in V that vanishes at infinity can be approximated, uniformly
on Cr, by linear combinations ofnegative powers of z. Thus by conformal mapping,
the negative powers of w can be uniformly approximated on F by linear combina-
tions of negative powers of (w). It follows that G(w) is orthogonal to w-p- on

Fr hence

bp i w-P-G(w)dw O, p O, 1,2,....
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3. Corollary: a convergence theorem. Theorem implies a convenient
necessary and sufficient condition for uniform convergence of holomorphic func-
tions F,(z) to F(z) on the compact subsets of D. We introduce the representation
for F(z) given by Theorem 1 and the corresponding representations

(3.1) F,(z) bpKp(z).
p=0

THEOREM 2. For analytic C, holomorphic functions Fn(z converge to F(z) uni-
formly on every compact subset of D if and only if

(3.2) bp- bp as n for p O,1,2,

and for every number fi > 0 there is a constant Bo such that

(3.3) Ib,p[ <= B,eP.for all n and p.

Proof (i) Suppose F,(z) F(z) uniformly on the compact subsets of D. Then
Fn{(w)} F{(w)} uniformly on Fr, where p < r < 1. Hence by (2.7), the co-
efficients b,p satisfy conditions (3.2) and (3.3) for every 6 > 0.

(ii) Suppose the coefficients bnp satisfy conditions (3.2) and (3.3) for all 6 > 0.
We choose r arbitrarily between p and 1, and select 6 > 0 such that e < 1/r. It
then follows from (2.4) that the functions F,(z) converge to F(z) uniformly on every
compact subset of D

4. Fields due to electrons on C. Asymptotically neutral families. For arbitrary
fixed n, we shall place electrons (charges e) at the n points of the analytic Jordan
curve C given by

(4.1) z,k {exp(i0,k)}, k 1,..., n,

where is as in 2. Ignoring complex conjugates and the factor e,, we have that
the resulting field will be represented by the sum

E(z)-
1 1

k=l Znk Z {exp (/0,)} z

Hence by (2.2),

(4.2)

where

E,(z) Kp(z) exp {-(p + 1)i0,}
k= p=0

2 CSn,p+ IKp(z)
p=O

(4.3) s,v ei’’a’.
k=l

Applying Theorem 2 we thus obtain the following characterization of asymp-
totically neutral families (see 1).
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THEOREM 3. The family of sequences of points (4.1), n 1,2,..., on the
analytic Jordan curve C is asymptotically neutral relative to the interior D; in other
words, E,(z) - 0 uniformly on every compact subset of D, if and only if

(4.4) s,v O as n for v 1,2,...

and for every number 6 > 0 there is a constant M such that

(4.5) Is.vl _-< Me for all n and v >= 1.

Note that the above conditions are independent of the curve C. Thus asymp-
totically neutral families on analytic curves are preserved under conformal map-
pings of the exterior onto the exterior such that infinity goes into infinity.

COROLLARY 3.1. The asymptotically neutral families on an analytic Jordan
curve C are precisely the conformal images of the asymptotically neutral families on
the unit circle F.

A standard type argument shows that conditions (4.4) and (4.5) for all 6 > 0
are equivalent to the following. For every sequence d, v 1, 2,..., such that
d O(e-) for some number 7 > 0, the sums =1 s,v dv exist and

(4.6) s,dv -, O asn.
v=l

We now consider the class of all analytic functions (0) of the real variable 0 which
have period 2re. In terms of their Fourier series,

(0) dve’,

such functions are characterized by the fact that there is a constant y > 0 such that
d O(e-elvl). One has

[l(Onk) ndo E (shy dv -[- nv d_ v).
k=l v=l

Thus by the preceding remarks we have the following corollary.
COROLLhRV. 3.2. The family of sequences of points (4.1), n 1,2,..., on the

analytic curve C is asymptotically neutral if and only if

(4.7) O(O,k (0) dO o 0 as n o o
k=l

for every analytic function /(0) of the real variable 0 of period 2re.
Condition (4.7) first arose in a conversation with M. D. Thompson who

considered the case where C is a circle. The condition is analogous to (but much
more demanding than) a classical condition for uniformly distributed families of
points (cf. [11, p. 164]).

We end by considering the special case where the Z,k are conformal images of
nth roots of unity,

O,k 2rck/n, k 1,..., n.
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In this case,

0 forv 0(modn),
(4.8) Snv

n for v =_ 0 (mod n).

It is clear that conditions (4.4) and (4.5) are satisfied for all > 0. Formulas (4.8),
(4.2) and (2.4) show furthermore that for p < r < 1 and z in D,

IG(z)l

(4.9) <= n{lK,_ l(Z)l -Jr" ]Kzn_ l(Z)l -Jr- "}
1 nr

br(z)

COROLLARY 3.3. On an analytic curve C, conformal images of the n-th roots of
unity, n 1, 2,..., form an asymptotically neutral family with the property that
the corresponding fields E,(z) tend exponentially to zero on every fixed compact
subset ofD.

5. Equilibrium families of electrons on C. In this section we assume that for
each n, the n electrons on the analytic curve C are in equilibrium configuration.
In other words, the points 2nk in (4.1) will be nth Fekete points. For such points
it has recently been shown by C. Pommerenke [8] that

2rck 1
(5.1)

27rk
+ nk, k= 1,...,n,

where q(0) is a real analytic function of period 2re as described below and

One considers the following expansions for functions related to the mapping
function (w) ( 2)"

(5.2)

log
q3(u) q3(v)

log a apqU- Pv-
U l) p,q=l

log’(w)=loga- Gw-,

where [u[, Iv[, [w[ > 1. With p defined as in 2,

apq O(pp+q), c O(pv)

[7]. The function p(0) is given by the Fourier series

(5.3) (p(0) v= ei --(eSv -ivo
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[7], where {sv} is the unique solution of the system of equations

(5.4) sv + v Z a.. 1/2vc,
=1

such that

v= 1,2,

(5.5) s o(vp).

It can be derived from (5.1) by some calculation (cf. [7]) that

If the nth Fekete points are not unique, we select one set. The field due to electrons
placed at the nth Fekete points will be denoted by E,(z); we again have the repre-
sentation (4.2). In view of (5.6) it is natural also to introduce the function

(5.7) E(z) 2 Sp+ 1Kp(Z).
p=0

By (5.5) and (2.4) with r < 1/p, formula (5.7) can be used to define E(z) as a holo-
morphic function throughout the region D,, where a 1/p.

It is clear that s, ---, s as n --, oe for each v _>_ 1 and that for every 6 > 0
there is a constant M such that Is,vl _-< Moe for all n and v. We may thus apply
Theorem 2 of 3.

TIaEOREM 4. For an analytic Jordan curve C, the fields E,(z) due to electrons
placed at n-th Fekete points tend to a limitfunction E(z) as n - uniformly on every
compact subset of D; the limit function is holomorphic in a neighborhood of the
closure of D.

Can it happen that E(z) is the zero function? By Theorem 1 of 2 one has
E 0 if and only if gp+ 0 for all p >__ 0. By (5.4) the last condition is equivalent
to the requirement that c be zero for all v >= 1, and by (5.2) the latter condition
is satisfied if and only if q)’(w) a, or

(5.8) (w) aw + ao.
The mapping function (w) has the form (5.8) if and only if C is a circle.

COROLLARY 4.1. The limiting field E(z) is identically zero if and only if C is a
circle.

Theorem 4 and Corollary 4.1 answer a question raised at the Symposium
on Analytic Function Theory held at the University of Kentucky, May 28-
June 1, 1965 (cf. [12]; the comment printed with the problem is incorrect).

In the case of a circle the consecutive nth Fekete points are equidistant and
E,(z) tends exponentially to zero on every compact subset of the interior. In the
general case it follows from (5.6) and (2.4) that on every compact subset of D,

E,(z) E(z)+ O(1/n).

It is possible to express E(z) in terms of the mapping function. Assuming that
0 is in D (this is no restriction) and integrating from 0 to z along a path in D, we
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find that

E,(’)d= log
z

E()d"

as n oe. We now set ei"k w,k, so that z,k O(w,) and take z (w), where
P < wl < 1. Then for suitable values of the logarithms,

{+ n log a log (W")
W Wnk

+log z,
Ta + Te + T3,

Wnk

say. By (4.3) and (5.6),

and by (5.2),

It follows that the constants T3 tend to a limit which we denote by -7-1/2 log a.
Using (5.4) we thus find that

(5.9) H(z)= 7 + E(()d( -l(vW
_

sw_)_
1

v loga+- cw

Letting w ---, ei and using (5.2), we conclude that for z O(w) on C,

Re H(z) -1/2 log IO’(w)l 1/2 log IW’(z)l,

where W is the inverse of .
COROLLARY 4.2. One has

E(z) H’(z),

where H(z) is holomorphic in the closure of D and such that

Re H(z) 1/2-log I’(z)l on C.

Remark. Formula (5.9) shows that Pommerenke’s function q)(0) is equal to

Im [H{O(ei)} + 1/2 log O’(e’)].
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TIME REVERSAL IN ABSTRACT CAUCHY PROBLEMS*

RICHARD SAYLOR"

Abstract. Using the fact that under homogeneous endpoint conditions on a finite interval the
eigenvalues of the operator da/dx tend to -, a standard construction shows that initial boundary
value problems for the backward heat equation u -Uxx are not well-posed in the sense that the
solutions do not depend continuously on the data. Corresponding problems for the forward heat
equation are well-posed. Abstract considerations show that the pathology of heat conduction problems
is essentially due to the unboundedness of d2/dx rather than to the distribution of its eigenvalues.
Indeed, if A is a closed, unbounded operator in a Banach space X, and if the initial value problem
u’(t) Au(t), > 0, u(0) f, is well-posed in X, then the backward initial value problem u’(t) Au(t),
> 0, u(0) f, is not well-posed, even with the data f restricted to the domain D(A) of A.

1. Introduction. Let A be a closed, densely defined operator in a Banach
space X. Consider the initial value problem

u’(t)- Au(t), 0 < < T,

u(O) f,

and the terminal value problem

v’(t) Av(t), 0 < < T,

v(T) g.

If A is bounded or X is finite-dimensional, the initial and terminal value
problems are essentially Cauchy problems for first order linear ordinary differential
equations, and they are well-posed;that is, they have the properties of existence,
uniqueness, and continuous dependence on the data.

If u’(t)- Au(t) represents a partial differential equation, the situation is
entirely different. In this case A is an unbounded operator in an infinite-dimen-
sional Banach space X, and we shall show that if the initial value problem for A
is well-posed in X (in a sense to be made precise), then the terminal value problem
for A is not well-posed, even if the terminal data g is restricted to the domain
D(A) of A.

2. Preliminaries. Let X be a Banach space. A function u:(a, b) --> X, defined
on a real interval (a, b), is differentiable on (a, b) if there exists a function u’ :(a, b) ---, X
such that for each (a, b),

Ilu(t + h) u(t) hu’(t)l[ o(Ihl) as h --, 0.

Let A be a linear operator in X, c [a, hi, f X. A solution of the Cauchy
problem

(1) u’(t) Au(t), a < < b,

(2) u(c) f,

* Received by the editors November 19, 1970, and in revised form January 25, 1971.
? Department of Mathematics, University of Miami, Coral Gables, Florida 33124.
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is a continuous function u’[a, b] X, differentiable on (a, b), such that u(t) D(A)
for e (a, b), and (1)-(2) are satisfied.

If V is a linear manifold in X, the Cauchy problem is said to be well-posed in V
if the following three conditions are satisfied.

(A) Existence. For each f e V there exists a solution u.
(B) Uniqueness. For each fe V there is at most one solution u.
(C) Continuous dependence on the data. For each e [a,b] there exists a

constant M such that for each f e V the solution u of the Cauchy problem satisfies
Ilu(t) =< M, f

Note that if the Cauchy problem is well-posed and V is closed, then the
constant M in (C) can be taken to be independent of t. Indeed, if (A)-(C) hold, the
solution u of the Cauchy problem with data f can be written in the form u(t)

U(t)f, where U(t)’V X is a bounded operator for each [a, b]. Since each
solution u is continuous on [a, b], there exists a constant My such that U(t)f
_< My, a __< =< b, for each f e V. Hence by the uniform boundedness principle
[3, p. 463 there exists a constant m such that U(t) <= m for a __< =< b.

The graph G(A) of A will always be equipped with the graph norm

IIUu,Au]ll u + IIAu
so if A is closed, G(A) is a Banach space.

If Y and Z are Banach spaces, a linear mapping T’Y Z will be called
compact if the image under T of any bounded subset of Y is totally bounded in Z.

3. The effect of time reversal. Assume now that X is an infinite-dimensional
Banach space, and A is an unbounded, closed, densely defined linear operator in X.

THEOREM 1. If the initial value problem

(3) u’(t) Au(t), 0 < < T,

(4) u(0)--- f,

is well-posed in X, then the terminal value problem

(5) v’(t) Av(t), 0 < < T,

(6) v(T) g,

is not well-posed in D(A).
Proof Suppose (3)-(4) is well-posed in X. Let U(t)’X X be the solution

operator u(t) U(t)f. By (C), U(t) is bounded for 0 < T. Since the range of
U(t) is contained in D(A) for 0 < < T, we can define a mapping J(t)’X G(A)
by

J(t)f [U(t)f, A U(t)f], 0 < < T.

We claim that for each fixed (0, T), J(t) is bounded. Indeed, suppose f, --, f in X,
and J(t)f, Iv, Av] in G(A). Then U(t)f --, v in X, and A U(t)f, Av in X. But
by continuity, U(t)f, U(t)f. Hence v U(t)f so v, Av] J(t)f. Thus J(t) is
closed and therefore bounded 3, p. 45].

Assume now that existence and uniqueness hold for the terminal value
problem (5)-(6) in D(A). Let v be the solution of (5)-(6) with terminal data g D(A).
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Fix e (0, T), and let u(s) v(s + t). Then u satisfies u’(s) Au(s), u(O) v(t).
Since (3)-(4) is well-posed, u must be given by u(s)= U(s)v(t). In particular
g u(r- t) U(T- t)v(t). Hence for 0 < < T, U(T- t) has an inverse de-
fined on D(A), and v(t) U(T- t)-lg. We claim that U(T- t)-1 is unbounded
on D(A) for 0 < < r (and hence problem (5)-(6) is not well-posed on D(A)).
Define the operator P’G(A) D(A) by P[u, Au] u. Since A is unbounded,
there exists a sequence (g,) in D(A) such that g, 0, but liP- lg, - oe. Obviously
U(T- t)= PJ(T- t). Since P and U(T- t) are invertible, so is J(T- t), and
we have U(T t)- j(T t)- 1p- 1. Since J(T t) is bounded, if U(T t)-
converged to 0, we would have P-lg, 0, which is not the case. Hence for
0 < < T, U(T-0-1 is an unbounded operator on D(A); so the terminal
value problem (5)-(6) is not well-posed.

4. A priori bounds. If A is a symmetric, negative definite operator in a
Hilbert space H, and A-1 is compact, then the initial value problem (3)-(4) is
well-posed in H. If 41,42,"" is a complete orthonormal sequence of eigen-
vectors of A, then the solution u of (3)-(4) with initial data f e H is given by

u(t) ak exp (,kt)k,
k=l

where ak (f, qbk), and 2k is the eigenvalue of 4k" Differentiation of (u(t), u(t))
shows that u(t)l[ _-< f Thus Theorem 1 shows that the terminal value problem
(5)-(6) for A cannot be well-posed. Failure of continuous dependence on the data
is illustrated by the following example. The unique solution u, of (5)-(6) with
terminal data g, q,/2, is given by

Cm(t- T)

u.(t)

Since 2, -v, ]lg, --* 0. But for any < T, u,(t) ---, o. This unbounded
behavior of solutions is analogous to the pathology encountered in backward heat
conduction problems [6, p. 228].

If u satisfies u’(t)= Au(t), and A is symmetric, then log lu(t) is a convex
function. Hence if r < s < t,

s-r t-s
(7) log Ilu(s) _-< --log u(t)[[ + --log u(r)ll.

t-r t-r

This shows that if v, satisfies (5)--(6) with terminal data v,(T) g,, and [g, - 0,
then v,(t) -+ 0 for 0 < __< T, provided there exists a constant M such that
[Iv,(0) __< M, n 1, 2,.... In this case we say that (5)-(6) has continuous depen-
dence on the data under a prescribed bound.

Continuity with a bound holds for more general problems, but the sharp
estimate (7) is no longer valid. Let A be a closed linear operator in an infinite-
dimensional Banach space X, and assume that the mapping [u, Au]-+ u of the
graph of A into X is compact. Assume also that X is reflexive.

THEOREM 2. If the initial value problem (3)-(4) is well-posed in X, and if the
terminal value problem (5)-(6) has uniqueness in X, then the terminal value problem
has continuous dependence on the data under a prescribed bound.
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Results analogous to Theorem 2 are needed for the numerical treatment of a
wide variety of improperly posed problems in partial differential equations 4], 5].
The proof of Theorem 2 depends on the following lemma, of which a special case
is well known.

LFMMA 1. Let X, Y, Z be Banach spaces, X reflexive. Let T: X Ybe a compact
linear operator, S Y Z a bounded linear operator. Assume that ST:X Z is
injective. Then for each e > 0 there exists a constant C C(e) such that

IITxll llxll + CIISTxll
jbr all x e X.

Proof. Suppose the lemma is false. Then there is an e > 0 and a sequence
(x.) in X such that

IITx.ll > ellx.ll + nllSTx.[I.

By normalization in X we can assume that ]x, 1;so

(8) Tx, >e+n STx, >=e>0.
Since IIx,]l 1, and X is reflexive, (x,) has a weakly convergent subsequence
[3, p. 30] which we still denote by (x,). Let x e X be the weak limit of this sequence.
Since T is compact, Tx, Tx in Y. Hence STx, STx in Z. But (8) shows that
STx 0. Hence x 0; so Tx 0. But this contradicts (8).

Proofof Theorem 2. Assume that (3)-(4)is well-posed, and let U(t) be the solu-
tion operator. Let 0 < < T. Since U(t) PJ(t) and P is compact (by hypoth-
esis), U(t) is compact. Note that U(T) U(T- t)U(t). If (5)-(6) has uniqueness
in X, then U(T) is injective. Hence by Lemma 1, for each e > 0 there is a constant C
such that

That is,

(9)

U(t)f[[ <= e f[[ + C[[U(T)f

Ilu(t)] =< ellu(0) + CI u(T)

for any solution u of u’(t) Au(t), 0 < < T, which is continuous on [0, T].
Now suppose (u,) is a sequence of solutions of(5)-(6) with terminal data u,(T)
Then by (9),

u.(t)II <_- u.(0)II + c g.

so if Ilg, 0 and u,(0)l[ =< M, then lim sup u,(t) <_ eM. Since e is arbitrary,
lim Ilu,(t)ll 0. Since e (0, T) is arbitrary, lim u,(t) 0 for 0 < _<_ T.
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A CLASS OF COMPLETE ORTHOGONAL SEQUENCES OF PERIODIC
FUNCTIONS*

J. L. SOX, JR. AND W. J. HARRINGTON’

Abstract. A class of orthogonal sequences of functions which are linear combinations of certain
complete systems of the type {h(nx)} is defined. Each member of the class is shown to be complete in

L2(0 1) and two general class-wide pointwise convergence theorems are obtained for the Fourier

expansions relative to these sets. This class includes the orthogonal set of step functions defined by
Harrington and Cell and also the saw-tooth functions of Duffin.

1. Introduction. Harrington and Cell [73 and Duffin [43 have constructed
complete orthogonal sequences of functions which are linear combinations of
the functions ofcertain complete systems of the type {h(nx)}, n 1, 2, .... SzS.sz [93
has shown that a complete system {h(nx)) is generated by any function h L2(a, b)
whose Fourier coefficients are mutliplicative.

THEOREM (SzS.sz). Let g(x) be bounded, -v < x < v, and such that
{g(nx)), n 1,2,..., is an orthogonal sequence on [a,b] which is complete in

L2(a,b) (or a subspace S LE(a,b)). If h LE(a, b) has Fourier coefficients
(with respect to {g(nx)}) which satisfy a l, ama am, for all integers m and n,
then the sequence {h(nx)}, n 1, 2, ..-, is complete in L2(a, b) (or S).

In this paper we define a class of complete orthogonal sets on [0, 13 composed
of functions which are linear combinations of the h(nx) functions generated as in
Theorem 1. This class includes the set of square wave functions defined by Harring-
ton and Cell, the saw-tooth functions of Duffin, and (in a trivial sense) the familiar
{sin nx). Two theorems are obtained giving sufficient conditions for pointwise
convergence of Fourier expansions relative to orthogonal sets in the class.

It should be noted at the outset that the function g(x) of Theorem 1 can, for
practical purposes, be taken to be x/ sin gx (or x cos x in the case of ortho-
normal sets of the type 1, g(nx))), since Bourgin and Mendel [2] have shown that
{g(nx)} is a complete orthonormal set in L2(0, 1) if and only if g(x) + x/ sin
a.e. (and analogously g(x)= +xcs rex a.e. for complete orthonormal sets
1, g(nx)}).

2. Definitions and fundamental properties. Let g denote a bounded function
ofperiod 2 on (- , ) such that (g(nx)l, n 1, 2, is a complete orthonormal
sequence in L2(0, 1) or a subspace (such as that spanned by {cos nTx)). Consider

g to be either an odd function or an even function.
Let he L2(0, 1) have the Fourier expansion with respect to {g(nx),

(1) h(x) a,g(nx),
n=l

such that a and arn area for all positive integers m and n. Considering (1)
as a half-range expansion of h, it will be understood that the definition of h is
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extended first to the domain [-1, 1] as the odd or even extension according
as g is odd or even and then to the domain (-oc, o) by requiring that h(x + 2)

h(x).
It follows from Theorem that the sequence of functions {H.} {h(nx)}

is complete in L2(0 1) or S. In general, the H, will not be orthogonal on [0, 1]. In
order to obtain an orthogonal sequence, a related sequence {b,} is defined in
terms of the H, as follows"

where the sum is taken over all positive integers d which divide n, ae is the dth
Fourier coefficient of h, and (d) is the M6bius function defined by (1)= 1,
(d) 0 if d contains a square factor, and (d) (-1) if d is the product of k
distinct primes. We note that since a 1, 41(x)= h(x).

Several lemmas are needed to show that the sequence {4,} is orthogonal on
[0, and complete in L2(0, 1). The proofs, in most cases, are omitted either because
they are quite straightforward or because they are analogous to the corresponding
proofs in [7] with the specialized sequence of coefficients used in [7] replaced by a
general multiplicative sequence {a,}. The essential number-theoretic properties
of the M6bius function can be found in [6].

LEMMA 1. U’m and n are relatively prime integers,

h(nx)h(mx)dx =ama, h 2= aa, a.
k=l

LEMMA 2. If n is an integer, f and g are periodic of period 2, aMfand g are both
even (or both odd), then

f(nx)g(nx)dx dx.
o

LEMMA 3. Ifm and n are relatively prime and n > 1, then

f] h(mx)dp,(x) dx O.

LEMMA 4. lf m and n are relatively prime and m =/= n, then

4,,.(x)4.(x) ,x o.

LEMMA 5. (a) If n paN, where p is a prime and o > 1, thenfor each [t, <= fl < o,

4).(x) 4),(p’- x),

where M pN.
(b) /fn paN, where p ( > 1) is the highest power ofprime p dividing n, then

dp,(x) c])N(px)- apCu(p 1X).
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LEMMA 6. /f rn pM and n paN, where p is a prime and > 1, then

)m(X)ffn(X)MX dx.
o

By the repeated application of Lemma 6 one may reduce any integral of the
qS,,(x)qS,(x)dx to one of the same type in which the greatest commontype f 0

divisor of the subscripts has only first powers of primes as factors.
LZMMa 7. Suppose that p is a prime such that p, but not p2, is a factor of the

(x),(x) dxgreatest common divisor of the integers m and n. Then the integral o
4(x)4(x)x,can be expressed as a linear combination of integrals of the type o

where jim and kin but p is not a common divisor ofj and k.
It is now possible to prove that the sequence {4,} is orthogonal on [0, 1].
THZOZM 2. If m and n are distinct integers,

4m(X)4,(X)X O.
0

Proof. Ifm and n are relatively prime, the result is that of Lemma 4. Otherwise

(m, n)-- p]lp22 pk,

where the Pi are distinct primes, the repeated application of Lemma 6 will reduce
the integral to the form

j 4....(x14..,(x)tx.
0

where H PxP2 P and (M, N) 1. Since the greatest common divisor ofHM
and HN involves only first powers ofprimes, the successive application ofLemma 7

)s(X)4)t(X)dx(corresponding to each p) reduces this integral to a sum of the type J" o
where no one of the p is a common divisor of s and t, hence (s, t)= 1. These
integrals all vanish by Lemma 4.

Tneo 3.
,,1

(3) qSnll 2 qS,2(X) dx IqSa 2 I-I (1 ap2),
0 pin

where the product is taken over all primes which divide n and where

241112- h 2= a,.
n=l

The proof is like that of Theorem 10 in [7] where liSa 1.
Since the sequence {H,} _= {h(nx)} is complete in L2(0, 1)or in S, the complete-

ness of {b,} can be established by showing that each H, can be expressed as a
linear combination of the b,. This is shown by the following theorem.

TI-IEOEM 4. If n has no prime divisor p for which ap O, then

h(nx) a, 2 --1 bm(X)
rain am

otherwise if n PN with ap 0 jbr each prime p that divides P and aa = 0 for all
diN (there is always one such d since al 1), then

h(nx) au
l

dpt,m(X).
mlV am
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The proof follows from the multiplicative property of the {a,} and from the
M6bius inversion formula [6].

The results obtained to this point are collected in the next theorem.
THEOREM 5. The sequence of functions {b,}, n-- 1,2,..., is complete in

L2(0, 1) and orthogonal on [0, 1] with norms as given by Theorem 3.
From Theorem 5 we see that any f in L2(0, 1) or in S has the Fourier 4),

expansion (convergent to f in the norm of L2(0, 1)),

(4) f(x) c,dp,(x),
n=l

where

(5) c. b. 2 f(x)c/).(x) dx.

Since h(nx) is a simpler function than b,(x), it is of interest to note that the
Fourier , coefficients of f can be expressed as follows"

(6) c. . 2
, l,t(d)ad f(x)h dx.

One may also derive a formula for the c, in terms of the Fourier g(nx) coefficients
of f and h.

3. The Fourier expansion of ho In the definition of the sequence {b,} it was
assumed that the function h had an expansion in terms of the orthonormal set
{g(nx)} with multiplicative coefficients. The Bourgin-Mendel theorems mentioned
in 1, of course, imply that this expansion can be taken to be either the half-range
sine or cosine expansion without loss of generality. Since the function h is also
assumed to be in L2(0 1), the sequence of coefficients {a,} of (1) must satisfy

2a, < , and conversely if {a,} is any completely multiplicative sequence such
2that a, < v, the expansion (1) represents a function which satisfies the require-

ments of our definition.
The general sequence of coefficients which satisfies a 1, area, %, can

be constructed as follows [9]:
Take a 1;for each prime p let ap equal an arbitrary real number and

nln2if n is any integer with the prime factorization n el e P let

a. apl ap2 pk"

As a simple example, suppose P is a particular prime and let ap r, 0 < ]rl < 1,
and take ap 0 for all primes p - P. Then a 1, a, 0 if n has a prime factor

2 converges, a, sin nrcxother than P, and a, r if n pk, k >__ 1. Since a,
represents a function h e L2(0 1) which can be used to determine a complete
orthogonal sequence {b,}.

Also, it is obvious that {a,} {n5} (a a constant) is a completely multipli-
cative sequence thus if a < -1/2, the sequence n5} determines a function heL2(0 1).

2similarly, given any completely multiplicative {a,} with a, < v, it is clear that
{a,/n}, fl > 0, is also completely multiplicative and thus determines a function h
that satisfies the requirements of the definition of {4,}.
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4. Construction of complete orthogonal sequences on [-1, 13. Let
ql G L2(0, 1) have the Fourier expansion a, sin nx, where {a,} is a completely
multiplicative sequence. Then the related orthogonal sequence {b,}, as con-
structed in 2, is complete and orthogonal in the space of odd functions of
L2(--1, 1). Now construct a second function in L2(0, 1),

q,(x) b. cos nx,
n--1

with b 1 and bn +__ an, n >= 1, subject to the condition that {b,} be completely
multiplicative. Then the sequence {1, O(nx)} is complete in the space of even
functions of L2(-1, 1) and the functions {1, ,} will be orthogonal on [-1, 1].
Thus the combined set {1, ,, 4n} is complete and orthogonal in L2(-1, 1).

In the above construction, [ll//l[[ 11(11]1’ and by Theorem 3,
Of course, one can use a 1 with any completely multiplicative {b,} and construct
a complete orthogonal set {1, n, bn) on [-1, 1]. However, there would be the
inconvenience of involving two different norms, 114]1 and 114’111, and it would
seem more natural to have the even functions l(nx) closely related to the odd
functions 4l(nx).

5. Examples. (A) The Sn and C, functions defined by Harrington and Cell I7]
appear to be the simplest examples of 4),-type sets that can be constructed. These
functions are linear combinations of the square wave functions Sl(nx), where
the basic square wave function

SI(X sgn (sin 7x)
4 1

sin nrcx
n d /’/

In the notation of this paper, one would use h(x)= qb(x)= (rc/4)Sl(X) with

{a,} {l/n}. It is of interest to note that the well-known orthogonal (but incom-
plete) set of Rademacher functions is the subset {$1(2"x) S2,(x)} of the Harring-
ton-Cell system.

(B) The members of the set {rn(x)} constructed by Duffin [4] are linear
combinations of the saw-tooth functions r(nx), where

for(x) (1- 2x)= nlsin 2mzx.

Thus the set r(nx) is complete in the space spanned by {sin 27nx}, that is, L2(0, 1/2),
and the sequence {zrn} constructed as in 2 will be orthogonal and complete
on [0, 1/2].

(C) Choosing a 1, a2 1/2, and a, 0 for all primes p > 2, one can

construct

f(x) 2- sin 2kzx.
k=O

In the case of the square wave functions in [7], a, 0 for n even, and the natural choice (for geo-
metric analogy with sine and cosine) was to have b, (-1)’-1)/2a,.
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As shown in 3, (fl(nx)} is complete in L2(0 l), and one finds the related orthog-
onal functions

f,(x) t f (nx)’ odd,

fl(nx) 1/2fl(nx/2), n even.

(D) As a final example, consider the well-known Bernoulli polynomials [5]
which have the Fourier expansions

2(- 1)m- 1(2m) cos 2nrcx
B2m(X) -f, Z n’n=l

2(- 1)(2m 1) sin 2nx
1(X) (2)- L nn=l

For each fixed m, the sequences {B_ l(nx)} and {1, B(nx)} are both complete
in L(0, ) and determine complete orthogonal sequences of the type constructed
in 2. The Bernoullian transcendents 5] which occur in the Fourier theory of
fractional differentiation are defined as certain multiples of the series given for
B(x) with k not restricted to integer values. If k > , each of these generalized
Bernoulli functions also determines a complete orthogonal set. Analogous con-
clusions can be drawn concerning the Euler polynomials.

6. Pointise convergence of Fourier expansions. Two theorems giving
sucient conditions for the pointwise convergence of the Fourier expansion (4)
will be proved in this section. Since it has not been possible to find a closed ex-
pression for the Dirichlet kernels associated with the expansions, the proofs
of these theorems must be constructed in a rather indirect manner. As a result
one might reasonably suspect that stronger convergence theorems are obtainable.

We begin by proving a lemma that gives an order property for the Fourier
coecients of a function in terms of its coecients relative to the orthogonal
set {g(nx)}, that is, the sine or cosine set.

LMMA 8. Let h and f befunctions in L(0, 1) whose Fourier coecients relative
to the complete orthonormal set {g(nx)} are O(1/n), > . Then the Fourier

coecients off relative to {} are O(1/n-) for every > O.
Proo Suppose that the Fourier g(nx) expansions of h and f are

(7) h(x) ag(nx)

and

where a 1, aa a, and both a and b are O(1/n), > that is, [a[ < M/n
and Ibm[ < K/n for some constants M and K. To obtain an order property for
the Fourier coecients of we first find a bound for the integral

I f(x)h(mx) dx.

Since h(mx) a,g(mnx), we have from (7) and (8),

(9) I 2 ab.
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The order property assumed above for a. and b. with (9) give the inequality
C

(10) ]Im] ]anbmn < m
where C MY (1/n2).

Since the Fourier b. coefficients of f are given by

1
c,, . f(x).(x) dx 114. 2 (k)aI./,

kln
it follows from (10) that

mc (n)

where d(n) is the total number of divisors of n. It is known [5] that d(n) O(n)
for every e > 0. Also, a lower bound for II.[I 2 can be obtained by use of the
following fundamental theorem on the multiplication of Dirichlet series [6].

If f(n) is a completely multiplicative function on the set of positive integers
such that If(n)ln is convergent, then

1
(12) . f(p)p-S Zf(n)n-,

where the product is over the set of all primes and the sum over the positive
integers.

Since {a} is completely multiplicative, (12) with s 0 yields

1
(13) (1 a)

Now lap] < 1 for each prime p since if this were not true, the subsequence {a..}
2 Thuswould not approach zero as required by the convergence of a..

(4) H (1 a) H ( a),
pln p

and by (3), (13) and (14),

{5) .1 11 {- a)= .
p

By combining this result with (11) and the order property for d(n) one obtains the
inequality

R
{16) Icl ( ( a constant)

which holds for every 8 > 0.
It does not appear that Lemma 8 can be strengthened appreciably since (6)

gives, when n p (a prime),

1
c iill 2 {aal

Thus cp will normally be of the order of magnitude of ap or Ip, that is, O(1/p).
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There are a number ofwell-known theorems that relate smoothness conditions
on a function to order properties of its Fourier sine (cosine) coefficients. For
example, if f and h are both of bounded variation on [_0, 1] or if both satisfy Lip-
schitz conditions of order > 1/2 on [0, 1], the Fourier coefficients of these functions
satisfy the hypotheses of Lemma 8 (see [103). Furthermore, the weaker assumption
that f and h both belong to the class Ap, > 1/2, defined by Zygmund also ensures
that the Fourier coefficients of these functions are O(1/n’).

THEOREM 6. Suppose that Fourier g(nx) coefficients ofboth f and h are O(1/n),
> 1/2, or in particular, that f and h are in the class AP. Then the Fourier expansion

of f relative to {b,} converges to f almost everywhere in [0, 1].
Proof The Rademacher-Menchenoff theorem [1] asserts that any ortho-

normal.series Z b,4, for which Z b,2 lg2 n < oe converges almost everywhere on
the interval of orthogonality of the 4,. If h and f satisfy the hypotheses
of Theorem 6, the coefficients c, of the Fourier 4), expansion of f are O(1/n) for
some / > 1/2. Since ]b, =< [[41 [c,[ limb, O(1/nt) and one deduces that

Ic.1211.ll 2 log2 n < c.

So it follows that the Fourier 4, expansion of f converges almost everywhere
on [0, 1]. On the other hand, since f L2(0 1), Z Cnn converges to f in the
Lz-norm and it is well known [8] that there is a subsequence of the sequence of
partial sums of this series which converges to f(x) almost everywhere in [0, 1].
Thus since c,b, converges almost everywhere in [0, 1], it follows that this series
must .converge to f(x) almost everywhere on this interval.

The theorem of Carleson2 [3], which says that if j’ L2, then its Fourier
series converges almost everywhere, suggests that the conditions of Theorem 6
may be unnecessarily stringent. It seems likely that results similar to Carleson’s
are true for some orthogonal systems (in addition to the trigonometric) contained
in the class of systems considered in this paper. The authors do not choose to
conjecture at this point whether comparable results can be extended to the entire
class.

Now suppose that the basic g function is continuous (that is, {g(nx)} is either
the sine or cosine set) and that f and h have Fourier g(nx) coefficients which are
O(1/n), > 1. Under these conditions, the expansion h(x)= a,g(nx) is uni-
formly convergent on [0, 1] so h is continuous on this interval. It is also clear that
the h(nx), n 1, 2, ..., are uniformly bounded on 0, 1]. Thus b, is continuous
on [0, 1] and {b,(x)} is also uniformly bounded on [0, 1]. By Lemma 8 it follows
that c,4, converges uniformly on [0, 1]. Thus the sum of this series is a con-
tinuous function on [0, 1]. Now Theorem 6 guarantees that this sum is almost
everywhere equal to f(x), so if f itself is continuous on 0, 1], it follows that
f(x) c,c,(x) for all x in [0, 1].

THEOREM 7. lff and g are continuous and both f and h have Fourier coefficients
relative to {g(nx)}, n 1, 2,..., which are O(1/n), > 1, then the Fourier ex-
pansion off relative to {,}, n 1, 2, converges to f everywhere in [0, 1].

The authors express their gratitude to the referee for bringing this result to their attention.
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EXTENSIONS OF DIRICHLET’S MULTIPLE INTEGRAL*

MURRAY S. KLAMKINt

Abstract. A generalization of Dirichlet’s multiple integral is derived in a simpler manner than that
recently published. Additionally, other extensions are given.

In a recent note, Sivazlian [1] obtained the following extension of Dirichlet’s
multiple integral :1

If F(x) is continuous and ai 0, i= 1,2,..., n, then

(1)

where

R i=l

A u l(t u)bF(u) du,

a a + a2 + + at, b ar+ + a+ 2 nt- -Jr" a,,

F(a)F(a2)... F(a,)A=
r(a)r(b + )

and the region R is given by

+ 2 + + t, O.

Here, we give a simpler derivation plus some still further extensions.
Integrating (1) partially over the variables t, t2, ..., tv, which corresponds

to evaluating a Dirichlet integral over the region

+ 2 + + tr+ tr+ 2 tn ,
we obtain

where

B F(v)v,- dr,

F(al)F(a2)... r(ar)
r(a)

Integration of the latter integral over the remaining variables, yields

l(n, r) B [at +1- t""- dt,+ dt, F(v)v dvr+l
i>0

* Received by the editors September l, 1970.

" Scientific Research Staff, Ford Motor Company, Dearborn, Michigan 48121.

Actually, Sivazlian’s result corresponds to the case but the extension is trivial.
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Since the right-hand side is again a Dirichlet integral,

I(n, r) bA ub- du F(v)v dr.

Finally, by letting w u, interchanging the order of integration and integrating
with respect to w, we obtain the desired result (1).

A further extension of (1) is given by

R

(2)

bA G(w)(t w)b- dw F(v)v dr.

To obtain this result, we integrate I,r over the variables l, t2, tr as before.
Whence,

I,(F, G) B G(t ) t’[’- dt F(v)v dr.
_>_0 i=r+l

On integrating over the remaining variables t+ 1, ..., t,, we get

bA G(t u)u- du F(v)v dv

which reduces to (2) by letting w t- u.
If the argument of G in (2) is replaced by a partial sum of the remaining

variables, that is, t+ + tr/ + + t (r < s < n), then (2) can be reduced to
the following triple integral:

F(a)F(a2)’"F(an)fl fl fl(2’) -F--(b-)-’( Uc-1 du G(v)v- dv F(w)wa-1 dw,

where
b a,.+l + a,.+2 + + as, c= a+ +a+, + +a,.

The derivation of (2’) is analogous to that of (2) but instead of using the Dirichlet
integral, we use the extension in (1). Interchanging the order of integration, we
finally obtain

F(al)I-’(a2) F(a,)
a(v)v- dv F(w)w l(t v w) dw.(2") -(i[ + 1)

We can extend (2") by allowing an overlap in the variables in the arguments
of the functions F and G. Proceeding in a similar fashion as before, we get

Irs’F G’-- f f fF,x-F-y,G(y--z)fi ti-ldti
R i=1

(3)

F(a)F(a2) F(an)
u l)b-1

F(biF-(6 du dv

w F(u + v)G(v + w) dw,
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where

X / 2 + / tr,

Y-- tr+ / tr+2 + +
z is+ / ts+ 2 / -- tn, r < s < n.

Extensions of (1) in another direction can be obtained by changing the region
R of integration to

/ 2 + + _<

(tr + / t + 2 / tn t’

For r < s, we then obtain

and ti >= 0.

R’ i=1

uh- (t’ u) du v"- F(u + v) dr.-Fi / 1)

The case r > s leads to nothing new.
Still further extensions can be obtained by considering the more general

integral (which includes all previous ones as special cases)

f... fFl(X)F2(x2)...F.(x.) t7’- dti,
Rm i=1

where the xi’s are various partial sums of the variables l, t2, .’., tn with or with-
out overlap and the region R is given by ti >= 0 plus m inequalities of the form

t. =< Mi
again with or without overlap of the ti’s.

Note added in proof In a more recent note, Sivazlian this Journal, 2 (1971),
pp. 72-75] gives a further extension of his previous result (loc. cit.) by replacing
l-[ t in (1) by O(tz) and reduces the multiple integral to a single integral of a
repeated convolution. Again his derivation can be simplified and extended in the
manner shown here. For example, (2) would now become

I,(F, G) F(u)[(u)*z(U)* *(u)*G(u)[+ l(U)*r+2(u)* "*n(U) du,

where (u)*O(u) denotes the convolution g (x)O(u x)dx.

REFERENCE

1] B. D. SVAZAY, The generalized Dirichlet’s multiple integral, SIAM Rev., 11 (1969), pp. 285-288.
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EXTREME EIGENVALUES OF TOEPLITZ MATRICES
ASSOCIATED WITH CERTAIN ORTHOGONAL POLYNOMIALS*

JOHN V. BAXLEY?
Abstract. Previous results of the author and I. I. Hirschman on the asymptotic behavior of the

extreme eigenvalues of truncated Toeplitz matrices associated with Laguerre polynomials are extended
using methods, initiated by S. V. Parter, involving the study of related finite difference operators. The
same technique also leads to the corresponding results, already obtained by Hirschman, in the case of
the Jacobi polynomials.

1. Introduction. In 1953, Kac, Murdoch, and Szeg6 [11] initiated investiga-
tions on the asymptotic behavior of the extreme eigenvalues of truncated Toeplitz
matrices whose elements were Fourier coefficients of a real continuous functionf
on [- re, c]. In the last decade, several authors have continued work of this nature
by not only extending the results of[ll] (e.g., [13], [14], [15]) but also attacking the
analogous problem for Toeplitz matrices associated with the classical orthogonal
polynomials (e.g., [3], [7], [8], [12]).

The present effort is an extension of the approach taken in [3 and rests
heavily on [2]. We concern ourselves with what is known as the endpoint case for
Toeplitz matrices associated with both Laguerre and Jacobi polynomials. Section 4
is devoted to the Jacobi case and the main result (Theorem 4.11) is essentially
that obtained by Hirschman [8] by completely different methods. In 5, the Laguerre
case is studied with the main results there (Theorem 5.5-Corollary 5.9) being
somewhat less satisfying than in the Jacobi case.

The work here discussed in the Jacobi case was essentially contained in [4],
although a mistake there led to the consideration of the operators studied in [1]
rather than to the "right" operators Go, of [2].

2. Some preliminary results. Let - __< a < b __< be a finite or infinite
interval. Let w(x)> 0 for a < x < b. We assume that fbax"w(x)dx < V for
n 0, l, .... Then the Gram-Schmidt orthogonalization procedure leads to a set
of polynomials p,(x) of degree n, orthonormal in the sense that

pn(X)pm(X)W(X) dx 6n,m.

We make p,(x) unique by requiring that the leading coefficient be positive. Letf be
any measurable function on (a, b) which is square integrable with respect to w(x)"

(2.1) ]f(x)12w(x) dx <

then we say f L2(w). For f L2(w), we define

(2.2) m(f f(x)p(x)p(x)w(x) dx.

Received by the editors August 13, 1970, and in revised form December 15, 1970.
? Wake Forest University, Winston Salem, North Carolina 27109. This work was supported in

part by NASA University Sustaining Research Grant NGR-34-001-005 and by the Oak Ridge National
Laboratory, Oak Ridge, Tennessee.
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Then the matrix T[f] (mjk(f)), j, k 0, 1, ..., is the semi-infinite (generalized)
Toeplitz matrix associated with f via the orthogonal polynomials p,(x). If f
is real, then the (n + 1) x (n + 1) finite section T,[f] (mjk(f)),j, k O, 1, n,
is real and symmetric, so the eigenvalues of T,[f] are real. Let

21,,[f] =< 22,,[-f] =<’" =< 2,+

be the eigenvalues of T,[f] arranged in nondecreasing order with repetitions for
multiple eigenvalues. We are interested in the behavior of 2,,[f] as n for
fixed v.

LEMMA 2.1. Put p,(x) a,x" + b,x"-1 + (lower order terms). Then the p,(x)
satisfy the three term recurrenceformula

p. +(x) + p.(x) + p._(x)xp.(x)
a. + a. +

for n 0, 1,... where we agree to put p_ l(x) 0, a_ 1, and bo 0.
Proof See [10, p. 157].
LEMMA 2.2. Let f(x) x. Then T[J’] (mj(f)), j, k O, 1,..., is given by

mj,(f) 0 if [l" kl 2,

m,,(f)
b, b, + a, a,_

m,k+l(f)=, m,_l(f)=
a a+ ak +1 a

Proof Use Lemma 2.1 (cf. [12, Lemma 3.8]).
Suppose henceforth that (a, b) has a finite endpoint call it Xo. Recalling that

all zeros of p,(x) are in (a, b) (see [10, pp. 159-160]), we define

(2.3a) q l(n) [p, (x0)]- 1,

(2.3b) qz(n) p,+ l(xo)p,(xo)aoa,a;+l,

(2.3c) q3(n) [aop,(xo)] -,
for n 0, 1,.... Let A + be the semi-infinite matrix (ai2), i,j 0, 1,... where
aii -1, ai,+l 1, i= 0, 1,..., and all other entries are 0. Let A- be the
negative transpose of A +. Let Qi, 1, 2, 3, be the semi-infinite diagonal matrix
whose diagonal consists of the numbers q(k), k O, 1, ....

The following factorization of T[x Xo] appeared in [9].
LEMMA 2.3. T[x- Xo] Q1A-QzA+Q3
Proof One must verify (for appropriate values of k) that

(i) ql(k)q2(k)q3(k + 1)= ak

ak+

(ii) ql(k)q2(k)q3(k + ql(k)q2(k 1)q3(k bk bk +-t- + xo
ak ak +

(iii) ql(k)q2(k- 1)q3(k- 1)= ak-1

ak

Equations (i) and (iii) are trivial and (ii) follows from Lemma 2.1 (cf. [3, Lemma
2.2]).
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LEMMA 2.4. Suppose f, g L2(w) and c is a complex scalar. Then
(a) T[cf] cT[f]

(b) T[f + g] T[f] + T[g];

(c) if F is the closed linear span in L2(w) 4’ the orthogonal polynomials p,(x),

T[fg] =T[f] T[g], all f, g e F.

Proof Parts (a) and (b) are trivial; (c) follows from the generalized Parseval
equation;see [6, p. 122].

We note that the conclusion of Lemma 2.4(c) holds iff and g are polynomials.
Of course, if the orthogonal polynomials p,(x) are complete in L2(w), then T[fg]

T[f]T[g] holds for all f, ge L2(w). In particular, this is true in the Jacobi,
Laguerre, and Hermite cases.

In addition, we shall use freely the results in 12], particularly 3 of that paper.

3. Friedrichs extensions of some differential operators. Our purpose in this
section is to describe some operators studied in [2] and state some results which
are fundamental for our work here. The reader is referred to [2] for the details. Let

(3.1) ru
m(x) [p(x)u’’, 0 < x < 1.

We assume that m(x) > O, p(x) > 0 and both m(x), p(x) are infinitely differentiable
on (0, 1]. We further assume that

(3.2) m(x) [p(t)-ldt dx =- K < oo.
0

Thus, z may be singular at x 0. We now define certain operators induced by z
in the Hilbert space L2(m) of all measurable functions on (0, 1) for which

llfl2m dx < . Let C(0, 1) denote the class of infinitely differentiable functionsIo
on (0, I). Put

(3.3) Tu ru, u D(T),

where D(T) consists of all u e Coo(0, 1) such that u 0 near x and u’ 0 near
x 0. Since T is symmetric and semibounded below, then T has a Friedrichs
extension G. Now define

(3.4a)

(3.4b)

and further

(3.5a)

(3.5b)

T,u Gu, u D(T,),

D(T,) {u D(G) f3 C(0, 1)"u 0 near x 1}

Tou TOdu, u D( To,

D(To) {u D(T)’ru 0 near x 0}.
Since T,o is symmetric and semibounded below, To has a Friedrichs extension,

which we call Go. It is proved in [2 that G exists as a compact self-adjoint
operator on L2(m) and that the spectrum of G, consists only of eigenvalues which
are strictly positive.
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4. The Jacobi case. Here w(x)=(1 -x)(1 +x)a (> -1, /3> -1) and
(a, b) (- 1, 1). The orthogonal polynomials p,,(x) are now the normalized Jacobi
polynomials. Indeed,

Pn(X) h-1/2P(n’fl)(x),
where

(2n + 0 + fl + 1)n!F(n + 0 +/3 + 1)h, 2++F(n + 0 + 1)F(n + fi + 1)

and P(,’a(x) is the usual Jacobi polynomial.
We restrict our attention to the endpoint xo 1. If U is any semi-infinite

matrix, let U, denote the (n + 1) x (n + 1) finite section of U. Let D, (Q3),
and let

(4.1) M,[(1- x)u] ([-Q3Q1A-QzA+]U),.
LFMMA 4.1.

T,[(1 x)] (TU[1 x]), D-1Mn[(1 x)N-]Dn

Proof Use Lemmas 2.3 and 2.4.
We shall investigate the eigenvalues of T,[f] first for the case that f is a poly-

nomial. Let h(x) be a real polynomial of the form
J

(4.2) h(x) (1 x) , ai(1 x)i, 6o a positive integer,
i=0

where
J

(4.3) ao >0, ai(1-x)i>O for-l__<x__< 1.
i=0

LFMMA 4.2.

T[h] D2 aiM,I(1 x)i+]) D..
i=0

Proof Use Lemmas 4.1 and 2.4.
Thus the eigenvalue problem for T,[h] is the same as that for =o aiM,

[(1 x)i+’]. Our next step is to interpret this new eigenvalue problem as an
eigenvalue problem for a finite difference operator.

For each positive integer n, let Ax (n + 26o + 2J + 3)-1 and let x.i jAx,
j 0, 1, ..., n + 26o + 2J + 3, be the lattice points on the unit interval [0, 1].
We define

(4.4) 0.(xj)=
0+/3+2j- 1 dO’) 2+x

2[0 +/3 +j] jz+xj j= 1,2,

2[0 + j] d(j) 2a+l(4.5) fl,(xj)
o + fl + 2] .i

2a+1Xj j 1,2,

where

(4.6) dO’)
F(0 + j)F(0 + fl + j + 1)

j 2
F(j)V(fl + j)
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Let X, be the space of piecewise linear functions u(")(x), 0 =< x =< 1, deter-
mined by their values at the points xj and for which u(")(0) u(")(l) 0. For u
e X,, define 6 + and 6_ by

(4.7)

(4.8)

1

(t+bl(n))(Xj) -x[u(n)(xj+ 1)- bl(n)(xj), 0 < Xj < 1,

0, xj=0, xj= 1;

(_u)(x) x [u(x u(x- ’ 0 < x <= 1,

O, x O.

For u(") e X,, we also define S, by

(4.9) (S"u")(xJ) t
0,

1
6_//.6+ U(n) (xj), 0<xj_<l,

Let ’, be the (n + 1)-dimensional subspace of X, consisting of all u") X,
such that u")(x) 0 for x __> x,+2. For k 1,2,..., 2o9 + 2J + 1, we define
O’(nk)" n n by

(4.10) (a(,k)U,))(Xj)={(k,U"))(Xj) forj 1,2,...,n + 1,

otherwise.

Thus, S, and a(,k) are precisely the operators that were defined in [2], where
5, and/, are given by (4.4) and (4.5). The obvious similarity between 6 + and A +,
6_ and A-, q2 and/,, q lq3 and 5, is of course not accidental but designed to give
the following lemma.

LEMMA 4.3. Let u") ,. Then

(k), ,(n)](O I(Xj)"- 2k(n + 2o9 + 2J + 3)2k(M,[(1 x)k]v)j

for j 1, 2,..., n + 1, where V is the (n + 1)-vector with components u(")(x.i),
j 1, 2, n + 1, and (.) denotes the j-th component of the vector.

Proof Specializing (2.3) to the Jacobi case (Xo 1)and using standard formulas
for the Jacobi polynomials (see I10, Chap. 8]), we have, by direct calculation,

ao 2(5+n+ 1)
d(n+ 1)qz(n)

IF(5 + 1)]2 2+a+l 5 +//+ 2n + 2

q(n)q3(n
IF(5 -t- 1)] 2 2+a+ 5 +/3 + n + 1 1

ao 5 + fl + 2n + 1 d(n + 1)’

where d is defined in (4.6). The result of the lemma readily follows.
One should observe that the above lemma would be false if we had not

required (6 +u("))(0) 0 in (4.7).
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Now define 1, "n n by
J

(4.11) 2-i(n + 209 + 2J + 3)-2iair( +)
i=0

where the ai’s are given in (4.2) and (4.3). An immediate calculation using Lemma
4.3 gives

(4.12) (lnu(n))(Xj) 20,(n + 209 + 2J + 3)2O,
i=0

forj 1,2,..., n + 1 and u
LEMMa 4.4. Let 2v,n[h be the eigenvalues of Tn[h], where h is defined in (4.2),

and let v,n be the eigenvalues of the finite difference operator ln. Then

/Z,n 20,(n + 2 + 2J + 3)2O, ,v,n[h], v 1, 2,..., n + 1.

Proof Use (4.12) and Lemma 4.2.
Now let m(x) =_ p(x) =- X2+1, 0 < X =< 1, and let z be the formal differential

operator
1

UtX!"cu= ---tP ), O<x<l
m

Let Go, be the strictly positive self-adjoint operator with compact inverse described
in 3 for this z. Let

0 < AI(GO, =< Az(GO, _<... _<_ A(GO,) ...
be the eigenvalues of Go, arranged in nondecreasing order with repetitions for
multiple eigenvalues.

We now state the main theorem of [2] in the present context. That theorem
has four hypotheses which we state now as assumptions A1 through A4.

A1. Let 6 6_6+. For each 0, 1,... and k 0, 1, assume that

lim F sup l(6k+Sifln)(xj)- (o2i+kp)(xj)[lno /e_<x_<

for each e such that 0 < e < 1. Similarly, assume that

=0

for each e such that 0 < e < 1. Here D denotes differentiation.
A2. Assume that there exist positive constants E1 and E2, independent of n,

such that

for0<xj=< 1.
A3. Let

p(x) <= On(xj) <-- E2m(xj)

Kn= m(xj)[ [p(xi)]-lAx]Ax.
0 <xj<= XjX <-

Assume that limn-.oo Kn K.
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that
A4. Assume that there exists a positive constant Co, independent of n, such

for all h(") ,, where

..(.,)t,(.) h(.)] < coil.h(.), n= 1,2,...,

n+l

[u(n), V(")] =_ y,
j=l

for all u(’), v(’) ,.
THEOREM (see [2, Theorem 4.3]). UMer assumptions A1 through A4, ’ g,, are

the eigenvalues of the finite dJorence operator 1,, arranged in nondecreasing order
and counting multiplicities, then

lim,, aoA(Go).

TuOM 4.5. For each fixed v,

lim 2n2,,[h] aoA(G).

Proof Using Lemma 4.4 and the above theorem, it suffices to verify assump-
tions A1 through A4 in the present context. We do this in the following sequence
of lemmas.

The first lemma is an extension of the well-known fact

F(x + a)
(4.13) lim 1.

x x"r(x)

LEMMA 4.6. k is a positive imeger, the

lim x .F(x 2 )-

Proof The result follows quickly from [5, (4), p. 47].
LEMMA 4.7. Assumption A1 holds.
.Pro@ We extend fl, to all of [e, 1 by the equation

fin(X) Bn(x)x2+ 1, g<_x<_l,

where

B.(x)
2[0+Nx] /F(z+Nx)I-’(0+fl+Nx+ 1)

o 7 ) -+- -x F(Nx)F(fl + Nx)(Nx)2+1

and N n + 200 + 2J + 3. The extended ft, obviously agrees with the old ft,
at the lattice points. By (4.13), we see that ft,(x) converges uniformly on [e, 1] to
p(x) x2+ 1. One easily verifies, using Lemma 4.6, that all derivatives of B,(x) of
order one or greater converge uniformly on [e, 1] to 0. Thus, all derivatives of
ft,(x) converge uniformly on [e, 1] to the corresponding derivative of p(x) x2 + 1.
Approximating (D2i+kp)(xj) by (Dii+kfl,)(xj) and then using Taylor’s theorem,
we arrive at the desired result for ft,. The case of 1/0, is treated similarly.
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LEMMA 4.8. Assumption A2 holds.
Proof The coefficients of e,(xj) and fl,(xj) in (4.4) and (4.5) both tend to 1 as

j oe and are independent of n. The lemma thus follows immediately.
LFMMA 4.9. Assumption A3 holds.
Proof A simple argument using advanced calculus techniques and focusing

attention on the singular behavior near x 0 yields this lemma.
LEMMA 4.10. Suppose u") 6 ,. Let

mo min
-l<_x_<

ai(1- x)i) > O.
i=0

Then

[r(,O)u(,) u(,) <_ 1 [l,u(,),
mo

and hence assumption A4 holds.
Proof. Let V be the (n + 1)-vector corresponding to u(")e,, i.e., (V)j u")(xj),

j 1, 2, ..., n + 1. Let V’ D]IV Since h(x) >= mo(1 x)’, it follows that (see
12, Lemma 3.1])

mo(T,[(1 x)] V’, V’) <_ (T.[h] V’, V’),

where (., .) denotes the ordinary (unweighted) inner product in (n + 1)-space. Thus

The diagonal elements of (D- 1)2 are the numbers

=01(k-1)Iq 1
q(k- 1) q3(k- 1) 3(k- 1)q(k- 1)

2a(n + 209 + 2J + 3)2+

[F(a + 1)] 2 2 + a+l

for k 1, 2, ..., n + 1. The desired result now follows from Lemma 4.3 and (4.12).
Having completed the proof of Theorem 4.5, we can now prove a form of

Hirschman’s theorem [8, Theorem 14b].
THEOREM 4.11. Let f be a real continuous function on [-1, 1]. Assume that
(i) f(x)>f(1)=-mfor-1 __<x < 1;
(ii) f(x) m + a(1- x) as x 1-, where co is a positive integer.

Then forfixed v,

lim 20)2 n (2v,,[f] m)= aAv(Go,).

Proof. We may assume that f(1) m 0. Define

If(1 y)

=/--)co
(0",

0<y<2
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Then g is continuous and positive for 0 __< y =< 2. Let /z mino=<r=<2 g(y) > O.
Let 0 < e </z. Define

gl(Y) g(Y)- e/2 gz(Y) g(Y) + e/Z, 0 _< y =< 2.

By the Weierstrass approximation theorem, there exist polynomials hi(y)
(i 1, 2), so that

Ih(y)- gg(y)l < #2,

Then

0 < g(y)- e < hi(y) < g(y) < h2(y) < g(y) + e,

Applying Theorem 4.5 to (1 x) hi(1 x), 1, 2, and noting that

(1 x) hi(1 x) <= f(x) <= (1- x) h2(1 x),

and that e > 0 can be taken arbitrarily small, we obtain the theorem.

0_<y<2.

0=<y<2.

l<x=<l,

n!h,= F(n++ 1)

and L(,) is the usual Laguerre polynomial. The endpoint is now Xo 0. Again,
let O, (Q3), and let

(5.1) M,[xN] ([Q3Q1A-QzA+]N),.
As before, we have the following lemma.

LEMMA 5.1.

T,[xu] (TU[x])n O 1Mn[XN-]o
Let h(x) be a polynomial of the form

J

(5.2) h(x) x , aixi, co a positive integer,
i=0

where
J

(5.3) ao>0, aixi>O for0=<x< oe.
i=0

LEMMA 5.2.

T,[h] D-1
J

aiM.[xi+’]
i=0

Proof Use Lemma 5.1.
Thus the eigenvalue problem for T,[h] is the same as that for

__
o aiM,[

where now

p,(x) (- 1)" h-1/2 L)(x),

5. The Laguerrecase. Here w(x)= xe-’, , >-1, and (a,b)= (0, ).
The resulting orthogonal polynomials p,,(x) are essentially the normalized Laguerre
polynomials. In fact,
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We now define the relevant finite difference operators. Letting Ax (n + 209
+ 2J + 3)- as before, define (as in [3])

(5.4)
jF(j)

xj, j= 1,2,...,

(5.5) /.(x) r(.++F(j) xj j 1,2,

Let S, and a,k) be the finite difference operators of [2] for the , and ft, of (5.4)
and (5.5). That is, S, and a(,k) are defined as in (4.9) and (4.10) except that , and
/3, of (5.4) and (5.5) are used.

LEMMA 5.3. Let u") 6 , and let V be the corresponding (n + 1)-vector. Then

(rk)u"))(x) (n + 209 + 2J + 3)k(m,[xk]V)j

forj 1,2,...,n / 1.
Proof See [3, Lemma 3.1], where essentially the same result is proved.
Now define l, ’, , by

J

(5.6) I,
i=0

where the ai’s are given in (5.2) and (5.3). An immediate calculation using Lemma
5.3 and (5.6) gives

(5.7) (lu()(x) (n + 209 + 2J + 3) aiM,,[xi+]V
i=0

forj 1,2,...,n + 1 and
LEMA 5.4. Let 2v,,[h] be the eigenvalues of Th] and let I, be the eigenvalues

of the finite difference operator l,. Then

/v,, (n + 209 + 2J + 3)’2v,.[h], v 1,2,..., n + 1.

Proof. Use (5.7) and Lemma 5.2.
Now let m(x) x, p(x) x+ 1, 0 < x __< 1, and let Go be the strictly positive

self-adjoint operator with compact inverse described in 3 for the formal differen-
tial operator

1
u (pu’)’, 0 < x < 1.

m

Let

0 < AI(Go =< A2(Go, =<... =< Av(Go =<-..
be the eigenvalues of G,o arranged in nondecreasing order with repetitions for
multiple eigenvalues.

TI-IEOREVl 5.5. For each fixed v,

limn’2,,[h] aoA(Go,).
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Proof Once again, we only need to verify the assumptions A1 through A4 of
[2, Theorem 4.3]. Since these verifications are analogous to the Jacobi case and
since the work was essentially done in [3, Lemmas 3.3 and 3.5], we omit the verifica-
tions.

We shall be interested in functions which satisfy the following condition.
CONDITION A(CO). Let f(x) be a real continuous function on [0, o), for which

f(x) > f(O) m for x > 0. Let co be a positive integer. Let f(x) m + ax as
x --, 0 + and let f(x) o(xN) as x --. oo for some positive integer N. Finally, let
lim inf,_oof(x) > m.

THEOREM 5.6. Suppose f satisfies condition A(co). Then

lim sup n’[2v,,[f] m] =< aAv(Go).

Proof We may assume m 0. Let ao > a. Let/3 be the larger of N and co + 1.
There exists K > 0 such that

h(x)= aoxo + Kxa > f(x) for0=<x<
Thus [12, p. 458]

and by Theorem 5.5,

n’2,,[f] =< n2,,[h],

lim sup n2,,[f] __< aoA(Go).

Since ao can be taken arbitrarily close to , the theorem follows.
We would like to be able to get a polynomial lower bound for f also, as we did

in the Jacobi case. Here the added difficulty of an infinite interval of orthogonality
is felt, and in general a polynomial lower bound for arbitrary f satisfying Condi-
tion A(co) is impossible. In the case co 1, Hirschman [7] has proved the result for
bounded functions in A(co), and in [3], we used his result in place of a polynomial
lower bound.

We conjecture that for arbitrary./satisfying Condition A(co),

(5.8) lim nE2,,[f] m] Av(Go),

but have been unable to prove (5.8) in this generality. However, we easily prove the
following theorem.

TI-IEOREM 5.7. Suppose f satisfies Condition A(co) and, in addition,

f(x) >_ m + ax for 0<_ x < .
Then (5.8) is valid.

Proof Since f(x) >= m + ax, we have

n[2,,[fl m] _> n[2,,[m + rx] m],

and hence using Theorem 5.5, we have

lim infn[2,,[f] m] >__ A(Go),

which combined with Theorem 5.6 yields the desired result.
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What more can we say about functions satisfying Condition A(o9) which are,
say, bounded? Although we are not able .to prove (5.8), we now get a positive
lower bound for lim inf,_,oo n’[2v.,[f] m].

THEOREM 5.8. Suppose f satisfies Condition A(o9). Then

lim infnO’[2v,,[f] m] >_ a[A,(G1)]" > 0.

Proof As before, we may assume m 0. Then f(x)> 0 for 0 < x <
Define g(x) > 0 for 0 < x < oo by g" f. Then g satisfies Condition A(1). It
follows from [3, Theorem 2, Lemma 4.3] that

(5.9) lim al/’A(Gn[L,.[g]] .
Using [12, Lemma 3.1], we have

(5.10) (V, T,[g]V) g(t)] 9"(t)12w(t) dr,
0

where V= {vk}, k 0, 1,...,n, is an (n + 1)-vector, ’(t)= ,=o vkp(t), p(t)
is the kth normalized Laguerre polynomial, and (., .) is the ordinary inner product
in (n + 1)-space.

Using H61der’s inequality on (5.10), we get

fOX )l/f; )1 1/CO

(V, T.[g] V) =< f(t)l (t)12w(t) dt ffl2w(t) dt

and hence

(5 II) [(V, r.[g]V)] < (V, T,[f]V)
{,,

_
(V, V)

for V 4= 0.

Thus, by the Courant-Fischer minimax theorem [12, Lemma 3.4], we have

2,,[g] __< 2,,[f],

and hence using (5.9), we have

lim inf n’2v,,[f] > lim (n2,,[g]) a[A(G,)]’.

COROLLARY 5.9 Supposef satisfies Condition A(co). Then

2,,[f] rn + -and 0 cannot be replaced by o.
Note that Theorems 5.6 and 5.8 together imply [A(G 1)] __< Av(G,o). This fact

seems plausible if one notes that [A(G1)] A(G’i) and that Go is the Friedrichs
extension of a restriction of G]’ (see [2]).

Acknowledgment. The author would like to express his appreciation to the
referee for his helpful comments and criticism.



482 JOHN V. BAXLEY

REFERENCES

1] J. V. BAxIE, The Friedrichs extension ofcertain singular differential operators, Duke Math. J., 35
(1968), pp. 455-462.

[2] ----, Eigenvalues of singular differential operators by finite difference methods. II, J. Math.
Anal. Appl., to appear.

[3] --, Extreme eigenvalues of Toeplitz matrices associated with Laguerre polynomials, Arch.
Rational Mech. Anal., 30 (1968), pp. 308-320.

[4] -, Asymptotic behavior of the eigenvalues of generalized Toeplitz matrices associated with
Jacobi polynomials, Doctoral thesis, Univ. of Wisconsin, Madison, 1966.

[5] A. ERDILYI, W. MAGNUS, F. OBERHETTINGER AND F. TRICOMI, Higher Transcendental Functions,
vol. I, McGraw-Hill, New York, 1953.

[6] U. GRENANIR rqO G. SZGiS, Toeplitz Forms and Their Applications, Univ. of California Press,
Berkeley, 1958.

[7] I.I. HmSCHMnN, JR., Extreme eigenvalues ofToeplitzforms associated with orthogonalpolynomials,
J. Analyse Math., 12 (1964), pp. 187-242.

[8] --, Extreme eigenvalues of Toeplitzforms associated with Jacobi polynomials, Pacific J. Math.,
14 (1964), pp. 107-162.

[9] ----, Variation diminishing transforms and orthogonalpolynomials, J. Analyse Math., 9 (1961),
pp. 177-193.

[10] D. JncISOy, Fourier Series and Orthogonal Polynomials, Mathematical Association of America,
Menasha, Wis., 1941.

11] M. Kc, W. L. MURDOCH AND G. SZEGii, On the eigenvalues ofcertain Hermitianforms, J. Rational
Mech. Anal., 2 (1953), pp. 767-800.

[12] S. V. PArTR, Remarks on the extreme eigenvalues of Toeplitz forms associated with orthogonal
polynomials, J. Math. Anal. Appl., 12 (1965), pp. 456-470.

[13] --, On the extreme eigenvalues of truncated Toeplitz matrices, Bull. Amer. Math. Soc., 67
(1961), pp. 191-196.

I14] ---, On the extreme eigenvalues of Toeplitz matrices, Trans. Amer. Math. Soc., 100 (1961),
pp. 263-276.

[15] H. WIOOM, Extreme eigenvalues ofN-dimensional convolution operators, Ibid., 106 (1963), pp. 391-
414.



SIAM J. MATH. ANAL.
Vol. 2, No. 4, November 1971

ON WEAK SOLUTIONS OF A MILDLY NONLINEAR
DIRICHLET PROBLEM*

M. B. ROSENZWEIG
Abstract. This paper investigates minimal conditions on functions of the type F(x, v(x)) and on

the boundary of a domain R to insure the existence and uniqueness of a weak solution to the mildly
nonlinear Dirichlet problem

Au(x) F(x, u(x)), x e R,

u(x) O, x e c3R.

The principal technique is the construction of an operator by means of a linearization of the
nonlinear equation. The operator is shown to satisfy the Schauder-Tikhonov theorem and the resulting
fixed point is shown to be a solution of the mildly nonlinear problem.

1. Introduction and summary. In this paper we are concerned with obtaining
the existence and uniqueness of a weak solution for a certain nonlinear Dirichlet
problem; namely, for F(x, v) a given function, we seek a unique solution of

(Vu. VqS)(x) dx qS(x)F(x, u(x)) dx
R

for all 4) in an appropriate space of test functions.
Specifically, in 2, we introduce notation and state two estimates on deriva-

tives of a Green’s function.
In 3, we present a characterization of the dual of the Sobolev space ffp.

This characterization has been proved for smooth domains by Lions and Magenes
[14]. Our method differs in the proof of the so-called "shift theorem" and in the
restrictions on the smoothness of the boundary.

The next section is devoted to the existence and uniqueness of a weak solution
of a linear problem associated with solving the mildly nonlinear equation. Bramble
[3] has considered these questions for Laplace’s equation.

In the last section, we present our main result. The basic technique is a linear-
ization process suggested by Lees [12] in one dimension.

2. Notation and preliminary results. Let R be a bounded domain in Euclidean
N-space, EN, with its boundary t?R of class C 1.

We shall denote by C(R) the class of infinitely differentiable, real-valued
functions with support compactly contained in R. As usual, Lp(R) is the space of
real-valued functions defined on R such that

yl f(x)l p dx
lip

f Lp(R)
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is finite. Also, for any function f, we shall use the norm

[fIR sup [f(x)l.

Let Vp(R) be the space of (N + 1)-dimensional vectors, whose components
are all elements of Lp(R). If

N

U (Uo, Ul,"’, u,) V(R), then U Vp(R)=
i=0

We shall consider also the Sobolev spaces p(R), which we define as the
closure of C(R) under the norm

u w() u[() +
Lp(R)

where u/x represents the distributional (or weak) derivative.
To indicate the duality between the spaces Lp(R) and Lq(R), lip + 1/q 1,

we define for f L.(R), g Lq(R),

f/(x)g(x)dx.(Lg)Lp(R),Lq(R)

Similarly, for U (Uo, u, u) Vv(R),

(g, ).(,.( = u(x)m(x) dx

and for u W(R), v W(R),

(u, VFw,w u(x)v(x) +
= x

dx,

where the derivatives are in the distributional sense. Finally, we shall use C to
denote a generic constant which is not necessarily the same in any two places.

In the following sections, we shall need certain Lp estimates on derivatives of a
Green’s function. Since the proofs are essentially computational, we shall state
these results and refer the reader to the author’s paper [18, III] for the details.
Let B be the unit ball in Ex and let L be the differential operator defined by

Lu Au + u.

Let GL(x, y) denote the Green’s function for the operator L and G(x, y) denote the
Green’s function associated with the Laplace operator.

THOnM 2.1. Suppose A is an operator mapping Lv into Lp,
defined (in the principal value sense) by

( G(x, y)

Then
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For first order derivatives we may obtain the bound on a more general
domain.

THEOREM 2.2. If Z Lp(R) --* Lp(R), where R is a bounded domain with boundary
of class C 1, is given by

(f)(x) ,=12 c3xi
dy,

then

3. The dual of ff’p(R). The spa,ce of continuous linear functionals defined on
the Sobolev space (R), (p(R)), is usually identified with the negative norm
space W- 1, where lip + 1/q 1. We shall now show that under certain conditions
on cR and for a particular equivalent norm, there is an isomorphism between

I(R) 1/p + 1/q 1. This duality is contained in a(ff’(R))’ and the space ff’q
result obtained previously for domains with smooth boundaries by Lions and
Magenes [14].

Our approach differs in the techniques used in proving Lemma 3.1 and in the
preciseness of the boundary conditions. We shall prove the duality for C bound-
aries. It can be shown that, in general, the duality does not hold for arbitrary do-
mains. For example, one can show that for a sector of a circle the values of p and q
for which the duality is valid depend upon the sector angle.

We shall have need of the duality in the next section when solving a linear
problem.

We begin with a version of the so-called "shift theorem" over the unit ball of
RN, which we denote by B.

LEMMA 3.1. Suppose Uo, Ul,’’’, UN are in C(B). If u is a solution of the
problem

u(x)
Lu(x) Au(x) + u(x)=

c3xi
+ Uo(X), x B,

(3.1) i--

u(x) O, x B,

then u lq(B), < q < , and satisfies
N

i=0

Proof Denote by G1(x, y) the Green’s function for the operator L. If u is a
solution of (3.1), then we may express u as

+ uo(y)] dy.
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Integration by parts yields that

N fnaGL(x,y(3.2) u(x) i= cyi
ui(y) dy + fB G(x’ y)uo(y)dy

and from the estimates of the Green’s function stated previously, we obtain the
inequality

N

u gC uillg.
i=0

It also follows from (3.2) and the Calderon-Zygmund theorem, that in the principal
value sense,

63U fB2GL(x,y) fnc3GL(x,Y) uo(y)dy, a.e"(3.3) (X)
i= xjYi

ui(y) dy + c3x
Again using our knowledge of the Green’s function (i.e., the second mixed partial
is a singular integral kernel satisfying the Calderon-Zygmund theorem) we have
that

Lq

N

c Iluillo.
i=0

We now see that since

u WB) < + U Lo
i=1 Lq

it follows from (3.2) and (3.3) that
N

u ws(--< c 2 u (,.
i=0

Using a reflection argument, we may deduce from Lemma 3.1 that the follow-
ing lemma holds.

LEMMA 3.2. Lemma 3.1 is valid on the unit hemisphere.
With these lemmas we are now ready for the representation theorem.
THEOREM 3.1. Let R be a bounded domain in EN with boundary of class C 1.

Then, (II(R)) is isomorphic to I(R), lip + 1/q 1.

Proof Denote by Vp(R), the space of (N + 1)-dimensional vector-valued
Lp(R) functions; that is, if

U (uo,ul, u) 6 Vp(R), thenuie Lp(R), O, 1, N.

We may consider l/J/p(R) as the subspace of Vp(R) whose elements have the form
(u, cu/cx, cu/cx).

I(R) we may extend f to all ofIf.[is a continuous linear functional on I,,
Vp(R). Call f the extended functional, and then it is clear that the class of all such
extended functionals is contained in Vq(R), 1/p + 1/q 1. Moreover, for v I(R),
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we obtain the following representation from the Riesz-Fr6chet theorem"

f(v) f(v) v, cx, .
(3.a)

---i=lR ’1)(x)ui(x)dX -- R

for some U (Uo,Ul,’", uN) e V(R).
For each ui, 0, ..-, N, there exists a sequence of C(R) functions U},

which converges to ui in Lq(R). Now consider the following problem"

u"(x) O, x e cR.

For each n, a solution of (3.5) exists in I(R).
Moreover, the set of solutions is uniformly bounded in I(R). To show this

boundedness, we cover R with a family of open spheres {0i}, 1, ..., v, and
we let {r/i } be a partition of unity subordinate to this open covering. Define u’j(x)

u"(x)rs(x); then

(3.6)

[Lu] (x) r/;(x)
i=1

(x) --t- gnO(X

+ 2 i=1 cxi]
(x) u"(x)ArIj(x),

u(x) o,

x6Oj f-I R,

x e (0. R).

Note that from the representation of u" in terms of the Green’s function and from
Theorem 2.1, we obtain that u" is bounded in Lq independent of n. Also note that
since cR is of class C 1, 0i f’l R, 1, ..., v, can be considered the image of either
the unit sphere or the unit hemisphere. Therefore we are able to apply Lemmas 3.1
and 3.2 to the problem (3.6) and conclude that for eachj 1, ..., n, lu w =< K,
independent of n. Thus ]lu"llw, =< K, independent of n. By reflexivity there is a
subsequence of the u" which converges weakly in lq(R) (let us call the weak
limit u). We claim that u is the 1$’ function corresponding to the functionalf.

For any v e p(R), we see from (3.5) that

vLu" dx
i=1 8X j

v dx + U"ov dx.

If we integrate by parts on both sides and then take the limit as n tends to infinity,
we obtain
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By (3.4), we may write

(3.7) f(v) 1i- -xixi dx+ uvdx

which defines a homomorphism between (pl(R))’ and I?v’(R).
In fact, (3.7) defines a one-to-one correspondence, for if co e ql(R) is such that

dx + dx O, C(R),

then integration by parts and Weyl’s lemma yield that 0.
We end this section by observing that the same arguments will prove the

following theorem.
THEOREM 3.2. Theorem 3.1 is valid with the duality given by theform

<u, c)w ,w fR (Vu Vv) dx + f auv dx,

where a C(R) and a >__ O.

4. An associated linear problem. Our analysis of the mildly nonlinear
problem will entail a linearization process, and consequently, we must first investi-
gate a particular class of linear problems.

To be precise, we consider the following problem.
PROBLEM (D). Let R be a bounded domain with c3R of class C 1. Given a

function F(x) ZI(R), find u ffpl(R), =< p < N/(N 1), such that

(4.1) fR(Vu" V)dx + fR audpdx fR Fdx
for all q5 q, q > N, where a L(R), > N/2, and a => 0.

Remark 1. Our use of the duality results of the previous section necessitates
the restriction on the boundary of R.

Remark 2. The choice of a Lo(R), > N/2, assures us that the second term
on the left side of (4.1) is defined.

We shall obtain the solution of (D) in two steps; first we consider the special
case a C(R), which we denote as Problem D*).

THEOREM 4.1. Suppose F(x) is a given LI(R) function. Then there exists one
and only one solution of Problem (D*), that is, (D) under the additional hypothesis
that a(x) C(R).

Proof Let Tbe a linear functional defined on I?(R) by T(d?) fR F(X)C(X) dx.
As a consequence of Sobolev’s inequality, T is bounded since

IT(q)l _-< IIFII,," IldPlIL <= clldpllw,.

From Theorem 3.2 we conclude that there exists a u ff’pl(R), such that

T(qS) (u, dp)wb,w f, (Vu. Vdp)dx + fR audx
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for all q5 (R). Thus u is a solution of (4.1). If ul and U2 are both solutions of
(4.1), then o3 U u2 satisfies

f (Vow. V4)dx + f aock dx =0 for all 4 WI(R).

Employing once again the duality obtained in Theorem 3.2, we see that
o30.

The extension of this theorem to the case a Lo(R) will require the following
preliminary results. The existence of a solution to Problem (D) will follow from
an a priori inequality which we prove now.

LEMMA 4.1. Ifu is the solution of Problem (D*), then u satisfies
(4.2) U[[WR =< C( a][Lm)[[F Lm-

Proof First, we may write

u(x) f GL(x, y)F(y) dy.

Then

]u(x)lP <= JR G(x, y)]F(y)] ]U(X)IP- dy

since G, the Green’s function for A, dominates GL, by the maximum principle [1. 7].
It follows immediately that

u Lp(m =< C F LI(R)

Now we may estimate

I.[R (Vu. Vb)
Ilu wbcR)= sup

By H61der’s inequality and (4.1) we obtain

u]] wb(R) ----< sup ].fR Fc/) dx] ][.R auc/) dx]
+ sup

and by Sobolev’s inequality,

][U Wb(R C F L1 + C a L(R)[[F][L,(R)
C(][ a [L(R)) F L,(R).

The uniqueness of solutions of Problem (D) will be more difficult to obtain.
In fact, we must consider the existence of a solution to a problem which is "dual"
to (D*). Theorem 3.2 will tie together existence in the "dual" problem and unique-
ness in (O). Moreover, Theorem 3.2 will be of central importance in obtaiMng the
proof of existence.

irst we shall consider a problem which is "dual" to (D*) Dd then extend
that result to the case a L(R).
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LEMMA 4.2. For every v e Lq(R), q > N, there exists a unique
(= ((R))’)such that

(4.3) fR (V" V0)dX + f. aO dx f vO dx

for all e (R), lip + 1/q and a e C(R), a >= 0.
Proof For e I(R), T(O)= v(x)O(x)dx defines a bounded linear func-

tional on (R) because

With the argument of Theorem 4.1, the lemma follows from Theorem 3.2.
The next result is necessary to extend the previous lemma to the case of

a e L(R).
LEMMA 4.3. If d? is a solution of(4.3), then

IIllw.,) _-< C(llall,))llvll),
Proof As above we may obtain the estimate

C sup [IfR(VO’VO)dx + faOOdxl
0 (R) W(R)

But is a solution of (4.3), so

However,

q>N.

sup [I vOdxl +

<= C( a LR>)(IIvlIL + I1 ).

and the lemma is proved.
LEMMA 4.4. Lemma 4.2 is validfor a Lo(R).
Proof Let {a,} be a sequence of nonnegative, C(R) functions which converge

in Lo(R) to a. For each n there exists, by Lemma 4.2, a solution in (R) of

(4.4) fR (Vdp" VO) dx + fR andpn dx f vO dx

for all q e I(R) and any v e Lq(R); and by the preceding lemma,

4) WR) <---- C( a. LeI(R) V Lq(R)"

However, a,- a in L(R) and therefore a, L(R), and hence C(llanll(R)), are
bounded independently of n. Thus, there exists a subsequence, that we again write
as {b"}, which converges weakly to a function q e ffl(R). In addition,

(a,dp"O adpO) dx fn (a, a)dp"0 dx
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tends to zero as n o. Consequently, allowing n to tend to infinity in (4.4), we
obtain

fR (Vb. VO)dx + fR ac/)O dx fR VO dx
for all O V(R) and any v Lq(R).

Uniqueness follows from the duality.
We are now prepared to consider Problem (D).
THEOREM 4.2. There is one and only one solution of Problem (D).
Proof. Choose {a,} as in the previous lemma; i.e., a, C(R), a, >= O, for

every n and a --, a Lo(R). For each n, Theorem 4.1 guarantees the existence of a
function u e /,(R) such that

(4.5) f (Vuo V4)) ax + f,, a.uO4) ax f,, F4) ax

for all b e W(R). By Lemma 4.1,

u" wb() < C F El

where (since a,-. a in L(R)) C is independent of n. By reflexivity, there exists a
subsequence of {u"}, we write {u’}, which converges weakly to some u p(R).
We claim that this u is a solution of (D). For, clearly,

f, (Vu" Vd) dx + fR a,u’dp dx fR (Vu Vdp) dx fR auc dx

_-< CKIlu" ullw(R) + Ila.- a I(R)),
C independent of n. Then, since (4.5) holds for each n, we conclude that by taking
the limit above as n o, we obtain

fR(Vu Vdp) dx + ;RaUdp dx f,, I 4, dx

for all b e q(R).
We now shall use our preliminary lemmas to show that the solution just

obtained is the only solution of (D). Suppose, to the contrary, that U and u2 are
both solutions of (D) in p(R), =< p < N/(N- 1). Then co Ul- u2 is a
solution of

fR (VCo Vc) dX + fR acod dx O

for all b (R), q > N. It is sufficient to show that for any v Lq, there is a

b (R), so that

(4.6) f1 (VqS. V0)dx + fR acOdx= fR vg/dx

I(R) and we would have for everyfor all e (R). For, in particular, co e lp
v Lq(R) that fR coY dx 0, i.e., co 0. Therefore, by Lemma 4.4, we conclude that
the solution of (D) is unique.
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Remark 3. It follows from Lemma 4.1, and we shall use in the next section, that

(4.7)

where C is independent of u and a.

5. A mildly nonlinear problem. We are now prepared to investigate the
questions of existence and uniqueness of solutions of the following Dirichlet
problem.

PROBLEM (M). Suppose F(x, v) is a given function of N + variables, such
that F(x, v(x)) is in LI(R whenever x R and v(x) L,(R), 1 =< p < N/(N 1).
Find a function u lp(R) that satisfies

fR (Vu Vcfl)(x) dx fR cfl(x)F(x, u(x)) dx

for all 4)e -(R), q > N.
We noted earlier that we shall linearize (5.1) to fit the results of the previous

section. Consequently, we must restrict R to be bounded with 8R of class C 1.
To accomplish the desired linearization, we introduce (see Lees [12) the

function p(x;v) defined on R x E by

(5.2) p(x v) F,(x, tv) dt,
o

where F denotes the derivative of F with respect to its last variable.
With the function p, we may define for every v Lp(R), a linearized equation

associated with (5.1); namely,

f (Vu Vcfl)(x)dx + f p(x; v(x))u(x)c/)(x)dx f F(x, O)4)(x)dx,

which holds for all b e ql(R), q > N. Note that we obtain (5.1) from (5.3) by
setting v u. In addition, if (5.3) defines an operator, Tv u, from Lp(R) into
(R), existence of a solution of (M) will follow if we are able to show that T has
a fixed point. Our plan is to restrict p(x;v) (i.e., F(x, v)), so that T will satisfy the
Schauder-Tikhonov theorem.

First, Theorem 4.2 applied to (5.3) yields that Tis well-defined if p(x;v) 0
and p(x; v(x)) e L(R) for v(x) e Lp(R) and 0 > N/2. If we assume that (a) F(x, v) is
increasing in the last variable, then p _>_ 0. It may be seen that (b) Fu(x,. continuous,
(C) IR Fu(x, v(x))l a dx < oe for each v e Lp(R), and the intermediate value theorem
imply p(x v) Lo(R).

From Theorem 4.2, we have the following lemma.
LEMMA 5.1. For each v L,(R), __< p < N/(N 1), there exists a u l?p(R)

such that Tv u ifF satisfies conditions (a), (b) and (c).
Next if (d) F,(x, v) is continuous when considered as an operator from Lp(R)

to Lc(R), T is continuous.
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LEMMA 5.2. Suppose F(x, v) satisfies conditions (a)-(d). Then T is continuous
on any compact subset ofLp(R).

Proof Assume K is a compact subset of Lp(R) and Vo e K. Let u0 Tvo.
Since F is continuous from Lp to L,, then Fu is uniformly continuous on K. Thus
for a given e > 0, there is a 6 > 0 so that for any v l, 122 Lp(R) with 11/)1 U2 Lp(R)

< 6, we have F,(x, vl)- F,(x, U2) L < e. Given e > 0 and 0 =< =< 1, we may
choose v so that for 6 > v-Vo Lp(l)=> CV- CVo Lp(R), we have F,(x,v)

F,(x, VO)IILotR) < e, and consequently IIp(x;v)- p(x;vo) LotR) < . From this
last estimate, we shall show that [[u- Uo[ WtR) < e also holds. If co u- Uo,
then from (5.3),

where f(x) (p(x;v) p(X;Vo))U(X). Then from Theorem 4.2 we may obtain the
estimate

[[co WtR) <= C f L1I) <= Clip(’, v)- p(., Vo) L(R),

> N/2. Therefore, for v Lp(R) such that v Vo

Tvo- Tv W(R)= UO-- U W(R) <

i.e., T is continuous.
We have now assembled the necessary tools to prove the following theorem.
THEOREM 5.1. Assume that R is a bounded domain in Eu with 8R of class C 1.

Suppose that for some p, 1 <_ p < N/(N 1), the function F(x, v) satisfies the
following conditions"

(i) for v(x) L,(R), F(x, v(x)) LI(R);
(ii) F(x, v) is increasing in the last variable;

(iii) F.(x, v) is continuous with respect to the last variable;
(iv) for v(x) Lp(R), F,(x, v(x)) is a continuous operator from L(R) to L(R),

77 > N/2.
Then there is one and only one solutionfor Problem (M).

Proof Let T be the operator defined by (5.3), Lemmas 5.1 and 5.2 show that
T is continuous from a compact set in Lp(R) to W(R), __< p < N/(N 1).

To use the fixed-point theorem, we shall need to show that T is a compact
mapping. Consider the injection mapping of I(R)into Lp(R) denoted by J.
Then by Rellich’s theorem, J is compact. If we consider the composition of T
followed by J, the resulting mapping J T is a continuous compact operator
from a compact set in Lp(R) to Lp(R). We shall again call the composite map T
since (J T)v u Tv.

Finally, we claim that T, in fact, maps a bounded subset of Lp(R) into itself.
For if Tv u, then u is a solution of (5.3), and hence, by Theorem 4.2 (equation
(4.7)), u satisfies the a priori estimate

u L(m <= C IF(x,

where C is independent of u and p(x’v). In other words, if

Z {v e Lp(R)] Iv Lp() < k, where k <= C F(x, O)
then T(Z) = Z.
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As a consequence of the Schauder-Tikhonov theorem, we obtain the exist-
ence of a fixed point of T. Evaluating Tu u by (5.3), we see that the fixed point is a
solution of (M).

If the solution is not unique, say U and u2 are both solutions of (M), then by
(5.3), for all b q(R),

5 EV(ua-u.).Vd](x)dx= f EF(x, Ul(X))-F(x, u2(x))]dp(x)dx.

We may rewrite this equation to obtain

(5.4) fR [V(ul u2). Vdp](x)dX + fR Fu(x, co(x))(Ul(X) U2(X))(x)dx O

for all q5 e l,q(R)and where co(x) Oul(x) + (1 O)uz(x), 0 < 0 < 1. By hypoth-
eses (ii) and (iv), it may be seen that Fu(x, co) >= 0 and F,(x, co) Lo(R), and so we
may apply Theorem 4.2 to (5.4) to conclude that the only possible solution of
(5.4) is

To illustrate the last theorem, we present the following example: Define
the function F by

F(x, t) c(x)lt] p sgn (t) + d(x)t + e(x),

where __< p < N/(N 1), c(x) Lo(R), d(x) Lo(R), e(x) LI(R and e(x),
d(x) are nonnegative. We have constructed F so that conditions (i) and (ii) are
satisfied, and since

F,(x, t) pc(x)ltl p-1 + d(x),

(iii) and (iv) are also satisfied. We may conclude, therefore, that there exists one
and only one solution u e pl(R) of

((Vu" Vc/))(x)dx f [c(x)lu(x)lPsgn (u(x)).+ d(x)u(x)+ e(x)l(x)dx

l(R).for all b q
We see by this example, that the function F on the right side of (5.1) may have

a polynomial growth of order p. We may compare the above example with a more
general result of Ladyzhenskaya and Ural’tseva [111. If we consider their result
applied to Problem (M), we see that Ladyzhenskaya and Ural’tseva impose on
F the condition

[F(x, u)[ =< (1 + [u[)qS(x),

where 05 e Ls, s > N/p and 0 __< < (Np/(N p))(1 l/s) 1. Thus to obtain b
in the least restrictive space, we must have 0 =< 0 < p- 1; that is, F satisfies a
polynomial growth condition of order p 1.
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A RECURRENCE CONCERNING RAYLEIGH FUNCTIONS*

N. LIRON-

Abstract. L. Carlitz has suggested the problem of evaluating a(n, k) "2_ r’ar(v)a,_r(v), where
at(v) are the Rayleigh functions. The special cases k 0, 1, 2, 3 were given by N. Kishore.

Both N. Kishore and L. Carlitz gave recurrence relations for a(n, 2k + 1, v) which involve a(n, l, v),
0, 1, 2,... ,2k. For a(n, 2k, v) their formulas lead to nothing new, and therefore are not sufficient

to evaluate a(n,k, v). In this paper we give a recurrence relation for b,,(z, v)= "-la,(v)a,_(v)ez,
which leads immediately to a recurrence relation for a(n, k, v). The recurrence relation is valid for all
k and n.

1. Introduction. The Rayleigh function a,(v), defined by

(1.1) a,(i2) 2 (J’v, m)- 2n, /’/ 1, 2,
m=l

where Jv,m is the mth positive zero of z-vJ(z), has been investigated by N. Kishore
and L. Carlitz. N. Kishore I2], I3] obtained recurrences satisfied by a,(v), and in
particular, expressions for

n-1

(1.2) a(n, k) a(n, k, v) s’a(v)a,_s(v),
s:l

for the cases k 0, 1, 2, 3. L. Carlitz [1] suggested the problem of evaluating
a(n, k) for all k and proved the following formula 1, (1.10)]"

n-1 k+l

(1.3) k!
j=O 2s<=j

where the coefficients Ok,j,s(V) are the coefficients of the polynomials Ak,j(x), which
satisfy the formula I1, (4.4)]

k+l

k!u(x)(xD)ku(x) Ak,j’(x)(xD)-j+ lu(x),
0

but are not determined explicitly. Here D =_ d/dx, and

(1.4) u(x) u(x, v) a,(v)x".
n=l

We develop a recurrence relation for the functions

n-1

(1.5) b,(z) b,(z, v) as(V)a,_(v)esz, n 2, 3,...,

from which we immediately get a recurrence relation for a(n, k) via

d
(1.6) a(n, k) z b,(z)lz:o,

n= 2,3,..., k-- 0,1,2,....
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2. The recurrence relation. Define ao(V) 0, and omit all v-scripts, with the
understanding that these sums are functions of v. We get

(2.1) u(x) o,x", Oo O,
n=0

(2.2) b,(z) oso,_se
s---=0

(2.3) a(n, k)
s=O

bo(Z bl(Z 0,

a(0, k) a(, k) 0.

From (2.1), we get

(2.4) u(x)u(xez) Z a,x" Z 7lX’elz-- E xn Z 7t(Tn-Ielz= E bn(z)xn"
n=0 /=0 n=0 /=0 n=0

u(x) -x/ J+
jr(X1

On the other hand we have,

(2.5)

Insert (2.5) in (2.4) to get

(2.6) 1/4 xez/ZJv+ l(X1/2)Jv+ l(x1/Zez/z) J(xl/Z)J(xl/Ze/2) b,(z)x".
n=0

The expansion of J(t) yields

(2.7) Jt(x1/2)Ju(X1/2ez/2) (1/4)uXuezu/2 Z Cr(2, kt)Xr,
r=O

where

(2.8) C,(z,p)=
F(p+ +/)F(p+ +r-l)"/=0

Substitute (2.7) into (2.6), and equate coefficients of x", to get
r+2

(2.9) ?-6ezCr(z, v + 1)= bk(z)Cr+z_k(Z v), r O, 1,2,....
k=2

From (2.8), we have

(2.10) Co(z,p)-- 1/F2(p-+- 1),

which we substitute into (2.9) to get

(2.11) b,+z(Z) FZ(v + 1) - eC,(z, v + 1) b(z)C,+z_(z, v)
k=2

n 1, 2, ..., which is the desired recurrence formula.
It is obvious that a recurrence formula for a(n, k) could also be derived from

(2.11), by means of (1.6), but we derive a simpler formula below. As special cases,

N. Kishore [2], [31.
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we get

1
b2(z)-- 42(v -4- l)2

(2.12) bs(z 4S(v + 1)s(v + 2) ez + ezz]’

b4(z)-- 44(v -k- 1)4(v -k- 2)2(v + 3)
2(v + 2)(e + e3z) q- (v -+- 3)e2].

Formula (1.6), together with (2.12), yields

a(2, k)
42(v + 1)2 a2),

1+2
(2.13) a(3,k) 43(v + 1)3(v + 2)

(= (1 + 2k)ala2),

2(v+2)(1+3k)+(v+3)2
a(4, k) 44(v + 1)4(v +2)2(v + 3)

k= 0,1,2,...

These results agree with the results given by N. Kishore, where they overlap.

3. A simpler formula. Equation (2.11) gives a recurrence formula for b,(z),
and therefore for a(n, k), assuming we do not know the values of G, n 1, 2,
If we assume these values to be known, we can derive a much simpler recurrence
formula for b,(z) as follows: equation (2.6) is rewritten as

(3.1) 1/2x1/2jv+ (X1/2)u(Xez) Jr(X1/2) Z bn(z)Xn,
n=0

and we substitute the expansions of Jv(X1/2), Jv+ 1(X1/2) and u(xez) in (3.1), which
yields

(3.2)
r)zlx x"

(---) Tn-re(n x" (--)b"-r(z)
.--0 =0i ;-; + )

Now equate coefficients of x"+ to get

(3.3)
r)z nl(--) a,_re(n (-1/4)b,+ __(z)

;ir- 2 r + 2) r,r( + r + )r=O r=O

Or, since bo(z bl(z ao O,

b. + (z) r(v + (- 1/4)" -z
k=ir!F(v + r + 2)

(3.4)
o,,e )}4F(v+2

-(v + r + 1)b.+ l_r(z)]
n= 1,2,3,...
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Insert F(v + 1) inside the brackets, and use (1.6) to obtain the recurrence

v + lr= r!(’ t_ 2)r
(n r)ka._r (v + r + 1)a(n + 1 r, k

(3.5)

-+- r/kO’n n 1,2,3,

It should be noted that this recurrence is on n, and holds for all k, k 0, 1, 2,
Both N. Kishore [3 and L. Carlitz [1] found recurrences on odd k only, for all n,
which contain also all the unknowns a(n, 1), for even, < k. Their recurrences
fail to give anything new, when k is even, owing to the fact that

a(lrl’ k) s---o SkO’sO’n-s s=O-(lq--S)kO’sO’n-s--
1=0- (- 1)k-l() t’lla(gl’ ]- I),

and the coefficient of a(n, k) on the right-hand side of the preceding equation is
(-1). Thus, a(n, k) cancels on both sides, when k is even, and their recurrence
formulas are incomplete.
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A VARIATION OF HADAMARD’S FINITE PART INTEGRALS*

PAUL B. BAILEY’f

Abstract. A variation of Hadamard’s finite part integrals is described which can be used to solve a

class of problems in a direct manner, eliminating the "ascent-descent" technique which Hadamard
used. It is shown that the Green’s formula derived from the standard singular solution for the scalar
wave equation yields the Kirchhoff formulas, if, when the space dimension is odd, one retains the
logarithmically infinite part of the principal value integral.

In the course of his researches concerning partial differential equations,
Hadamard devised the concept of"the finite part" of certain divergent integrals.
The purpose was, apparently, to allow one to apply the "fundamental formula,"
as he called it, to certain rather natural regions for which the resulting integrals do
not necessarily converge.

In the case of the wave equation, for example, if u is a solution of the inhomo-
geneous equation

(1) [-]u= f
and v is a solution of the homogeneous equation

(2) Ulv 0,

then the fundamental formula takes the form 1’, p. 63]

(F) fv dV + V-v Uv dS O,
D

where D is any (sufficiently nice) region, cD is its boundary, dV and dS represent
volume and surface area elements, respectively, and d/dv is the directional deriva-
tive (the "transversal" derivative) associated with the direction of the normal to the
surface.

Of course for (F) to make sense in the usual way the integrals appearing there
must converge, which hardly ever happens in the cases treated by Hadamard, the
reason, of course, being due to the fact that for v one naturally chooses an "element-
ary solution" of (2)--which means that v necessarily has some sort of singularity--
and at the same time wishes to choose for D a region for which v is singular along
some portion of its boundary c3D.

Hadamard [1] showed how such problems could be treated, in fairly general
circumstances, by splitting the divergent integrals appearing in (F) into two parts,
the "finite part" and the "infinite part." Since the sum of all the parts on the left-
hand side of (F) vanishes, it must be that the sum of the finite parts and the sum of
the infinite parts vanish separately (because of the systematic way in which the
integrals were split). Thus, if each of the integrals in (F) is replaced by its finite
part, then--in the circumstances described by Hadamard--the resulting equation
will be valid.
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Of course the whole point of this procedure of Hadamard’s was not just that
the resulting equation (F) be true, but rather that it be of such a form as to yield the
solution u of(l) in terms of the forcing term f and given initial data. In other words,
Hadamard showed how the solution u of a Cauchy problem for (1) could be
obtained directly from the fundamental formula (F) with v an elementary solution
of (2) and D a suitably chosen region. (For a more modern treatment of such
problems by means of generalized functions see Gel’land and Shilov 2] .)

There is, however, the curious fact that in order to treat problems in spaces of
even dimension n, Hadamard resorted to the device of "ascent-descent." That is,
increase the dimension of the space from n to n + by adding a dummy (n + 1)th
coordinate, treat the new problem in this space of odd dimension, employing
finite part integrals, and then descend to the original n-dimensional space by
integrating out the extra coordinate. A consequence of this procedure, it should be
noted, is that the elementary solutions for the even-dimensional spaces are never
put to use.

However, if one believes that the fundamental formula (F) is exactly what its
name implies, then it is not at all difficult to see how one can modify Hadamard’s
method of finite part to yield the solution to Cauchy’s problem in spaces of even
dimension. Namely, if (F) somehow contains within it the solution of the given
problem, and yet the equation obtained from it by retaining only the finite part does
not, then the solution must have been thrown away in the process. In the case of
four dimensions, for example, it is the infinite part which ought to be kept.

To see how this comes about, and incidentally to indicate how one can
determine in any given case which "part" of (F) should be kept, let us consider the
classical Cauchy problem in four dimensions of finding the solution u(P, t) of (1)
subject to the initial conditions (for simplicity)

aU
(p O)u(P, O) =0 -where P denotes an arbitrary point of ordinary 3-dimensional Euclidean space. Of

course the solution to this problem is well known 1, p. 239] being

(4)

u(P, t)
4rc

cos 0 cos q, R cos 0 sin

R sin 0, R) sin 0 dR dO dq).

We shall solve this problem in two ways: once by Hadamard’s ascent-descent
procedure combined with finite part integrals, and once without the ascent-
descent but keeping the infinite part of (F).

Hadamard’s procedure begins by rewriting the problem as

(1’) V2 -4
(2

(3’) (P, w, 0) 0 -(P, w, 0),
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where
f(P, w, t) =- f(P, t) for all w.

This problem is one in 5-dimensional space-time, and the corresponding element-
ary solution of the homogeneous equation (2’), say, is

[(t- T)2 2]-3/2,
where

R2 R2 + (w- W)2

R2 =(x- X)2 +(y- y)2 +(z_Z)2.

Hence, the fundamental formula (F’) holds with fi, in place of u, v, and with D any
(nice enough) region not containing any singularities of either inside or on the
boundary. In particular, D may be any region lying inside (but not meeting) the
coneT= t-R.

As usual, however, it is precisely the region bounded by this cone (together
with the plane T 0) that we wish to use for D, the only thing preventing us being
the fact that the resulting integrals would diverge. Therefore, we do the next best
thing, employing for D the family of all neighboring regions instead. Or, more
precisely, a family D which converges to D as e --, 0 +. It really does not matter
which family is chosen. We can suit our own convenience.

For instance, we could use the family of surfaces T N/fR2 -- (together
with the surface T 0, of course), or even T e. (This has one singular
point--the vertex--but is otherwise a nice enough surface.) Either way one finds
that the volume integral

of-

dV V_le -1/2 + Vo +o(1) ase-,0,

where V_ 1, Vo are independent of e, and also the surface integral

fo dfi d) -1/2

De
)-V 0 dS S_ , --lv So + o(1) as e ---, O.

(Vo and SO are, of course, the "finite parts" of the volume and surface integrals,
respectively.) It follows from what has been said above that

V_I +S_ =0,

Vo+So=0, etc.

However, the most useful ofthese equations turns out to be (in this case) the second
one, since So is just 4c 2 times the value of fi at the vertex of the cone T , i.e.,

SO 4rtzfi(P, w, t) 47zZu(P, t)

(since 0 is necessarily independent of w, because f is) and

foVo rc f(Q t- R) dQ
<_R <_t -which together give (4), if a change to polar coordinates is made in the integral.
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On the other hand, staying in the original 4-dimensional space-time, where the
elementary solution is

v- [(t- T)2- R23-x,
if D in (F) is replaced by D, where D is the region bounded by T R e (and
the plane T 0), then the volume integral becomes

and

VdV= V_ lne + Vo + o(1) as-+O

du
v--- u dS S_l ln e + So + o(1)
dv

as e-, 0.

But this time it is S_ which is just a multiple of u evaluated at the vertex of T
R, namely,

and

S_ 2rcu(P, t)

R)dQ,V_
o

which together give (4) again, since V_ + S_ 0.
The reason either of these two procedures works is, of course, due to the

intimate relation between the elementary solution v and the boundary of D, which
is the surface (characteristic surface of the wave operator) T t- R. In the
expansion of the surface integral (an asymptotic expansion as a function of e, the
"size" of the deleted neighborhood of the singularity) it will always be the case
that one of the coefficients is just a multiple of the value of u at the vertex. When the
dimension n is odd, this is the "finite part," but when the dimension is even, it is an
"infinite part." In either case though, it is the equation resulting from keeping
this term which solves the Cauchy problem.

For example, in the case ofthe n-dimensional wave equation (1) when n is even
and greater than two (and with zero initial conditions), one finds that (again taking
D to be the region bounded by the cone T R e together with the plane
T= O)

D
V-day u dS Sl_n/2g2- + S_n/2g +... + S_2e + S_ 11n e

+S0 + o(1) ase--,0+,

where only the coefficient

S_ (- )n/2(n 2)22-n
n/2

f._ 2u(P, t)

is independent of values of u away from the vertex (P, t) of the cone. (f,_ is the
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surface area of the unit sphere in n-dimensional space.) Thus, the equation which
solves the problem is that obtained by equating to zero the coefficient of In e in
equation (F), namely,
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EXISTENCE THEOREM AND CONVERGENCE OF MINIMIZING
SEQUENCES IN EXTREMUM PROBLEMS*

ZITA PORACKA-DIVIg?

Abstract. In the paper, a necessary and sufficient condition is given for the strong convergence of
minimizing sequences for a differentiable convex functional in a reflexive Banach space.

In the following, let E denote a real reflexive Banach space and f a real func-
tional on E. We say that f is convex on E if for every x, y E and (0, 1) the in-
equality

f(x + (1 )y) =< f(x) + (1 )f(y)

holds, and f is strictly convex if for x 4: y the sharp inequality holds. A sequence
(x,), x, E (n 1, 2,...), is said to be a minimizing sequence for f iff(x,) - infx
f(x) (n ). If f is differentiable at a point x E, we shall denote by Dr(x, h)
(h E) and D2f(x, h, k) (h, k E) its first and second order linear Gateaux differential
at x, respectively. If E* denotes the dual of E, let (x, y) x(y), where x e E*, y E.
We define the gradient of a differentiable functional, F grad f, by the equation
Df(x, h) (F(x), h). We shall use the following representation of a differentiable
functional"

(1) f(x) f(xo) + (F(xo + t(x Xo)), x Xo) at.

Here, (F(xo + t(x- Xo)),x- Xo) is usually supposed to be continuous in t,
e [0, 1], for x, x0 e E. (For the definition and basic properties of differentials of

functionals see, e.g., the book of M. M. Vainberg [6].)
One can see without difficulty that in the finite-dimensional space the "growth

in each direction" of a real convex functional f, i.e., the condition

(2) lim f(x) +

for arbitrary x e E, x 4= 0 and [3 real, already guarantees the existence of an absolute
minimum of f in E, and if, further, f is strictly convex, then each minimizing
sequence converges in the norm of E. Convexity implies namely continuity of f
(see, e.g., [3]) and from (2) follows limlxl_, f(x) + .

In an infinite-dimensional space the situation is completely different" a
convex functional which satisfies (2) need not even be bounded from below, as the
following example shows.

Example 1. Let E 12 and for x {xl, X2,’" "} 12 define

2 2n2Xnf(x) Z x.-
n3

n=l

Then [f(x)[ < +, f is strictly convex and continuous on 12 and for arbitrary
x 12, (2) is satisfied, yet for x {0, 0, n2, 0, ...} we have f(x) -n.
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The following example shows that in an infinite-dimensional space a convex
functional which satisfies (2) does not have to assume its minimum even if it is
bounded from below.

Example 2. Let E 12, x 12 and

f(x)-- E (X’n
/./.

|)2"
n=l

Then f(x) >= 0, f is continuous and strictly convex on 2 and for x {,
0, ...} (k 1, 2, ...) we have f(x’) n%+ 1/tie -- 0 (k -- 4- oo). Evidently,
(x) is a minimizing sequence for f but of does not attain its minimum in 12

Consequently, if we want to study the question of existence of a minimum
of a convex functional f and the behavior of minimizing sequences in infinite-
dimensional spaces, we have to work with such assumptions which give us more
information about the global behavior off.

One such assumption requires the existence of the second order Gateaux
differential which satisfies, e.g., the inequality

(3) D2f(x, h, h) >= (Ihl)lhl

or

(3’) D2f(x, h, h) >= (Ixl)lhl

for each x e E, where 7 is a continuous nonnegative function defined on [0, +
and satisfies some appropriate growth condition (see, e.g., [4], [5], [6], 7]). Such
conditions are quite strong: ifwe assume, for instance, that 7(0 ct (c > 0) and the
second differential of f satisfies the following continuity condition: DZf(xo +
axh 4- azh2 hi, h2) -+ D2f(xo, hi, h2) as 81 -+ 0, a2 -+ 0 (al, a2 real) for arbitrary
hi, h2 E and some Xo e E, then the space E already has a "Hilbert" structure
(compare also [5]).

On the other hand, very often we know only that the functional f has only the
first order Gateaux differential. In this case, as the proof of Theorem 5 in [4]
suggests, it is possible to replace the condition (3) by a slightly weaker one:

Dr(x, x y) Dr(y, x y) (F(x) F(y), x y) >= y(lx Yl)" Ix Yl,

where 7 again satisfies an appropriate growth requirement. (See also 1] .)
The existence of the minimum of f can be established under still weaker

conditions and the question of strong convergence of each minimizing sequence
can definitely be answered, as our next result shows.

THEOREM 1. Let f be a differentiable jnctional on E such that its gradient F is a
monotone operator, i.e.,

(4) (F(x)- F(y), x y) >= 0

holds for arbitrary x, y E. Let (F(x + ty), y) be continuous in e [0, for any fixed
x, y e E. Let 2 be a real-valued fimction defined on [0, + oo) such that

(5) (F(x), x) (Ixl),
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If, for a certain Ro

(in the sense of Lebesgue) and

fRo dt< + ov
12(t)

o

R,, dt > O,
(t)

o

then there exists Xo E (]Xo] < Ro) such that f(xo)= infxe f(x) > -oc. If F is
strictly monotone (i.e., if the sharp inequality in the definition of monotonicity (4)
holds for x :/: y), then f attains its minimum at only one point.

THEOREM 2. Let f be a differentiable functional on E such that its gradient
F" E E* is a monotone operator and let (F(x + ty), y) be continuous in t [0, 1] .(or
arbitrary fixed x, y E. If there is a point xo E for which f(xo)= inf,F f(x)
> --O (e.g., if the assumptions of the preceding theorem are satisfied), then each
minimizing sequence converges strongly to xo if and only if there exists a monotone
(nondecreasing) function 7 defined on [0, + ), positive on (0, + or), such that

(6) (F(y), y Xo) 7(lY Xol)

holds for any y E.
Proof of Theorem 1. Let xl, x2 e E. From (1), (4) it follows that

f(xl) f(x2) (F(x2 -t- t(Xl x2) F(x2), X X2)dt -Jr- (F(x2), X X2)

>= (F(x2), x, x2);

hence f is weakly lower semicontinuous on E. Using a similar argument we can
easily see that monotonicity of F guarantees convexity off (see, e.g., [2]). Further,
using (1), (5) and the integrability of 2(t)/t over (0, Ro) we obtain the following
inequality for arbitrary x;lxl < Ro"

f(x) f(O) + (f(tx), tx)T > f(O) +
tlxl Ixl dt

txt 2(0
f(O) + dt.

0

On the set {x’]x[ Ro} we have clearly

(7) f(x) > f(O) + c, c > O.

We shall prove next that f(x) > f(0) for x e E, Ix] __> Ro. Iff(x) =< f(0) were to hold
for some x e E, Ix[ > Ro, then by convexity of f we would have for any a e (0, 1),
f(czx) f(ax + (1 )0) __< af(x) + (1 a)f(0) __< f(0) which contradicts (7) if
z Ro/[X < 1. Hence, f(x) > f(0) for any [x[ > Ro and consequently the func-
tional attains its absolute minimum in the sphere {x’[x[ < Ro}. We also see
that the strict monotonicity of F implies the existence of only one point at
which the minimum is attained. (Notice that (F(xo), h) 0 for any h E if f(xo)
minx f(x).)
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Proof of Theorem 2. Sufficiency. Let (x,) be a minimizing sequence. We have
then f(x,) f(xo) minx f(x). By (4) and (6), we have

" foy(tlx Xol )dt <= (F(xo + t(x, Xo)), t(X XO))dt
0

<= j (F(xo + t(x. Xo)), x. Xo) dt
o

f(Xn) f(xo).

Hence,

(*) j 7(tlx, xol dt O, n + ,
0

since (x,) is a minimizing sequence. From the above inequality we also see that (x,)
is a bounded sequence in E. (Notice that 7(0 > 0 on (0, + oc).) Suppose now that
the sequence (x,) does not converge strongly to Xo. Then we can find 6, M such
that 0 < 6 =< M < +oe and a subsequence (x,j) such that 6 =< Ix,j Xol < M
(j 1, 2,...). We then have

y(tlx, Xol) dt=
o Ix. Xol o lfo7(Odt >= - 7(Odt >0

for j 1, 2, But this is impossible in view of (.);hence the result follows.
Necessity. Suppose that each minimizing sequence converges strongly to Xo.

Define 7(r)= inf {(F(y), y Xo)’lY Xol r}. Clearly, 7(r) >= 0 since by mono-
tonicity of F we have the inequality

(F(y), y Xo) >= (F(xo), y Xo) O.

We shall prove first that

(**) 7(r)>0 forr>0.

Suppose that (**) is not true. Then we can find ro > 0 such that 7(ro) 0 and thus a

sequence (y,) such that lY, Xol ro and

(8) O <= (F(y,), y, xo) O, n +.

Next we shall prove that (y,) is a minimizing sequence.
Let g, be defined on [0, 1] by

(9) g,(t) (F(xo + t(y,- Xo)), Y,- Xo).

We clearly have g,(t) >= 0 for e [0, 1]. Using the monotonicity of F we obtain for
arbitrary t, 0 < < 1, the following inequality"

(F(xo + t(y, Xo)), (1 t)(y, Xo) <= (F(xo + (y, Xo)), (1 t)(y, Xo)),

whence for 0 < < 1,

g,(t) <= (F(y,), y, Xo)..=
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We then have

f(y,) f(xo) fj g.(t) dt < . - 0,

Hence, (y,) is a minimizing sequence. By hypothesis, lY, Xo 0 (n-+ + ).
However, this is impossible, because lY, Xol ro (n 1, 2, ...). We have proved
that 7(r) > 0 for r > 0.

Nowwe show that T is a nondecreasing function. Lety e E,y =/: xoandlet t, rbe
real numbers such that 0 < r < t. Then, by monotonicity of F we obtain the
following estimate"

(F(xo + t(y- Xo)), t(y- Xo) -(F(xo + "c(y- Xo)), r(y- Xo)

(F(xo + t(y- Xo)), (t- r)(y- Xo) -(F(xo + r(y- Xo)), (t- r)(y- Xo)

+ (F(xo + t(y- Xo)), r(y- Xo))- 2(F(xo + r(y- Xo)), r(y Xo)

+ (F(xo + z(y Xo)), t(y Xo)

> (F(xo + t(y- Xo) F(xo + "c(y- Xo)), z(y- Xo)

+ (F(xo + z(y Xo)), (t z)(y Xo)):= 11 + I2.
Now,

---(F(xo + t(y- Xo) F(xo + r,(y Xo)), (t- r)(y Xo) >= 0

since 0 < r < t. Likewise,

(F(xo + "c(y Xo)), "c(y Xo) >= O.

Further, let r > p > 0 and r p/r < 1, 1. Then, using the inequality just
proved, we finally obtain the result"

),,(r) inf

> inf
]y--xo]

(F(xo + (Y- Xo)), y- Xo)

(F(xo + r(y- Xo)), r(y- Xo)

inf (F(z), z Xo)= 7(P),
z-xol =rr=p

and the theorem is proved.
Remark 1. Notice, that under the assumptions ofTheorem 1, each minimizing

sequence converges weakly to xo (See, e.g., [4] .)
Remark 2. Notice that if each minimizing sequence of a convex functional f

which attains its minimum at only one point Xo, converges strongly to xo, then
already limlxI_ + f(x) 4- .

Proof. Suppose the contrary: then for a certain sequence (x,), x, e E, [x,I
+ v (n + o), we must have f(x,) K > f(xo), K < + . Now consider

L inf {K’K lim f(x,), IXnl - + o}.
tl-- -t-
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Then again L > f(xo). Obviously it is possible to find a sequence (x,), x,[ + oo,
and such that f(x,) L. Let y, (xo + x,)/2. Using convexity of f we get f(y,)
< 1/2f(xo) + 1/2f(x,). Take such a small eo > 0 that f(xo) < L Co. Take further
any e, 0 < e < Co. Then there exists an integer no such that for n => no, we obtain

f(y.) < L- ao)+ {-(L + a)= L -(ao a)/2.

Clearly, ]Y,I + oo but a subsequence of (f(y,)) must tend to some K < L, which
contradicts the definition of L.

Remark 3. On the other hand, if we know that limlx + f(x) + oo, where
f is a convex functional which attains its minimum at only one point Xo, then, of
course, not each minimizing sequence needs to tend strongly to xo. For instance,
if we define a functional f in 12 as follows:

f(x)
E 2 2x,/n for Ixl 1,
n--1

xZ/n2 / (Ixl- 1) for all other x

(X--{X1,X2, "’’}), then clearly f(x) +oo as Ixl +oo and the sequence
x {0,..., O, 1,0,...} is minimizing.

k
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BOUNDED SOLUTIONS FOR A SECOND ORDER
NONLINEAR EQUATION*

H. ARTHUR DEKLEINE’

Abstract. The boundedness of all solutions for the second order nonlinear equation

[p(t)U’]’ + ak(t)f,(u) e(t)

is studied. It is assumed that the product p(t)a(t) is, for each k, a locally integrable perturbation of a
continuous function, is locally of bounded variation and has a small negative variation. By appealing
to a Stieltjes version of Gronwall’s inequality, bounds are obtained for the energy integral associated
with a particular solution, and consequently for the solution.

1. Introduction. In this paper we shall obtain sufficient conditions for the
boundedness of all solutions satisfying the differential equation

(1) [p(t)u’]’ -k- a( t)u O,

(2)

where 7 > 0, or

[p(t)u’]’ + a(t) sgn (u)lul e(t),

N

(3) [p(t)u’]’ + a,(t)f(u) e(t).
k=l

We shall assume throughout that the coefficients p(t) and ak(t), k 1, 2, ..., n, are
positive, continuous, real-valued and locally of bounded variation on the interval
I0, ), or some locally integrable perturbation thereof. We shall require e(t) to be
locally Lebesgue integrable on I0, ). A solution u(t) is interpreted as an absolutely
continuous pair u(t) and p(t)u’(t) which satisfies the differential equation almost
everywhere.

W. Leighton [8] has considered equation(l), where p(t), a(t) and [p(t)a(t)]’ are
continuous, and has shown that if [pa]’ >= 0 then every solution is bounded. This
paper contains several generalizations of W. Leighton’s result for solutions of
equations (2) and (3).

2. Boundedness results for equation (2). Consider equation (2), where p(t),
a(t) and e(t) satisfy the following conditions:

(i) a(t)= {q(t)+ (t)};
(ii) p(t) and q(t) are positive, continuous and locally of bounded variation on

[0, );
(iii) (t) and e(t) are locally Lebesgue integrable on [0, ).

For the special case when 7 we are assured of the existence and uniqueness of a
fundamental system of solutions on the interval [0, ) (see P. Hartman [5, p. 322]).
We shall implicitly assume the existence of solutions for the more general equation
(2).
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Let u(t) by any solution of (2) and define E2(t) as

[p(t)u’(t)] 2 lu(t)l +1() +2p(t)q(t) 7 + 1

The function p(t)q(t)E2(t) represents a modified energy integral for the solution u(t).
THEOREM 1. Let 0 < 7 <= 1. If the inequalities

(4) (p(s)q(s))- d(pq) (s) < oo,

(5) I(s)l(p(s)q(s))- x/2 ds < oo, and

(6) le(s)l(p(s)q(s))-1/2 ds < oo

hold, then EZ(t) is of bounded variation on 0, oo). In particular, EZ(t) is bounded and
limt_ EZ(t) exists.

Before giving a proof of Theorem 1, we make some necessary observations
and remarks. Theorem is of particular interest if the product pq becomes un-
bounded. In this case w.e are able to assume something less than integrability over
[0, oo) for the functions (t) and e(t). Theorem 1 extends a Lemma of H. E. Goll-
witzer E3] in which he considers the special case where p(t) _-- 1, 7 1, and e(t) =- O.

Throughout this paper we will let p(t) p+(t) p_(t) represent the Jordan
decomposition of a function p(t), locally of bounded variation, where p+(t) and
p_(t) are the positive and negative variations of p(t), respectively.

From condition (4) we have that

log p(t)q(t) log p(0)q(0) 4- (pq)- d(pq)+(s) (pq)- d(pq)_(s)

is bounded away from -oo, and hence p(t)q(t) is bounded away from zero. Since
u(t) and p(t)u’(t) are absolutely continuous functions and p(t)q(t) is bounded away
from zero, E2(t) is continuous and locally of bounded variation.

In the statement of Theorem 1, inequality (4) cannot be replaced by the state-
ment "p(s)q(s) is bounded below by a positive number." It is well established that
the boundedness of solutions for (1) depends upon an appropriate boundedness
condition for the negative variation of the coefficient a(t) (see, for example, R.
Bellman [1, pp. 111-113]).

The following Stieltjes version of Gronwall’s inequality, which is a special
case of a result given by W. Schmaedeke and G. Sell E9], will be used in the proof of
Theorems and 3.

LEMMA 1. Let g be a continuous nondecreasing function of bounded variation on
[0, oo), let f be a nonnegative continuous function locally of bounded variation on
E0, oo), and let e >= O. If

f(t) < + f(s) dg(s), 0 <= < ,
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then there exists a positive constant K, depending on g but not on f, such that

f(t) <= Ke, 0 < < oo.

Proof of Theorem 1. To simplify notation, let u sgn (u)lul . Multiplying (2)
by u’(t)/q(t) and integrating by parts we obtain

(7)
iE(t) E2(0) [pu’]2(pq) -2 d(pq)(s) b(pq)-lpu’u ds

+ e(pq)- lpu, ds.

Let g(t) E2(t) + 1. Since (pq)+ and (pq)_ are positive, continuous and nonde-
creasing, and since

0 [pu’]Z/(2pq) <= EZ(s) + 1,

]pu’l(2pq)-1/2 < E(s) < E2(s) + and

[pu,ul(2pq) 1/2 E2(s)+
it follows that

(8)

g(t) (0) + (pq)-’ d(pq)_(s) + glgl(pq)-1/2 ds

+ x/ gl el(pq) -/2 ds.

We can express (8) as a Volterra integral inequality

where

g(t) <= (0) + (s) dQ(s),

Q(t) (pq)- d(pq)_(s) + IOl(pq)-1/2 ds

+ x// lel(pq)-1/2 dS.

Lemma and the hypotheses (4), (5) and (6) imply that g(t), and hence E2(t), is
bounded on [0, oo). Since E2(t) is bounded, the integrals in (7) are convergent. From
this it follows that E2(t) is of bounded variation on [0,

The following question immediately presents itself: Can Theorem be
established without the restriction 7 _<- ? S. P. Hastings [6, Appendix] and C. V.
Coffman and D. F. Ullrich [2] have given examples to show that Theorem cannot
be extended to include the case 7 > 1. In particular, they establish the existence of
positive continuous functions a(t) satisfying a(t) --, 0 as -- oo such that at least
one solution of u" + (1 + a(t))u 0 has finite escape time.
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Consider now (2), where p(t), a(t) and e(t) satisfy the following conditions:
(xi) a(t)= {q(t)+ (t)};
(xii) p(t), q(t) and (t) are positive absolutely continuous functions on [0, ),

and
(xiii) e(t) is locally Lebesgue integrable on [0, ).

We now give a result which is valid for all positive 7.
THEOREM 2. If the inequalities

(9) (P(s)q(s)) l(pq)’_(s) ds < ,
where (pq)’_ max {0,-(pq)’},

(10) l(p(s)/q(s))’[ ds < ,
(11) lim sup ff(t)/q(t)l < 1, and

t--

(12) le(s)l(p(s)q(s))-1/2 ds < O0

hold, then E2(t) is ofbounded variation on [0, o). In particular, E2(t) is bounded and
limt_,o E2(t) exists.

This theorem is, in many ways, similar to results by R. Bellman [1, p. 112] and
J. S. W. Wong [12].

Proof of Theorem 2. Let us again use the notation u sgn (u)lulL As was
observed in Theorem 1,

(13)

E2(t) E2(0) [pu’](pq)-2(pq) ds b(pq)-lpu’ue ds

+ e(pq)- pu’ ds.

Integrating the second integral by parts, we obtain

E2(t) =< K + (1

for some e-1, 0 < g

Hence

+

2
[pu’] (pq)- 2(pq ds

[_7 +
ds + e(pq)-pu’ ds

-1 < 1, some constant K1, and sufficiently large values of t.

e-XE2(t =< K2 + E2(pq) l(pq),_ ds + E2 ds

+ x/ Elel(pq) -’/2 ds.
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Letting g(t) E2(t) 4- 1, we have

g(t) <= eK2 + o(pq)- (pq)’_ ds + e o ds

(14)

+ glel(pq)- / ds.

We can express (14) as a Volterra integral inequality

g(t) <= eK + g(s) dQ(s),

where

Q(s) e (pq)-l(pq ds + e ds + ex/ lel(pq) -1/2 ds.

Gronwall’s inequality [4, p. 36] and the hypotheses (9), (10) and (12) together imply
that o(t), and hence E2(t), is bounded on [0, oo). Since E2(t) is bounded, the
integrals in (13) are convergent. From this it follows that E2(t) is of bounded varia-
tion on [0, ).

3. Boundedness results, for equation (3). Consider equation (3), where
p(t), a(t), f(u) and e(t), k 1, 2, 3, N, satisfy the following conditions"

(xxi) ag(t), k 1,2, ..., N, and p(t) are positive continuous functions,
locally of bounded variation on the interval [0, );

(xxii) e(t) is locally Lebesgue integrable and
(xxiii) the functions f(u), k 1, 2, N, are continuous on (-v, ) and

satisfy uf(u) > 0 for u -: 0. The indefinite integral of the function j’(u)
will be denoted by F(u), that is, F(u) fo f(x)dx.

Equation (3) and the correslionding conditions which we have imposed on the
coefficients represents a generalization of the differential equation used to describe
the angular displacement of a pendulum, namely,

+ (g/l)sin q 0, -/2 < q < z/2.

C. T. Taam I10] has established the existence and uniqueness ofsolutions to (3)
for the particular case when f(u) u2k- and e(t) O. We shall implicitly assume
the existence of solutions for the more general situation.

Let b(t) be a positive continuous function which is locally ofbounded variation
on [0, ). We shall call b(t) a bounding function for the coefficients al a2, aM,
M =< N, if the conditions

(15) b(s)a[ (s) d(ak/b) + (s) < k <= M,

litminf-’ k=l ak(t))/b(t)>O(16)

are satisfied.
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Let u(t) be a given solution of (3). Let EZ(t) be defined by

E2(t)-- [P(t)u’(t)] 2 P( t)ak(t)Fk(u)
2p(t)b(t)

+
k= p(t)b(t)

THEOREM 3. Let b(t) be a bounding function for the coefficients al a2, aM,
M <= N. If the inequalities

(17) (p(s)b(s)) -1 d(pb)_(s) <

(18)

(19)

(20)

o(P(s)ak(s))-l

d(pa)+(s) < for M < k,

F(u) as lul jbr <= k <__ M, and

[e(s)[(p(s)b(s))
-,/2 ds <

hold, then E2(t) is ofbounded variation on [0, ) and every solution of(3) is bounded
over the interval [0, ).

Proofof Theorem 3. Condition (17)implies that the product p(t)b(t) is bounded
away from zero. Using this fact, we have that E2(t) is positive, continuous and
locally of bounded variation. We also have that a(t)/b(t) is, for each k, locally of
bounded variation.

Multiply (3) by u’(t)/b(t) and integrate by parts to obtain

E2(t) E2(0) [pu’]2(pb) -2 d(pb)(s)

+ 1= Fk(u) d(a/b)(s) + e(pb)-Ipu’ ds

(21) E2(0) [pu’]2(pb) -2 d(pb)(s)

+ F(u) d(a/b)(s) + F(u) (pb)-’ d(pa,)
k

F(u)(pa)(pb) -2 d(pb)(s) + e(pb)-lpu’ ds.
k=M+

Letting g(t) E2(t) 4- 1, we obtain the inequality

o(t) =< g(O)+ (1 + N M) o(pb)-l d(pb)_(s)

1

M

fl+ g(b/a) d(a/b)+(s)
k=

(22)

+ g(pa)-1 d(pak) + (s)
k=M+

+ lel (pb)- 1/2 ds.
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We can express (22) as a Volterra integral inequality

(t) <= (o) + (s) dO.(s),

where

Q(t) (1 + N M) (pb) -1 d(pb)_(s) + (b/ak) d(ak/b)+(s)
k=l

+ (Pak)-i d(pak)+(s) + ]el (pb)-l/2 ds.
k=M+

Lemma 1 and the hypotheses (15), (17), (18) and (20) imply that g(t) and hence
EZ(t) is bounded on [0, m) and that the integrals in (21) are convergent. From this,
it follows that EZ(t) is of bounded variation on [0, or).

Making use of condition (16), we have that

min Fk(u <= 6EZ(t)
<_k<_M

for some positive number 6. Since mini _k_ Fk(U) is bounded on [0, ) and each
Fk(U), <= k <= M, satisfies (19), it follows that u(t) must also be bounded on this
interval.

4. Applicability ofTheorem 3. In the statement of’Theorem 3, we assumed the
existence of a bounding function b(t) for the coefficients al, a2, ..’, a. A practical
question immediately arises" Given an equation of the form (3) is it possible to
find a bounding function b(t) and, if so, what conditions must it necessarily satisfy?

If a bounding function for the coefficients exists, condition (17) implies that
the product p(t)b(t) is bounded away from zero. Condition (18) implies that the
functions p(t)ak(t), k M, are bounded above. By a similar argument, we obtain
from (15) that ak(t)/b(t) <= fig, <= k <__ M, for some positive fig. From (16), we
have that k= ak(t) >= flob(t) for some positive flo and for sufficiently large values
of t. A combination of the last two estimates shows that b(t) necessarily satisfies
the inequalities

(23) flob( t) <= ak( t) <= flk b( t)
k= k=l

for large values of t. The fact that condition (23) is not a sufficient condition for
b(t) to be a bounding function will be established.

We make note of the fact that if the functions b(t), p(t) and ak(t) are positive,
absolutely continuous and satisfy

(Pak)-l(Pak)’ <= (pb)-l(pb)’ a.e. for k

_
M,

then it will follow that the function ak(t)/b(t is nonincreasing and inequality (15)
is valid. In particular, if the function

{c(t) exp max
<_i<_m

a’i(’c)
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satisfies

liminf(t_
k=l ak(t))/c(t)>O,

then c(t) is a bounding function for the coefficients al, a2, aM.
Theorem 3 extends a result by C. T. Taam [11] in which he has considered

(3), where e(t) =_ 0 and the coefficients p(t) and a(t) are positive, absolutely con-
tinuous on [a, ) and satisfy

(paul)-l(paK)’_ is integrable over [a, ) for some K,

and

(pa,)-l(pa)’+ is integrable over [a, ) for k K.

Theorem 3 can be applied, for example, to the equation u" + tu + t2u3 0 by
choosing b(t) 2, whereas the cited result of C. T. Taam cannot be applied.

C. T. Taam [10] has also considered (3), where e(t)=_ 0 and where p-l(t)
and a(t), 1 _< k <= N, are nonnegative, nondecreasing, Lebesgue-measurable
functions on IT, ). He has shown that these conditions are sufficient to imply
that all solutions of (3) oscillate and that the amplitudes are monotonically non-
increasing. We see, however, that Theorem 3 of this paper can be applied to equa-
tion u" + (1 + + sin t)u + tZu3 0, whereas neither of the results by C. T. Taam
can be applied.

We now give an example to show that C. T. Taam’s result [10, Theorem 2]
is independent of Theorem 3 and that condition (23) is not a sufficient condition
for a function b(t) to be a bounding function for the coefficients. We note that it is
sufficient to construct two nonincreasing functions a(t), a2(t) C’[0, ) satisfying- <__ a(t) + a2(t) =< t, => 4, and for which no bounding function b(t) exists. Let
the functions a(t) and az(t) be defined by"

al(t) z[2n,2n + 2)(t){(n + 1)+ S(t- 2n)},

a2(t)= z[2n,2n+2)(t){(n+ 1)+ S(t-2n- 1)},
n=O

where Z[I] is the characteristic function for the interval I and

S(t)= 1/2 1--COSrCt],

Define a function c(t) by

0<_tl,

l<t.
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We see that if there exists a bounding function b(t) for the coefficients al(t) and a2(t),
then b(t) satisfies

b(s)c- I(S) d(c/b)+(s) b(s)a? ’(s) d(ax/b)+(s)

+ b(s)a X(s) d(a2/b)+(s < .
Hence c(t)/b(t) is bounded.

We now evaluate c(t) at the even integers"

/mlf;n+l mlf2n+2c(2m) exp (a’/al) dz + (a’2/a2) dz
I,.n=O n=O V2n+l

%1 a1(2n + 1)%1 a2(2Y + 2)
11 11
,=o a(2n) ,=o a2(2n + 1)

(m + 1)2.

We observe that a(t) + a2(t =< 3 + and that

(24)
al(t) + a2(t) _<

3 +
b(t) Kc(t)

for some K and sufficiently large values of t. For 2m, the right-hand side of (24)
approaches zero as m . This cannot happen, however, if b(t) is to satisfy in-
equality (23). Therefore no such bounding function b(t) exists.
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POINTWISE BOUNDS ON DERIVATIVES OF SOLUTIONS
TO ORDINARY DIFFERENTIAL EQUATIONS*

GEOFFREY BUTLER AND THOMAS ROGERS’

Abstract. Various pointwise estimates on the derivatives of solutions to nth order linear differential
equations in terms of an associated Taylor polynomial are derived. These estimates are used to obtain
a necessary and sufficient condition for a function which satisfies a sequence of linear differential
equations on an interval to be regular on that inverval.

In this paper, pointwise estimates on the derivatives of a solution to the nth
order linear differential equation

n-1

(1) L(y(x)) =- yt")(x) a)(x)yO)(x) b(x) O,
j=O

in terms of an associated Taylor polynomial, are obtained. We shall always assume
that (1) holds on some compact interval on which all ofthe coefficients are Lebesgue
integrable. Thus we are concerned with finding bounds for the error function
and its derivatives obtained on approximating the solution to an nth order initial
value problem by a polynomial satisfying the same initial values. Theorem
provides a sharper estimate than that obtained by Hornich [3] and is free of a
certain norm restriction needed in his paper.

In Theorem 2 we use a comparison-type of estimate to a solution of (1) in
terms of the solution of a linear differential equation with constant coefficients
to obtain a necessary and sufficient condition for a function which satisfies a
sequence oflinear differential equations on an interval to be regular on that interval.

Theorem 2 is applied in Theorem 3 to obtain a condition for a C-function
oftwo variables x, y to be a polynomial in z x + iy.

Finally, different methods than those ofTheorem are used to obtain sharper
estimates in the case that certain of the coefficients in (1) are zero.

We introduce the following notation" Let O(x) be a real-valued function on
[0, hi. Then O(x) will denote the extended real-valued function sup0_<s_<x [(s)[
on [0, hi.

THEOREM 1. Let f C"[O, hi, and let

nl fj)(O)x
Pn_l(X

j:o J!
Assume that fsatisfies (1)on [0, hi. Then forj O, 1,..., n andfor 0 <= x <= h,

f(J)(x)- p(J) (X)I <
L(P._ I(X))xn- exp S(x)

(n j)!

* Received by the editors October 14, 1970, and in revised form February 16, 1971. The research
of the first author was supported by a Post-Doctoral Fellowship of the University of Alberta. The
research of the second author was supported by the National Research Council of Canada under
Grant A-5210.

" Department of Mathematics, The University of Alberta, Edmonton 7, Alberta, Canada.
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where

n.l j(X)x,n-j
S(x)

j=o (n -j)!

Proof. Following [3], we obtain, on differentiating Taylor’s formula with
the integral form of the remainder,

(2) ftJ)(x) Pt)
1

(x t) - ft"(t) dt--n-l(X)
(?/ j 1)!

j--0,1,...,n-- 1.

Then by the triangle inequality and (1) and (2), we have, for 0 =< x _<_ h,

n-1 n-1

If("(x)l _< q(x)/ a(x)n)_,(x) + aj(x)(f((x) -,-](J)
(3) =o =o

< IL(P,_ (x))l / [a(x)l(x- t)-=o (n j 1)!
If)(t)l tit.

Denoting

by S(x, t), we have that

(x)(x t)

=o (n-j- 1)!

(4) If")(x)l =< IL(P-l(X))l + S(x, t)lf")(t)l dt, 0 <= x < h.

Since S(x, t) is nondecreasing in x, by an easy modification of Gronwall’s lemma,
there follows

(5)
If")(x)l IL(P_ l(X))l

+ IL(P_ (O)lS(x, t)exp S(x, s) ds dt, O <= x <= h.

Inequality (5) implies that

(6) [/")(x)l _-< L(P,_l(x)) exp S(x), O<=x<=h,

and now (2) and (6) imply that

If(J)(x)- P(J) (x)[ < L(P, l(Y))fl (Y- t)n-j-1
--n-1 (n j 1)i exp S(t)dt

xn-J
=< f-,(P,-l(x))(n j)!

exp S(x),

which completes the proof of Theorem 1.
Remark. Inequality (6) may also be obtained from (4) using a result of [1].
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THEOREM 2. Letf C[0, hi and suppose that

lim sup [f(J)(0)l/1/j 1
0 < fl < h(7)

Denote the set of natural numbers by Z. Let 0 <_ <= min (fl, h). Then for f to be
regular on [0, a) (that is, f(x) =_ o (f()(O)xffj!) on [0, )), it is necessary and
sufficient that the following conditions should be satisfied"

(A) There exists a positive-valued function G(n, e) defined on the set Z x (0, o
such that

(8) lim sup
G(n, e)) 1/n

(B) There exists an unbounded subset I of Z, such that for each n I, functions
d,(x), G,(x), j O, 1,..., n- 1, are defined, which are Lebesgue integrable on
[0, e) and such that

n--1

(9a) j!#,,j(x)(a- x)"- n,
j=O

and for each e > O,

(9b)

(lO)

iqb.(x)l( (l + )x) < G(n,e) O<x <
l+e 1+

(C) f satisfies the sequence of differential equations on [0, )"
n--1

ytn)(x) a.,j(x)y(J)(x) + dp,(x), n e I.
j=O

Before proving the theorem, we require two lemmas. For the sake of brevity
we omit the proofs.

LEMMA 1. Let f g C"[0, hi, let f satisfy (1) and let g satisfy

n-1

(11) M(z(x)) =- z(")(x) sj(x) z(J)(x) s(x) O,
j=O

O<__x_<h,

with I(x)l s(x), Ij(x)l sj(x), j O, 1,..., n 1, 0 <__ x <= h, the sj’s and s
being Lebesgue integrable on [0, hi. Then if ftJ)(0)l gtJ)(0), j 0, 1, ..., n 1,
and defining

,1 f,j)(O)x nl g,J)(O)x
Pn_l(X) , Qn_ l(X)

j=o J! j=o J!
we have

f(J)(x) P(J) (x)l < Ig(J)(x) QJ)l(X)l j 0, 1 n 0 < x < h--n-1

LEMMA 2. Let M, , e, 6 be positive numbers with ij < e < , and let p(n) be a
positive-valued function defined on the natural numbers such that

lim sup (p(n)) 1/n 1.



524 GEOFFREY BUTLER AND THOMAS ROGERS

Let 0,,j, j 0, 1,..., n- 1, n 1,2,..., be nonnegative numbers satisfying,,- O,,j < and let ,, n 1 2, be nonnegative numbers satisfying ,, < p(n)
j=0

Let g,(x) be a solution of the equation

n.l O n
(12) z,)(x /_,

n.
zJ)(x) + on 0, o e]

j=0 J! (z x)"-j (0 x)"+1

with [gJ)(0)[ =< Mj !/(z 6)j, j O, 1,..., n 1. Then if

nil gJ)(O)x
Q._,(x)

j=O J!
the sequence {g,(x) Q,_ (x)} converges uniformly to zero on [0, el.

ProofofTheorem 2. Suppose thatfsatisfies (7) and conditions (A), (B) and (C).
Let e > 0 be arbitrarily chosen. For 0 __< x __< /(1 + e), write

0.,(x)
o’,,j(x) (z(1 + ;)-x x),-j j!,

j 0, 1,..., n 1,

.(x)
Q.(x)

(z(1 + e,)- x)n- j"

Then on [0, a/(1 + e)], f satisfies the equation

Y(n)(X) n__.l, n.I O j(x)y(J)(x) n .IOn(X
j=o J! ((1--)n-j /

(t(1 / )-1 .)n-l’

and condition (B) implies that for 0 __< x _<_ e/(1 + e),

G(n, )O,,j(x) 1, 10,(x)l <
j=o n!

Then Lemma implies that for 0 =< x < e/(1 + e), n e I,

(13) If(x) Pn-l(X)l Ig,,(x) Qn-l(X)[,

where g,(x) solves the equation

(14)
,1 n! O,,j(z/(1 + ))

z"(x) z(J)(x) +j=o)! (z(1 / e) -i- x)
a(n)

((1 + e)-i x)’+l’
0 =<x =<z/(1 +e),

with g,J)(0)= If)(0)l, j 0, 1,..., n- 1, and Pn_I(X), Qn_l(X) are the Taylor
polynomials associated with f, g,, respectively.

Now (7) implies that for some constant M and for all nonnegative integers j,

(15) f)(O) < Mj!

(oe(1 -+- 2e)-1)j (since o =< fl).

By (14) and (15), the conditions of Lemma 2 apply to the sequence of functions
{g,(x)}, n e 1, and so the sequence

(16) {g,(x) Q,-1
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tends to zero uniformly on [0, (1 + 3e)- 1]. Inequality (13), condition (16) and the
arbitrary choice of e > 0 imply that f is regular on [0, ).

To prove that the conditions of the theorem are necessary for regularity on
[0, ), assume that f satisfies (8) and is regular on [0, e), with 0 =< =< ft.

Then

f(x)=
f(")(O)x"

for0<x <a.
,,-o n!

Let e > 0. Then (7) implies that f(")(0)l N((1 + e)/oO"n! for some constant
N N(e), and for all nonnegative integers n. It follows that

]f(x)l =<N x
.=o -x(1 +e)

0_<x<

and term-by-term comparison of the two power series shows that

zNn !(1 + e)" +[f(")(x)[ <
( x(1 + e))"+l’

n 0, 1,2,..-

Conditions (A), (B) and (C) will now follow with I Z, G(n, e) eN(e)n !,

o,,j(x) 0, j 0, 1,... n 1,

dp,(x) =- f(")(x), n O, 1,...,

and this completes the proof of the theorem.
Remark. It is not hard to show that the conclusion of the theorem is still

valid if f and b, are allowed to be complex-valued functions.
As a consequence of Theorem 2, we have the following corollaries.
COROLLARY 1. Let f e C[0, h] with lim sup,oo ft")(O)l/n < . Then iff is

not regular at x 0 (that is, f is not regular on [0, 6) for any i5 > 0), there must exist

for each > 0 a natural number N(e) and a sequence of positive numbers x, 0 as
n o such that for n > N,

COROLLARY 2. Let f satisfy the hypotheses of Corollary 1. Then for each
k > O, there exists an n(k) such that for n > n(k), f cannot be a solution of an equation
of the type (1) with

j=0,1,...,n- 1, I(x)l n for O <= x <= h.

Corollary 2 is a sharpening of a similar result in [4].
The following is a corollary of Lemma 1.
COROLLARY 3. Let f e C[0, h), let dp,,(x), Go(x) be Lebesgue integrable on

[0, h) and let O,(x), O,o(x be analytic on [0, h) with

[G,j(x)[ < O,,,j(x) j O, 1,... n

14’.(x)l _-< O.(x).
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Let f satisfy the sequence of equations

n-1

j=0

and let g,(x) be a solution of the equation

n-1

z"(x) O.,(x)#(x) + O.(x).
j=0

Suppose further that {g,.(x) Q,._ l(x)} tends to 0 uniformly on [0, h e) for all e,
where

Q,_,(x)
j=o J!

Then f is analytic on [0, h).
As a simple application ofTheorem 2, if mi, ni are sequences ofnatural numbers

tending to infinity with m < n and f is a function satisfying the inequalities

lye.,) <= ng! [ym,)[
0 < X < 1,

mi! (1 X)"’-m"

then f is analytic on [0, 1) (for example, f 1/(! + x)). This conclusion is false if
the right-hand sides ofthese inequalities are multiplied by any constant greater than
1 (for example, f 1/(1 + x)).

We may also use Theorem 2 to characterize the behavior of functions of two
variables in terms ofinequalities involving their partial derivatives. For an example
of this we give the following theorem.

THEOREM 3. Let f(x, y) be a complex-valued C-function of (x, y) ER2,
analytic as a function of z x + iy in some domain D, and without a finite accumu-
lation point of zeros. Suppose further than the inequality

If(x, y)fr.-(x, Y)I =< 1, (x, y) eR,
holds for all mixed partials fxJy,-J of order n in some sequence I of natural numbers n.
Then f(z) is a polynomial in z.

Proof. Without loss of generality, we assume that f(z)= ,o a,z" for
[zl _-< 6, 6 > 0. Since f has no accumulation points of zeros, there exists a set of
lines through the point z 0 whose union is everywhere dense in the plane, on
which f does not vanish. (We assume without loss that f(0) # 0.)

Let 1o {zlz rei, r real} be a line of 5e.
Let F(r) f(r cos 0, r sin 0).
Then

F,,)(r n) fxJy-- cosJ 0 sin"-J 0
j=o J
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(where we have omitted the arguments of the partial derivative). Hence for n e I,

IF(r)F(r)l <= If(r cos O, r sin 0)1 I,- cos 0 sin-
=o j

Ics 0 sin OI If(r cos 0 r sin

N 2"/2

Now for -R r R, F(r){ > e, R > 0, and so

IF")(r)l 2"/z/e, n 1.

Thus, by the remark following Theorem 2, F(r) is analytic on [- R, R] for arbitrary
R > 0, and thus on (-m,

Hence f(z) ,o a,z" on each line e , and thus on a set which is dense in
the plane. Thus f is an entire function.

But f(z)f")(z) 1, n e I, where f{")(z) now denotes total differentiation with
respect to z. Since f(z)f"(z) is an entire function, it follows that f(z)f"(z) c,, a
constant, for n e I.

Suppose that c, 0, n e 1. Then ig n, n + m e 1, we have kf")(z) f" + =)(z) for
some constant k. Putting (z) f")(z), we have

=(z) +{z).
Thus (z)= _,djea=, where the 2 are mth complex roots of k. Thus f(z)

.2jzP,_ (z) + a= da2je where P,_ (z) is a polynomial of degree n
Thus

f(z)f(,)(z < l(Z)+ -n 2jzajAje dieajz.
j= j=

It is easy to see that this implies that dj O, j 1, ..., m, and sof(z) P,_ a(z).
If c, 0, on the other hand, we have f(z)f(")(z) 0 and eitherf m 0 or againf(z)
is a polynomial of degree (at most) n 1. This completes the proof of Theorem 3.

Remark. Without the assumption of local analyticity, the theorem fails as, for
example, with f(x, y) sin x + sin y).

We proceed to state a sharpening of Theorem for certain special cases.
TnEORE 4. Let f e C"[0, hi, and suppose that f satisfies (1) on [0, hi. Assume, in

addition, that a,_ (x) ,_q(X) 0 on [0, hi, where q 1. Then if

nl f(a)(O)e._ (x)
j

x’,
j=O

we have

xn-J
ftJ)(x) P(j)--,(x)I =< (n j)!

L(P,_ l(X))
’q(q + })F

2
2S(x)

q(q + 1)

where

om
F(O)

,,=o m!(m + 1)!
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Outline of proof. Beginning with the inequality (4) of Theorem 1, we apply a
lemma due to Chu and Metcalf [2] to obtain an explicit estimate of If"(x)l. The
remainder of the proof consists in majorizing a particular resolvent kernel which
appears in the Chu-Metcalf lemma.
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TRIGONOMETRIC APPROXIMATION IN THE SOBOLEV SPACES
W"’2[--n, n] WITH CONSTANT WEIGHTS*

EDGAR A. COHEN, JR.f

Abstract. It is shown that, although sines and cosines are not, in general, complete in wr’2[ 7, 7],
they are complete in the subspace of those functions whose first r- derivatives are periodic of
period 2n. Also, the sequence of sines and cosines is extended to a complete sequence.

1. Introduction. In this paper, two results on trigonometric approximation
in the Sobolev spaces Wr’2I- n, n] with constant weights are presented. The first
result is a negative one, namely, that, although the sequence xr, x 1, ..., x, 1,
sin x, cos x, ..., sin kx, cos kx, is complete in W’21 -n, hi, it is no longer com-
plete when one removes the highest power x from the sequence. The second is
that, whenever the function and its first r- derivatives are periodic of period
2n, there is a Parseval relation in W’2[ n, n] with respect to the trigonometric
functions alone. In addition, there is a certain delineation of structure of the
Sobolev spaces. The Sobolev space W’Z[ n, n] is the space of all functions f on
[-n, n] whose (r 1)st derivative is absolutely continuous, whose rth derivative
is in Lzl 7c, 7z], and whose norm is given by

() f z 2 [f()(x)] 2 dx,
k=O

where 2k is a given positive constant, 0 < k < r, and fk)(x) denotes the kth deriva-
tive of f(x).

Agmon [1, pp. 27-28] has done related work in the context of several variables.
This paper is restricted to a more extensive treatment of the single variable case.

2. Analysis. Let us show, first of all, that the sines and cosines do not form
a complete set in W1’2[ n, hi. To do this, we shall demonstrate, in W1’2 n, n]
with 20 21 1, that the function f x is not in the closure of the linear span
of sines and cosines alone. It is sufficient to prove that Parseval’s relation I3, p. 191]
does not hold. Now the sequence 1, sin x, cos x, ..., sin kx, cos kx,.., is already
orthogonal in wl’2[ , ]. Also,

2 dx 2n,

sin kx 2 sin 2 kx dx + k2 COS2 kX dx (1 + k2)Tr,

COS kX 2 COS2 kx dx + k2 sin2kx dx (1 + k2)n.

* Received by the editors December 3, 1970, and in revised form March 24, 1971.

" U.S. Naval Ordnance Laboratory, White Oak, Maryland 20910.
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Therefore, the sequence

To(x (2c)-1/2, Tl(x) (2c)-1/2 sin x, Tz(x (2re)- 1/2 cos x,...,

Tzk- l(x) (1 + k2) 1/2rc- 1/2 sin kx, Tzk(X (1 + k2) 1/2rc- 1/2 cos kx,

is an orthonormal sequence. Define

(2) f, g) =- fg dx + f’g’ dx.

Then one finds that

(x, To) 0, (x, T) 0, k __> ,
(3)

(x, T2_ 1) 2(- 1)k+ 11/2(1 + k2) 1/2k- 1, k 1.

Also,

(4) x 2= 2re(1 + c2/3).

Now, in any inner product space, Bessel’s inequality [3, p. 172] is valid, namely,

(5) (f,p)2 =< IIf 2,
k=O

where {Pk} is any orthonormal sequence. Note that Parseval’s relation is just (5)
replaced by equality. Using (3) in the left-hand side of (5) and (4) in the right-hand
side, we find immediately that

(6) 2 2 k-2(1 + k2)-i " -Jr-/’c2/3.
k=l

But

2 Z k-2(1 + k2) -1 < 2 Z k-2 r2/3 < + r2/3.
k=l k=l

Therefore, Parseval’s relation does not hold, and the sines and cosines do not form
a complete sequence.

There is another way to see thatf(x) x is not in the closed linear span of the
sines and cosines. We can do this by comparing the classical Fourier series for

f with a modified series in W1’2[ c, c] defined formally by

where, using (2),

a$ To(x + [a’ T2,(x + b T2,_ l(x)],
k=l

a -=(f, T2) and b’ --(f, T2_).

Since f(x) x is an odd function on [-c, c], its classical Fourier series and the
modified series will both consist of sines alone. The classical Fourier coefficients
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with respect to an orthonormal set of sines and cosines in L2[- n, n] are defined by

(7)

ao (2n) -1/2 f(x)dx, ak n -1/2 f(x)coskxdx,

bk
=_ n- 1/2 f(x) sin kx dx, k >= 1.

k>=l,

Hence, for the classical Fourier series of f(x) x, we obtain

x 2
(-1)"+a sinnx

n=l

In contrast, using (3), we see that the modified series is given by

(8) X(x) 2 y (- 1)"+ sin nx

=, n(1 n2)

The series (8), together with its derived series, is absolutely and uniformly con-
vergent. It turns out that we can obtain X(x) in closed form as follows. Note
[2, p. 446] that

[ J(9) cosh ax n- sinh an a- + 2a (- 1)n(a2 + rt2) COS nx

-n __< x =< n. Letting a in (9), one sees from (8) that

Thus,

I0)

and so

(11)

cosh x n- sinh n[1 X’(x)].

X’(x) n cosh x/sinh n,

X(x) x n sinh x/sinh n 4: x, x 4: 0.

Also, from the uniform convergence of the series for X(x) and X’(x), it is clear that
the modified series converges in the mean to X(x) as given by (11) instead of to x.
Thus, the sequence 1, sin x, ..., sin kx,.., is not complete in W’2-n,n], but
is complete in L2 n, hi.

However, it can be shown that the sequence x, 1, sin x, cos x,..., sin kx,
cos kx,.., is a complete sequence in W’2[ n, n] with constant positive weights.
First of all, in L2[- n, hi, given any e > 0, there exists a trigonometric polynomial
s,(x) such that

(12) [f’(x)- s,(x)] 2 dx < ,.

If we let

t.(x) =- s.(t) clt,
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we see that, in general, t, contains an x term. Since f(x) is absolutely continuous
I4, p. 255], we have the following"

(13) f’(t) at t,(x) dx If(x) f(-z) t,(x)] 2 dx.

Therefore, letting r,(x)= f(-7)+ t,(x), one sees from (13), upon using the
Cauchy-Schwarz inequality [3, p. 159], that

If(x)- =<rn(X)] 2 dx 47rze.

Therefore, it is seen that

f_ rn 2 0 (f rn)2 dX + ), (f’ Sn)2 dX ( + 4rr

Since e was arbitrary, it follows that the sequence x, 1, sin x, cos x,..., sin kx,
cos kx, is complete in W1’2[-re, rc]. The results established so far in this section
constitute a crucial step in the inductive proof of the following theorem.

THEOREM 1. In the Sobolev space W’2[-rc, rc], r > 1, the sequence x
x 2, 1, sin x, cos x,... sin kx, cos kx,.., is not a complete sequence. How-
ever, x, x 1, ..., x, 1, sin x, cos x, ..., sin kx, cos kx, is a complete sequence.

Proof. We shall show, first of all, that the sequence x-1, x-2,..., x, 1,
sin x, cos x, ..., sin kx, cos kx, is not complete in Wr’2[ re, 7r]. This we do by
mathematical induction. Let us suppose that the result is correct for W 1,2[
i.e., x cannot be approximated in W 1,2[_ re, rc] to within arbitrary e > 0 by
finite linear combinations of x-2, xr-3, 1, sin x, cos x, for any set
{2k}f,- of positive weights. Assume that it is possible for some set {2k}, to approxi-
mate x in W’2[ re, rc] to within arbitrary e > 0 by linear combinations of x
xr-2, 1, sin x, cos x, Thus, given any positive e, one can find some linear
combination r-1

R(x) =_ flixr-i-’" T,(x),
i=1

where T,(x) is a trigonometric polynomial, such that

2k [(Xr)(k)- R(k)(x)] 2 dx < r2e.
k=O

It follows then that

2k [(X)(k) R(k)(X)] 2 dx < r2e.
k=l

After a short calculation, one finds that

ilx + r;(x r
i=1

approximates x to within in W 1,[_ r, r]. This is a contradiction. Since we
have already seen that the sequence 1, sin x, cos x, ..., sin kx, cos kx, is not
complete in Wl’[-rc, rcl, the first half of the theorem is proved.
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To show the second half, assume that x 1, x 2, x, 1, sin x, cos x, is
complete in W 1,2[_ n,n] for any set {2k},- Of positive weights. We want to show
that xr, x-l,...,x, 1, sinx, cosx,.., is complete in W’Z[-n,] for any set
{2k},=o ofpositive weights. Suppose thatf e W’2[ , ]. Thenf’ W 1,2[_ , hi.
Therefore, by inductive hypothesis, given any e > 0, there exists some finite linear
combination

r-1

S(x) ixr-i + T,(x)
i=1

such that

where

2k [f(k)(x)- /(k)(x)’]2 dx < e,
k=l

I(x) =- S(t) dt + f(- n).

xr-Note that I(x) is a linear combination of x, ..., x, 1, sin x, cos x,..., sin nx,
cos nx. From the above inequality, one sees that

[f’(x)- I’(x)] 2 dx [f’(x)- S(x)] 2 dx <

Therefore, using the fact that

If(x) I(x)] 2 dx f’(t) dt S(t) at dx

and the Cauchy-Schwarz inequality [3, p. 159], we have

If(x)- <=I(X)] 2 dx 422/,1

Hence,

2k [f(k)(x)- I(k)(X)]2 dx < (1 +
k=0

Since e was arbitrary and since the result has already been established in
W1,2[_ , n], the induction is complete.

In W’2[ , ], the inner product is defined by

(14) f_r (k) (k)(f g) =- 2k f (x)g (x) dx.
k=O

Using (14), one finds that the orthonormal set of sines and cosines is given by

To(x) (2n2o)-1/2,

r2(x) 2,
i=0

r2k(X 7Z /ik2i
i=0

1/2

TI(x) n /i sin x,
i=0

COSX, "’’’ T2k-I(X) (n /=0
I’k2i

cos kx

1/2

sin kx,
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Define a (f, T2k and b (f, T2k_ 1). These are seen to be the coefficients for a
modified series

(15) a] To(x + [a T2k(X + b T2k_ (x)]
k=l

Although the sines and cosines, in general, are not complete in Wr’2[ re, r],
they are complete in a certain subspace of this Sobolev space, namely, that of those
functions which, together with their first, second,..., (r- 1)st derivatives, are
periodic of period 2t. Furthermore, in this context, the classical Fourier series and
the modified series are precisely the same. We have the following theorem.

THEOREM 2. Consider the subspace of allf in Wr’2[ r, rc] with constant weights
with the property that f(k)(_ 7r) f(k)(lr,), 0 k < r 1. Then Parseval’s relation
relative to sines and cosines is satisfied for all suchf and the modified series and the
classical Fourier series coincide.

Proof Applying (14), we see, after a short calculation, that the coefficients for
the modified series (15) are given by

a (2o/2r0/2 fdx,

, -1/2(16) a .ik2 f(x) cos kx dx, k > 1,
i=0

b re- 1/. 2ik2i f(x) sin kx dx, k 1.
i=0

Under the periodicity hypotheses of the theorem, the classical Fourier coecients
for f((x) are just na and nb, 0 N k N r. Therefore, by Parseval’s relation
for the L-norm,

(7 [f(x x oag + n (a + b.
k=0 i=0

Now, by comparing (7) and (16),

(a)a 2oag, (a) ( 2ik) (b)ak
i=o i=o

So,

(a) + [(a) + (b) Xoag + Xk (a + b)
k=l k=l i=0

X [f(x)] x
k=0

by (17). It remains to show that the classical and the modified series are the same.
The modified series (15) for f(x) is

* sin kx(18) a(22o) /2 + a 2ik2i COS kx + b 2ik2i
=1 i=0 i=0
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Applying (16), (18) becomes

(2t)- f(x) dx + c- f(x) cos kx dx cos kx
k=l

ao + n- 1/2(ak Cos kx + bk sin kx).
k=l

_,f(x) sin kx

So the modified series and the classical series are the same.
COROLLARY 1. Consider the subspace ofall periodic functions f of period 2c in

W1’2[ re, t]. For all such f Parseval’s relation with respect to sines and cosines
holds, and the series (15) and the ordinary Fourier series are the same.

COROLLARY 2. Parseval’s relation with respect to cosines alone holds for any
even function in W1’2

Example. Let f(x) x2/72 1, SO that f(-) f() 0. Suppose 2o 21
1. Sincef is even, we need only apply (2) to find

(x2/2 1, (2rt)-1/2) _2(2)1/2/3

(1 -- k2)-1/27 -1/2 COS kx)--4(- 1)(1 + k2)l/27f,-3/2k -2
for k 0, and

(X2/2- 1,

for k > 1. Now

IIx2/2- 1112= 8(2rc2 + 5)/15c.

Hence we need to verify that

8(2rc2 + 5)/15rt 8rt/9 + [4(-1)(1 + k2)l/2rc-3/2k-2]2.
k=l

One sees that this reduces to showing that

’/90+ rc2/6= Z k- " + Z k-2,
k=l k=l

a result that is well known [2, p. 446].
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DISCONJUGACY TESTS FOR SINGULAR LINEAR DIFFERENTIAL
EQUATIONS*

D. WILLETT-

Abstract. Special disconjugacy tests of the de la Vall6e Poussin type for a closed interval [,
which need not be bounded, are derived for linear differential equations with continuous coefficients
on the open interval (, fl). The method applies, in general, to linear perturbations of disconjugate
linear equations. The results include a precise first-term asymptotic description at both and fl of a
fundamental system of solutions.

1. Introduction. In this paper, the solutions of the linear differential equation

Ly =- y(") + pl(t)y"-1 + + p,(t)y O,

where Pk e C(, fl), will be studied with respect to their zeros in [, fi], -o <
< fi =< oe. By a solution of(1.1), we shall mean a function in C"(0, fl) different from
the identically zero function.

Special attention must be paid to the endpoints and fl since they may be
singular points of the equation. By a neighborhood of , we shall mean an open
interval (, a) with < a < fl, and by a neighborhood of fl, we shall mean an open
interval (b, fl) with 0 < b < ft. The following abbreviations will be used throughout
the paper"

lim lim, lim= lim, f(oO=j’(o+), f(fl)=j’(fi-).
+ fl fl

Finally, a continuous function fwill be said to be integrable on (, fi) provided it is
improperly integrable on (, fl); that is, the limit as c 0+ and d fl- of

f(t)dt exists. The corresponding limit will be simply denoted by . f(t)dr.
DEVINITIOY 1.1. The point fl (00 is a singular point of (1.1) if

or if one of the coefficients in the equation is not integrable in some neighborhood
of fl ().

DF,FINITION 1.2. An n-tuple (u 1,..., u) of solutions of (1.1) is a principal
system at b [a, fl provided there exists a deleted neighborhood N of b such that:

(i) uk(t) > O, N, k 1, ..., n,
(ii) limt_u(t)/u+l(t)= O,k 1, ..., n- 1.
Clearly, if (u 1, "’", u,) is a principal system at b [a, ill, then the set {u , ...,

u,} is a fundamental system on (, fl) for (1.1). Hence for any solution , there exist
constants c, ..., c, such that

// Clb/1 --]- -- Cnbl

Now, it is easy to show that if (v, ..., v,) is any other principal system at b and

t blV -+- + b.v,,,

then for the pair b, c.i which are both different from zero and have maximum k and
.j, k j. Hence, the following definition due to Levin [4 is well-posed.
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DEFINITION 1.3. A solution has a zero of order k, 0 < k < n 1, at b [0, fi]
provided there exists a principal system (u l, ..., u,) at b and constants c l, ...,
c,_ such that c,_ =P 0 and

q(t) c,u(t) + + c,_u,_(t),

A solution , has a zero of order k at b, if and only if lim ,(t)/u2(t) 0 for
j n, n k + 1, and 4= 0 for j n k, as --+ b. For example, exp (t) has no
zeros at oo as a solution of (D2 1)y 0, but has one zero at c as a solution of
(D2 3D + 2)y 0. Thus, zeros of solutions depend in general upon the operator.
However, Definition 1.3 is equivalent to the usual definition ofzeros at nonsingular
points. Denote the number of zeros counted, as prescribed in Definition 1.3, of a
solution , in an interval I c [, fl] by Zfl, and let Zq,b Zq,[b, b].

DEFINITION 1.4. Equation (1.1) is disconjugate on I c [0, fi] if for any solution, Z,I =< n 1. Equation (1.1) is disconjugate at b [z, fl] if there exists a neighbor-
hood N of b such that (1.1) is disconjugate on N.

It is well known that for any b (0, fl), (1.1) is disconjugate at b because of the
assumption of continuity on the coefficients. Actually, integrability at b is sufficient
for this result as well as the other results stated in this paper. Levin [4] and Hartman
[1 have shown that if Ly 0 is disconjugate at an endpoint, say fl, then Ly 0
has a principal system at ft. Hence, one can talk about the number of zeros Zfi ofa
solution at a singular point ft.

DEFINITION 1.5. An n-tuple (us, ".., u,) of solutions is a fundamental principal
system on [a,b] c [a, fl] provided (u 1,.-., u,) is a principal system at b and
(u,, ..., ul) is a principal system at a.

Definition 1.5 differs slightly from the corresponding concept used by us in
[8], where we added the condition u- )(a) in order to obtain uniqueness. As
defined above, the function u in a fundamental principal system is unique up to
multiplication by a positive constant. Levin [4] first used the idea of a fundamental
principal system in studying disconjugacy. The fundamental relationship in this
regard is described by the following theorem, which is at least partially contained
in the results of Levin.

THEOREM 1.1. Equation (1.1) is disconjugate on [z, fl], if and only if for any
[z, b] c [z, fl, b > z, there exists a fundamental principal system on , b] jbr (1.1).

Of course, the relative roles of and fl in Theorem 1.1 can be interchanged. A
short proof of Theorem 1.1 will be given at the beginning of 2.

For very simple disconjugate equations, it is easy to show the existence of a
fundamental principal system by simply getting the general solution of the
equation; for example, a system on [, fl for L D" is (u l, ..., u,) with

u(t) (fl t)"-(t )-

if-c < </3 < oo, andwith

u(t) (t )-’

if - < < fl . Of course, y") 0 does not have a fundamental principal
system on [-, ], because this equation is not disconjugate on
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Let

(1.2) I(t, S; 2, k) 2(t2) (t) dt dt_ dt2,

,n.

We showed in [8] how to represent a fundamental principal system on , fl] in
terms of integrals of the form (1.2) with s provided was not singular and
Ly 0 was disconjugate on (0, fl) for some 0 < . This result can be extended to
the following theorem (proof in 2).

THEOREM 1.2. Assume that o <= < fl <= and that (1.1) is disconjugate on
[cz, fl]. Then there exists , k 1, ..., n, such that the following hold"

(i) k cn-k+’(,fl), k > 0 on (,fl), k 1, ..., n;
(ii) k is integrable on [, t for each < < , and

(1.3) lim k(s) ds o k 2, n;
tfl

(iii) the fundamental principal system (u l, u,) on [z, fl] of (1.1) exists, and

(1.4) ul(t)- (t), uk(t) ,(t)I(t, cz; 2,’", k), k 2,..., n.

Once the representation (1.4) is obtained, the asymptotic theory in Willett [8
essentially carries over to the present context. In [9], we showed how to use this
theory to obtain disconjugacy results for nonsingular equations. The main purpose
of this paper is to extend that analysis to singular equations over closed intervals
[, ]. The general result in this regard is Theorem 3.1. Examples of the type of
specific disconjugacy tests implied by Theorem 3.1 are the following two results. In
the statements of these results, we denote the greatest integer contained in a
number x by [x.

THEOREM 1.3. /f - < < fl < , (t )k-1( t)k-lpk(t is integrable
on (z, ), k 1, n, and

Ak Ipk(t)l(t (X)k- 1(/ t)k-1 dt < (fl c)k-
k=l

where

2"-1 A n- Ak(1.6) Zl 2 (k- 1)!
k=2,...,n-1,

then (1.1) is disconjugate on [cz, fl]. Furthermore, (1.1) has a fundamental system
{w, w,} of solutions such that

(1.7) %(t) (fi t)"-k(t cz)k- ’[1 + o(1)] as fl,
[ck(fl t)"-k(t o)k-’[1 + o(1)] ast

Ck, nonzero constant.
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and
THEOREM 1.4./f < < , k-lpk(t is integrable on(a, ), k 1, n,

(1.8) B
k=l

where

Ipk(t)l(t a)k-1 dt < l,

(1.9) B1 2 B,
n

Bk2 (k- 1)!

k--2,...,n- 1,

then (1.1) is disconjugate on , ]. Furthermore, (1.1) has a fundamental system
{w1,’", w,} of solutions such that

(t )k-l[1 -k- o(1)] as ,
Wk(t)

bk(t )k-111 + O(1)] as - , bk, nonzero constant.

We had already shown in [9] that (1.5) was sufficient for disconjugacy on
[, fl), provided Pk C[a, fl). Hence, for a comparison of (1.5) with previous tests of
a similar type as found, for example, in [2], [3], [4], [5], [9] and [10], which are
often called de la Vall6e Poussin-type tests [7], see [9].

2. Fundamental principal systems.
Proof of Theorem 1.1. Assume that (1.1) is disconjugate on [a, fl] and that

< b < ft. Definition 1.4 implies that (1.1) is disconjugate at a and b. Hence,
from the results in either [1], [4], or I8], there exists a principal system (ul, ...,
at b. Since Zu,b n by definition and (1.1) is disconjugate on [a, hi,
--0; in particular, Z,a 0. Thus, u is positive in a neighborhood of a and
limt_ v(t)/ul(t) exists as a finite number for each solution v. Hence,

exists; and if

then

C21 -lim u2(t)/ul(t
t--

@1 H1, (/92 /’/2 -- C21Ul,

lim q92(t)/q91(t O;

hence, Z02a >= by the comment following Definition 1.3. But Z2 > 1 and

Zob n 2, which follows from the definition of q2, imply Zo[e, b] => n,
which contradicts the disconjugacy of (1.1) on [e, b]. Hence, Zoe 1.

Suppose now that functions

(2.1)

have
k=l,

(2.2)

(Dk Uk ql_ Ck,k lblk + -- CklUl, k 2,

been determined so that the Ckj are constants and
..,j- 1. Let

q) tl .qt_ bj,j q)j_ Av -’}- b qO
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where bj1 -lim,_, uj(t)/q)l(t) and

bjr -lim uJ(t) + bj,r_lq)_l(t) + + bjlqOl(t) r 2 j 1
, q,(t)

are determined inductively. The limit defining bj necessarily exists because

Zore r- 1 and for v uj + bj,_lq_l +"" + bjlq)l, Zve ->_ r- by the
way bj.r_ 1, "’", bjl are determined. The existence of constants cj,j_ 1, "’", cj1
so that (2.1) holds for k j follows by substituting for ql, "’", (Pj- in (2.2) from
(2.1). Thus, the principle of finite induction implies the existence of solutions
ql, "’", q), satisfying (2.2) such that Zoka k 1, k 1, ..., n. From the form
of (2.2), it is clear that Zq,kb n- k, k 1,..., n; hence, (q01,..., 0,) is a
fundamental principal system on [, b].

Next, consider the converse and suppose Ly 0 is not disconjugate on [, fl].
Since Ly 0 has a fundamental principal system on [, fl], Ly 0 is disconjugate
at both e and ft. So, by a result of Levin [4, Theorem 3.3], there exists a solution ,
integer k, and point b e (, fl] such that Zoo n k, Zob >= k. Let (b/i, Un)
be a fundamental principal system for [e, b] hence, there exist constants cl, "’", c,
such that

0 Clb/1 + -- CnUn"

But Zq,cz =n- k implies c Cn_ 0, and Zob >= k implies c,
C,-k+l 0, which implies _= 0. This contradiction implies Ly 0 is dis-

conjugate on [e, fl].
Proof of Theorem 1.2. Let (Y l, "’", Y,) be a fundamental principal system on

[e, fl]; such a system exists by Theorem 1.1. Denote the Wronskian of k functions
u 1,..., Uk in general by Wk(Ul, Uk); in particular, let

VI/(Yl, Yk)"

Then, Theorem 2.1 of Levin [4] implies the following"

(2.3) Wk>O on(e, fl), k- 1,.-.,n,

(2.4) lim Wk_ 1(Yl, Yk-2, Yk)/W- O, k 2, ..., n,
t--

(2.5) lim Wk_ l(yl, Yk-2, Yk)/Wk-1 00, k 2,’", n.

Let W-1 Wo-- 1, and define

Then (cf., e.g., P61ya and Szeg6 [6, p. 113]),

k= 1,...,n.

d Wk_ I(Yl, Yk-2, Yk)
k 2 n.k(t)

dt Wk- l(yl, yk-1)

Hence, (2.4) implies (k integrable on [cz, t] for all e < < fl, and (2.5) implies (1.3).
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(2.6)

Since W 4:0 on (e, fi), L can be factorized as follows"

Ly Wn D D D--
W._, w_:w WoW: w
Wn y

Wn- O V--2 V-1
Let uk, k 1, ..., n, be defined by (1.4). Then, (2.6) implies Luk 0, and from
(1.3) and (1.4), it is clear that (Ul, ..., u,) is a fundamental principal system on
E,

THEOREM 2.1. Assume (1.1) is disconjugate on [, ] and let (Ul, u,) be a

fundamental principal system represented as in Theorem 1.2. Then, the Cauchy
function g(t, s) of (1.1) is given by

g(t, s) u,(t)v,(s) / (-- 1) lUl(t)Vl(S
l(t)I(t,s; 2, "", n)Un(S)

(--1)n-ll(t)I(S t;n, 2)Vn(S),

where

Vn(t) E(t)’" n(t)- t, va(t) v,(t)I(t, cz; n, k+ 1),

k 1,...,n- 1.

Furthermore, (v,, Vl) is a jindamental principal system on [, fi jbr the jbrmal
adjoint equation to (1.1).

Proof The proof is identical to the corresponding part of the proofs of
Theorems 1.1 and 1.2 in Willett [8], where was assumed to be a nonsingular
point. All that was required in those proofs was the appropriate representation (1.4)
of a fundamental system of solutions, which Theorem 1.2 gives us in the present
situation.

Now let u and v be defined as in Theorem 2.1, and let j be a fixed integer
such that 1 <_ j <__ n. Define

j-1

Z (-- 1)n-- kuk(t)(l)k(S)/l)j(S))" ( < S < t,
k=l

(2.7) hj(t, s)

2 1)n-k+l u(t)(v(s)/vAs)); <= s <
k=j+l

where Z_ 0 if./= n.0 ifj and k j+

THEOREM 2.2. As afunction of s, hi(t, s) is integrable on (, fl) and

(2.8) 1)n- j- lhj(t, s) > O, s va t,

(2.9) uj(t) (- l)n-j- hj(t, s) ds.
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Furthermore, if vjf is integrable on (, fl) and

(2.10) wj(t) h(t, s) v(z)f(z) dr ds,

then

(2.11) Lwj f on (, fl),

(2.12) lim w;(t)/uj(t) O,

(2.13) lim w(t)/u(t) (- 1)-- v(s)f(s) ds.

Proof. From the properties of the functions , ..., , given in Theorem 1.2
and the definition of v, ..., v given in Theorem 2.1, it is clear that (v/vj)’ is
integrable on (e, t) when k < j and is integrable on (t, ) when k > j, for all
e < < ft. Hence, h(t, s) is an integrable function of s on (e, fl). The proofs of
(2.8)-(2.12) are identical to the proofs of the corresponding parts of Theorems 3.1
and 3.2 in Willett [8]. To obtain (2.13), note that

(2.14) w(t) h(t, s) ds v;(z)f(z) dr hj(t, s) v(z)f(z) dz ds;

and since (2.12) with and fl interchanged is just

hj(t, s vj(z)f(r) dr ds o(uj(t)) as ,
(2.9) and (2.14) imply (2.13).

Consider now the perturbed linear equation

(2.15) Ly fly(t)] =_ rx(t)y"- x)(t) +... + r,(t)y(t),

where rk C(a, fl), k 1,..., n, and (1.1), that is Ly 0, is disconjugate on
[, fl]. Theorem 2.2 implies that any solution y C"(cz, fl) of the integro-differential
equation

(2.16) y(t) uj(t) + hj(t, s) ds

is a solution of the differential equation (2.15).
THEOREM 2.3. Assume (1.1) is disconjugate on [, ]. Iffor each j, j 1,..., n,

there exists a solution yj C"(a, fl) of (2.16) such that

(2.17) cj vj(z)f[yj(r)] dr

exists (is a finite number), then (21,’’" Zn) where

zj yj +

is a fundamental principal system on [, fl] for (2.15).
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Proof Theorem 2.2 implies

zj(t) uj(t) / o(uj(t)) / Icjluj(t) as fl;

hence, zj(t) is positive in some neighborhood of fl and
lim zj(t)/zj+ l(O O, j 1, ..., n
t- fl

that is, (z l, ..., z,) is a principal system at ft. Theorem 2.2 also implies

limzj(t)/uj(t)- 1 / ]cj] / (-1)"-J-cj >__ 1;

hence, zj(t) is positive in some neighborhood of and

lim zj+ (t)
lim zj+ 1(0 uj(t) uj+ (t)

lim lim 0"

that is, (z,, --., z) is a principal system at .
3. Diseonjugaey tests for perturbations of diseonjugate equations. Theorems 3.1

and 2.3 reduce the question of disconjugacy for the perturbed equation (2.15) to
finding conditions under which the integro-differential equations

(3.1) y(t, b) u(t, b) + h(t, s, b) v(’c, b)f[y(r, b)] dr ds,

j 1,..., n, e < b __< B, have solutions. One should not forget that (3.1) is in
general a singular equation and the existence of a solution is a nontrivial question.
However, since f[Yl =- rl(t)Y(- +"" + r,(t)y is linear in y, y’,..., y(n-l/, one
can quite naturally apply successive approximations or the principle of contraction
mappings to (3.1).

Let
p (t) vj(t, b)uj(t, b),

(3.2) pn(t) + lpj(t, b) fi’
pt,(t) vj(t, b) fb

Actually, pk(t) pk(t,j, b); hence, let

c3"- h(t s b)

c3k-h(t s, b) ds,

(3.4)

ds,

k 2,..., n- 1.

then (2.15) is disconjugate on , fl]. Furthermore, (2.15) has a fundamental system

{w 1,..., w,} of solutions such that

(3.5) w (t) u (t, fl)[ + o(1)] as --, fl,

(3.6) wj(t) bjuj(t, fl)[1 + o(1)] as ,
bj nonzero constant.

(3.3) a(t) max sup p(t,j, b), k 1, n.
j= 1,...,n o<b<=fl

THEOREM 3.1. If (1.1) is disconjugate on [, fl] and

v Ir(t)la,_+ (t)dt < 1,
k=l
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Proof Let b, a < b =< fl, and j, < .j =< n, be given and fixed in what follows.
For z e C"(e, b), define

z- }(t)v;(t, b)
(3.7) z max sup

k= 1,...,, <t <b pk(t,.j, b)

Let

B={zeC"(,b): z <c}
so that B with norm defined by (3.7) is a Banach space. Furthermore, uj =<
by (2.9), and so uj B. For z e B, let

Tz u(t, b) + h(t, s, b) v(r, b)f[z(r) dr ds.

Then for y, z B,

Tz Ty z- y Ir(t)lp.-g+ 1(/?) d/ v z- y
k=l

hence, for y e B,

IITyll IlZY- T011 + Ilujll

and so TB B. Since v < by assumption, the contraction mapping principle
implies that there exists a unique yj e B such that Tyj yj; that is, yj is a solution
of (3.1).

To conclude the proof, let b fl and

where cj is defined as in (2.17).
We note that the roles of e and fl can be interchanged in the above develop-

ment; that is, we can let (u t, ..., u,) with uj uj(t, a), < a < fl, be the funda-
mental principal system on [a, ill. Accordingly,

(3.8) a(t) max sup p(t,a,j),
j= 1,...,n

and Theorem 3.1 holds as stated.
Proof of Theorems 1.3 and 1.4. These two theorems are essentially special

cases of Theorem 3.1. In these cases, L D" and special estimates are made for
rr, k 1, ..., n. To see how the estimates are made in the case of Theorem 1.3,
see the proof of Theorem 1.1 in Willett [9].

In the case of Theorem 1.4, the version of Theorem 3.1 needed is the one with
/3 c fixed and rrk defined by (3.8) with =< a < oo. In this case, a fundamental
principal system for D"y 0 on [a, oo] is (u l, ..., u,), where

U(I, a) (t a)l- 1/k [,

It follows that v u,_+l, k 1, ..., n; hence

pk(t) (t- a)n-kBn_k+ (t- x)n-lBn_k+ 1,

Thus, (1.8) implies (3.4), and the conclusion follows.

k= 1,..-,n.

k= 1,...,n.
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THE ASYMPTOTIC DISTRIBUTION OF EIGENVALUES FOR THE
BOUNDARY VALUE PROBLEM

y"(x) k2rtx)y(x) = O, y . L2(--c -I- c)*

LAURENCE WEINBERGt

Abstract. In this paper we study the problem y"(x)- 22p(x)y(x)= 0, y(x)L2(-c
Sufficient conditions are given on p(x) to insure fhe existence of eigenvalues and to enable one to
compute the asymptotic distribution of all large positive eigenvalues. The equation considered is of a
form of interest in wave mechanics and particle scattering.

1. Introduction. We are concerned with the eigenvalue problem

(1.1) y"(x) 22p(x)y(x) O,

(1.2) y e L2(- , + ),
where p(x) is a real-valued function of the real variable x and y L2(a, b) means
lb, ly(x)12 dx < . In particular we are concerned with the asymptotic distribution
of large positive eigenvalues for this problem. We shall show that for p(x) in a
certain class of functions, there corresponds to each negative minimum of p(x) an
increasing sequence 2k,l Of eigenvalues for k 1,..., m such that for each k the
eigenvalue sequence has an asymptotic expansion in powers of 1/1 as + .

The asymptotic relation is denoted by "", and by

f(x, o)
n:0

we mean

lim co f(x, co) a,(x)co 0

for co in some sector and x in some set and m 0, 1, 2, By means of the Liou-
ville transformation, (1.1) can be reduced to the form y"(x) + (22 + Q(x))y(x) O.

The boundary condition, y e L2(-oo, + oo), imposes certain restrictions on
p(x). Let p(x) > 0 and let A(x) + /-(-. Then, if

A"(x) 3(A’(x))2

2AZ(x) 4A3(x)
dx< ,

the differential equation (1.1) possesses two solutions y+(x) and y_(x) which have
the WKBJ representations

y_ (x) [IA(x)l-/2 exp fx+2 A() dz [1 + O(2- I)
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valid for x e(-oc, + oc); see, for example, Langer [6, p. 550]. If p(x) only has
polynomial-like behavior as Ixl , then neither solution will be square-
integrable on (-o, +); however, y+(x)(y_(x)) tends to zero exponentially as
x --, -o (x --, + o). Hence p(x) must possess at least one zero for the existence
of eigenvalues of the problem (1.1), (1.2). We note, however, that while the WKBJ
representation (1.3) has a singularity at the zeros of p(x), actual solutions of the
differential equation (1.1) are analytic for all real x. Under appropriate assumptions
there exist solutions having the representations (1.3) on intervals not containing
zeros of p(x), but these solutions will, in general, differ from interval to interval.

The zeros of p(x) are referred to as turning points or transition points, and the
problem of representation of solutions at such points is very difficult and has not
yet been fully solved.

If p(x) has polynomial-like behavior as Ixl oc and if p(x) > 0 for Ixl suffici-
ently large and x > 0 (x < 0), then the representations (1.3) show the existence of a
solution y_ (x) (y + (x)) which approaches zero exponentially asx + oc (x oc)
and y_(x)e L2(a, + oc)(y+(x)e L2(-, a)) for any finite a. However, if p(x) < 0
for Ixl sufficiently large and x > 0 (x < 0), then the representations (1.3) exhibit
oscillatory behavior and the question of square integrability is more delicate and
will not be treated here. Our techniques require the zeros of p(x) to be simple,
and hence we shall assume p(x) satisfies the following hypotheses for the remainder
of this paper"

(H. 1) p(x) is a real analytic function for x o, + )
(H.2) p(x) possesses a finite, even number ofsimple real zeros ai, 1, 2m,

with azm < a2m_ <’’" < a l;

(H.3) p(x) coxl[1 + q(x)] with Co > O, 0 an integer, and

lim q(x) O.

We may consider p(x) as a complex analytic function of a complex variable x
in a region (by a region we mean an open connected set together with all or part
of its boundary) containing the real axis and such that p(x) 4:0 in if x va ai,

1, ..., 2m. Denoting by I the interval ak+ =< x < a, we can define a single-
valued analytic branch of pl/)(x), denoted by A(x), in U’-_I I)_1 such that
A(x) > 0 for x > a l. For r real and r ai, 1, ..., 2m, we define A(x) on the
upper and lower cuts by A(: +) limt_ o A(z + it) and A(: -) limt_o- A(r + it)
respectively.

Solutions of (1.1) can be written in the form

(1.4) y(x) exp u(s)

where u(x) satisfies the Riccati differential equation

u’(x) + u2(x)= X2p(x).

The Riccati differential equation (1.5) possesses two formal solutions u + (x, 2) and
u_ (x, ,)

p’(x)
(1.6) u + (x, 2) 2A(x) - P(x, 2)

4 p(x)
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and

(.7) u_ (x, ) A(x) P(x, -,),
4 p(x)

where

(1.8) P(x,2) (A(x))-"P,(x)
n=l

and the P,(x) are determined recursively.
We now state Lemma 1.1; the proof will be given in 2 and 3.
LEMMA 1.1. For all X > a (X < a2m there exists a o > 0 such that the

differential equation (1.5) possesses a solution Uo(X, 2)(u2,,(x, 2)) with the properties"

p’(x)
(i) Uo(X, 2) + 2A(x) 4 P(x, 2)

4 p(x)

p’(x P(x (-- 1)m))UZm(X,2)--(--1)m2A(x)
4 p(x)

asl2A(x)[ Jbr x IX, + )(x e (- , X])and 2 So, where So {2IRe 2 20,
[Im2[ N 2}.

(ii) Yo(X, 2) exp Uo(S, 2) ds

y2m(x, 2) exp U2m(X, X) ds

is the solution of the differential equation (1.1) sati@ing Yo e L2[X, + )
(y e c(- , x)).

(iii) yo(x, 2) (Y2m(X, 2)) is analytic in 2for X e S0

By analogy with the terminology when p(x) is a polynomial, we shall refer to
yo(x, 2)(Y2m(X, 2)) as the subdominant solution as x + (x ). Moreover,
we know yo(x, 2) and y2,,,(x, 2) are solutions of the differential equation (1.1) for all
real x. Hence the problem ofexistence ofeigenvalues can be phrased in terms of the
linear dependence of yo(x, 2) and Y2m(X, 2) by using the Wronskian determinant"

(1.9)
yo(X, /],) Y2m(X, /],)

y;(x, /) ylm(X,

Thus, 2 is an eigenvalue if and only if 2 satisfies (1.9). We note that the Wronskian
in (1.9) is independent of x since (1.1) contains no first derivative of y(x).

Our knowledge of the asymptotic behavior of yo(x, 2) and Y2m(X, 2) is on the
intervals IX, + ) for X > a and (- v, X] for X < a2,, respectively. Since these
intervals are disjoint we cannot use this asymptotic behavior to study (1.9) directly.
To overcome this difficulty we shall construct m pairs ofregions and m pairs oflinear
independent solutions of (1.1) which will enable us to connect the two subdominant
solutions of Lemma 1.1. We now state Lemma 1.2; the proof is given in 4.
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LEMMA 1.2. There exist rn pairs ofregions D +(2k- 1) and D_(2k_ 1), k 1, ..., m,
and m pairs offunctions u + (2k- 1)(X, 2) and u_(2k_ 1)(x, 2), k 1, m, and 22 > 0
such that

(i)

for X > al,

D+I D_ IX, +0(3)

D+{2k+l) D-{2k+I) f’] D+(2k_l) ["] D_(2k_l) :/: ,
k-- 1,...,m- 1,

for X < a2m

D+(2m_l) D_(2m_l) (-,X] :)b_

(ii) u + 2k-,)(x, 2) (- 1) + 12A(x) +
4

P(x, (- 1)k+ 1)

as 12A(x)l for x e D +_ 2- and

2 e $2 {21 Re 2 > 22, IIm 21 =< ’1}

(iii) Y+(2k- 1)(X, 2) exp fx U + (21- )(S, /) ds

are linear independent solutions of the differential equation (1.1)for k 1, ..., m
and 121 sufficiently large with 2 S2

From Lemma 1.2 we know there exist constants, connection coefficients,
depending only on 2 such that

(1.10)

and

Y2m C + l(,)y -+- C2-ml(/)Y-12m +

where the (x, 2) dependence of the y’s has been suppressed. We introduce the
notation

VVjA2

Hence (1.9) can be written as

Wo,2m(/)
C;-’ co-’
C2+2 C-2ml W+ 1,- (/) 0.
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From Lemma 1.2, this is equivalent to the equation

(1.11) C-1 c- O.

By use of the system (1.10) we can evaluate equation (1.11) asymptotically using the
asymptotic expansions given by Lemma 1.1 and Lemma 1.2. This enables us to
prove the following.

THEOREM. Let

(l- 1/2)
+2(I)

f"-’x/p(x)l dx n=l
#a2k

k 1, m, beformal power series in I- which satisfy theformal equations

-’ () r ]R p(x)l dx [(- 1) + X2A(x)]-JP(x) dx
a2k j=

where F is a contour which encloses ae and ae_ only, and the integration is taken
in the counterclockwise sense. Then there is a positive integer o such that we can
denote all large positive eigenvalues of the problem (1.1), (1.2) by 2,l for l= o,

o + 1,... in such a way that

(l- 1/2) + .t-" + o(tr #lp(x)l ax .=,
da2k

as + , where N is any positive integer.
When p(x) is a polynomial which possesses 2m simple real zeros and no other

zeros, the problem (1.1), (1.2) has been considered by Evgrafov and Fedoryuk [2]
and Sibuya [7]. By taking p(x) to be a polynomial these authors were able to use
the theory of irregular singular points at x . In the proof ofLemma 1.2 we need
to study the properties of certain curves, the Stokes’ curves, in the complex plane.
These curves are, in general, very complicated and the assumption that p(x) is a
polynomial enables one to study the curves in the entire complex plane. By
restricting our analysis to a local neighborhood of the real axis we are able to
relax the requirement that p(x) be a polynomial. The technique of utilizing the
complex plane in order to bypass a real transition point appears to have its origin
in a method suggested by Zwaan [9]. The mathematical rigor ofZwaan’s treatment
is unclear; see, for example, Birkhoff [1]. A similar approach of utilizing the
complex plane has been employed by Fr6man and Fr6man [3].

Evgrafov and Fedoryuk computed connection coefficients about each transi-
tion point one at a time in order to connect the two subdominant solutions of
Lemma 1.1. In our work the connection coefficients are computed about pairs of
zeros. This technique was introduced by Sibuya and simplifies the computations.

Equations of the type considered here are of interest in the study of one-
dimensional particle scattering and wave mechanics. In particular, we can study
differential equations such as

o.
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2. A related integral equation. In this section we shall obtain an integral
equation whose solution will yield solutions of the original differential equation
(1.1). This technique has been used extensively in ordinary differential equations.
The integral equation will be solved by the method of successive approximations.

The change of variables

(2. l) y(x, 2) exp u(s, 2) ds

transforms the original differential equation into the Riccati differential equation

(2.2) u’(x, ) -1- U2(X, ) 22p(x).

The assumptions (H.1), (H.2) and (H.3) allow us to extend p(x) as a complex
analytic function in some region of the complex plane containing the real axis.
We further may assume that p(x) possesses no zeros in the closure of other than
X al, x a2, and x a2m. Without loss of generality we may take aem < 0
< a since this condition can always be achieved by a linear translation of the x
variable. Consequently in U ’--1 I2k_1, where

I {xlak+l < x <= au},

we can define a single-valued analytic branch A(x) of pl/e(x) by taking a(x) > 0
for x > a It is known [7, p. 238] that (2.2) possesses two formal solutions u+(x, 2)
and u_(x, 2),

p’(x)
(2.3) u + (x, 2) 2A(x) P(x, 2),

4 p(x)

p’(x)
(2.4) u_(x, 2) 2A(x)

4 p(x) - P(x, 2),

where

(2.5) P(x, 2) [2A(x)]-"P,(x)
n=l

and

PI(X) 1 P(x) P(x)

1{1 p’(x) }(2.7) P,+ l(x)= (n + 1) P,(x) P’,,(x)- y’, Pj(x)Ph(x n >_ 1.- j+h=n

(2.6)

We would like to show that (2.2) possesses actual solutions whose asymptotic
behavior, as 12A(x)[ --, oo in some appropriate sector and x in some subregion of
o, is described by one of the forms (2.3) or (2.4). We note, however, that the zeros
of p(x) are singularities of the representations (2.3) and (2.4). Hence we would
expect to have to restrict x to be bounded away from the transition points ai.
Let B(ai e) for e > 0 be the set {x e [x all < g} and let N U’- Izk-1 -1

Then in a region U ff-m B(ai, ) we have that A(x) is well-defined and x is
bounded away from all transition points.
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Let us suppose that 2 lies in a strip given by

(2.8) {2IRe2 >= Ao > 0,1Im21 _-< A1}.
We observe that for x , 2 , and n 1, 2, ...,
(2.9) IP,(x)l =< M,(e) <

Our assumptions on p(x) are such that for x R we have

Ip(x)l => 2(e) > 0

for some (e) > 0, and hence we have

(2.10) IA(x)l fl(0 > 0

for x o. Thus for 2 S and x we have

(2.11) IAA(x)l >= Aofl(0 > 0.

Furthermore, for 2 e we have

(2.12) larg 2[ < tan -1 (A1/Ao) < rt/2,

and for x e,
(2.13) ]arg A(x)l

for some 01. From the inequalities (2.12) and (2.13) we see that 2A(x) lies in a
sector

_
given by

(2.14)

Because of the inequalities (2.9), we can use the Borel-Ritt theorem [7, 9] to
assert the existence of a function g(x, #) and a #o > 0 such that"

(a) g(x, #) is analytic in ,, where is the sector

{/zl Itl >/Zo, larg/1 < 01 .qt_ 2re};
(b)

N

(2.15) g(x,
n=l

(2.16) -x (X, #)
n=l

g
(2.17) (X, )

n=l

(- n-n-P.(x)) Es(e)I1- u- 2

with E.(e) <
Using g(x, ) we define another function h(x, 2) by

h,(x, 2) g(x, (- 1) + lA(x)).

We observe that by choosing Ao sufficiently large we can assure that

I( 1)k +12A(x) #o
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and

larg ((-1)k+ lA(x))l < 01 qt_ g qt_ zt/2 < 01 -- 2zt.

Hence, hk(x, 2) is well-defined for x e and 2 in and satisfies"

(a) hk(x, 2) is analytic for x e and 2 e , ;.

(b)
N

(2.19) hk(X, 2) [( 1) +1A(x)] -nPn(X
n=l

u n p’(x)
h(x, 2) [(- 1) + 12A(x)]-" [P’,(x) 2 p(x)

(2.20)
n=l

< fu(e)12h(x)l --for x and 2 .
Setting

(2.21)

< Fzv()12A(x)l -u-a

u(x, 2) (- 1) + 12A(x)
4 p(x) + hk(x, 2) + k(x, 2),

we have that ak(x, 2) satisfies the differential equation

(2.22) a + 2 [(- 1)k+12A(x) + hk(x, 2)
p’(x)]~ ~2

4 )--()Juk + uk + Hk(x, 2)= 0,

where Hk(x, 2) is calculated from (2.22), (2.21) and (2.18) and can be shown to satisfy

(2.23) IH(x,2)l < Cx()lRA(x)l -x N 1, 2,...

for x and 2 e . If we now make the change of variables

(2.24) (x, ).) 2A(x)v(x, )0

in (2.22), we obtain

(2.25)

where

2[(-1)k+ 1/A(x)+ hk(x, 2)]vk + 2A(x)v + Lk(x, ))= O,

(2.26) Lk(X, 2) (2A(x))- 1Hk(X, 2)

and Lk(x, 2) satisfies

(2.27) ILk(x, 2)1 =< Ou(e)12A(x)I-u N 1,2,

xe and

We can rewrite (2.25) as

(2.28) v, + 2[(- _)k + 1]cA(x)]vk 2hk(x, 2)vk 2A(x)v Lk(x, 2).
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Treating the right-hand side of (2.28) as a nonhomogeneous term, we obtain the
integral equation

Vk(X, 2) [-- 2hk(S, 2)Vk(S, 2) 2A(s)v(s, 2) Lk(S, 2)]
(2.29)

exp 2 (-1)2A()dz ds

by the method ofvariation of parameters. Note that we have not specified the initial
point of integration or the path of integration in (2.1) and (2.29). One of the major
aspects of our analysis will be to determine these quantities so that solutions of the
integral equation (2.29) will yield solutions of the differential equation (1.1).

3. Existence of the subdominant solutions. Let e > 0 and let Xo al - " We
shall consider the integral equation

v(x, 2) [- 2ho(s, 2)v(s, 2) 2A(s)vZ(s, 2) Lo(s, 2)]

(3.)
exp 2 2A(r) dr ds

for x e [Xo, + o) and path of integration from + to x along the real axis.
Since A(x) > 0 for x e IX0, + ) we have A(x) > fi(e) > 0 from the inequality

(2.10). Thus the exponential term appearing in (3.1) can be estimated by

;,x(3.2) exp 22 A(r) dr =< exp [-2(Re 2)fl(e)(s x)].

From the hypotheses on p(x) we know there exist finite, positive constants Co(e)
and rio(e)such that

(3.3) 00(, <= x-l/2A(x) <= flo(g)

for x e IXo, + o).
Let us define F(x, 2) by

(3.4)
F(x, 2) [- 2ho(s, 2)f(s, 2) 2A(s)f2(s, 2) Lo(s, 2)]

exp 22 A(’c)d’c ds

for x e [Xo, + oe), the path of integration from + oc to x along the real axis,
2 6 , and f(x, 2) continuous in x and 2. Using the various estimates of the terms
of the integrand we have the following lemma.

LEMMA 3.1. If If(x, 2)1 _-< [2A(x)l for v 1, 2,..., then there exists a set of
positive real numbers 2v, v 1, 2, ..., such that Re 2 >__ 2v implies

Ifj.(x, Z)[ IZA(x)l-V.
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Proof. By the triangle inequality applied to (3.4),

[F(x,/l)1 < [12ho(s, 2)f(s,/l)1 + [2A(s)f2(s, A)[ -t- lEo(s,

exp 22 A(’c) d’c ds.

Using the estimates (2.19), (2.27), (3.2) and (3.3) we have

[ff(x,/)1 < {[2M1A-I-1 + f2A-2fl-2] + A-vfll- Vo-V +DvOv

(11-x -/2) exp [-2(Re 2)fl(s x)] ds,

where the dependence of the constants on e has been suppressed. Hence, we have

IFf(x, 2)1 _-< M(e, v)(Re/t)- llR/(x)l- ,
where

M(/3 v) -1 AI -1 (- + A- 1--flofl {[2M1 fl + F2A0- 2fl- 2] vfl Vao + Da-}.
Consequently by choosing Re 2 > 2, where 2 is sufficiently large, we can achieve

IFy(x, 2)1 -<_ 12A(x)-l.

Note that the , of Lemma 3.1 depend also upon e, and as e ---, 0 the 2 will, in
general, have to be taken larger. In a similar fashion we can obtain the following
lemma.

LEMMA 3.2. /f IA(x, 2)l < 12A(x)l and ]fz(x, 2)] =< ]2A(x)] -, then there
exists a set of positive numbers 2, v 1, 2, ..., such that

Ff2(x de) Ff,(x, 2)1[ =< r[ fz(x, 2) A(x, 2)1

with r < 1, provided Re/l => 2 and where 1. is the supremum norm over [Xo,
+ oo) x S, and

S {21 Re2 __> 2,[Im21 =< A1}.
Lemma 3.1 and Lemma 3.2 both give sequences 2, v 1, 2, We can form

a third sequence 2, 1, 2,..., by taking 2 to be the maximum of the corre-
sponding 2 given by the lemmas. We can also assume 2 < 2 =< 2a =< For the
remainder of this section, by 2 we shall mean a member of this third sequence.
Again using our various estimates we have the following lemma.

LEMMA 3.3. If f(x, 2) is analytic and satisfies [f(x, 2)[ __< [2A(x)] -2 for x
[Xo, + oo) and

/l e {2IRe 2 _>_/2, IIm RI < A1},
then Fy(x,/l) is analytic in the same region.

Defining the successive approximations by

(3.5)
Vo(X, ,) =- o,
v,+ (x,/l) F,(x, 2), n 1,2,
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we can use the lemmas of this section to apply the Banach fixed-point theorem and
prove the convergence of the sequence v,(x, 2) to a function v(x, 2). Setting
o(X, 2) 2A(x)v(x, 2), defining Uo(X, 2) by (2.21) with k 0, and setting

yo(x, 2) exp Uo(S, 2) ds

with a path of integration from X0 to x along the real axis, we obtain the solution
yo(X, 2) of Lemma 1.1. The square integrability of y0(x, 2) follows from the
asymptotic behavior of Uo(X, 2) as given by Lemma 1.1. It can be shown that for 2
suciently large and x suciently large, the term 2A(x) in the expression (i) of
Lemma 1.1 implies the square integrability of yo(x, 2) since the terms p’(x)/p(x)
and P(x, -2)can be bounded. The treatment of Y2m(X, 2)JS analogous.

4. Construction of the connecting solutions. In ff 3 we constructed two solutions
of the differential equation (1.1) which were square integrable on semiaxes and
which had known asymptotic behavior on disjoint semiaxes. We now shall con-
struct m pairs of linearly independent solutions which will enable us to relate the
two subdominant solutions yo(x, 2) and yzm(X, 2).

We again shall consider the integral equation (2.29). In the last section we
employed the exponential decay for large [xl of the term

(4.1) exp (- 1) 22A(r) d

in order to obtain the existence of the subdominant solutions. Now, however, x
will lie in a bounded subset of and it will suce to bound the exponential term
(4.1).

We note that

exp (- 1)k 22A(z)

-exp [2(-1) Re,Re(ffA(z)dz)-Im,Im(ffA(z)dz)1"
For 2 e S we have IIm 21 =< A1, and hence if x lies in a bounded region, then

exp 2(- 1)k+ Im 2 Im A(z) dr

is bounded if the paths of integration are bounded. For 2 e we have Re 2
unbounded and positive, and hence if exp [2(-1)Re2Re( A(z)dz)] is to

remain bounded we must be able to choose the paths of integration so that

(-1)Re(2 A(:)dr) is nonpositive. In order to achieve this last condition we

shall consider the mapping

fx(4.2) z (- 1) A(’c) dr,

and, in particular, we shall determine the curves in the x-plane along which Re z is
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constant. The basic tools for our analysis are the following two lemmas, whose
proofs are included for completeness. In their present form they are due to Sibuya
7]. Similar results were obtained by Jenkins 5 and applied by Evgrafov and
Fedoryuk 2.

LEMMA 4.1. Let Re( A() d) be constant along a smooth curve x x(p) not

passing through any zeros of(x): then

(4.3) dx/dp iA(x(p)),

where the overbar denotes complex conjugation.

Proof. Suppose Re(f A(:)d:) is constant along a path x :(p) and further
suppose that the parameter p is chosen so that z’(p) 4= O. We know

and

A(z(p)) :/: 0

d f A(y)dy =d
dp

A(y) dy

A((p))’(p)= if(p),

where f(p) is real since Re (fA(y)dy) is constant. Moreover f(p) O. Hence we
may introduce a new parameter p by

dp/dp f(p)]A((p))[ 2.

Solving implicitly for p p(p) we obtain

(p) (p(p)).

Moreover,

since

d IA((p(p)))I 2

--(p(p)) z’(p(p))p’(p)= ’(p(p))
dp f(p(p))

iA((p(p)))

’(p(p))

f(p(p)) A((p(p)))"

This proves the lemma.
LEMMA 4.2. Suppose x x(p) is a solution of the equation

dx
iA(x(p)).

dp

Then Re (f A() d) is constant along x(p).
Proof. We observe that

d f (p) dx(p)
dp

A(z) dz A(x(p)) d--
iA(x(p))A(x(p))= ilA(x(p))] 2.
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Hence by separating real and imaginary parts, we obtain

d
A(r) &) 0

along x(p). This implies Re (fx A(r) dr) is constant along x x(p).
Since x ai, 1, ..., 2m, is a simple zero of p(x), it is shown [2, 2] that

there exist three trajectories meeting at angles of 2rc/3 at x ai along which

(- 1) Re A() d 0.

These particular trajectories are referred to as Stokes’ curves. On the cuts I2_ 1,

k 1, m, A(x) is purely imaginary, and hence,

(-1)kRe A(r) dr =(-1)kRe A(r) dr =0

for x e I2i- 1. Hence the cuts are Stokes’ curves.
The trajectories of the autonomous differential equation (4.3), sufficiently

close to the real axis for m 2, are shown in Fig. 1. In particular the upper and
lower cuts are trajectories and the arrows indicate increasing p.

FIG.

In order to construct the region D+I of Lemma 1.2, consider a region as
given in Fig. 2.

The transformation

(4.4) z A(r) d:

maps the region of Fig. 2 onto a multiply covered region in the z-plane as
indicated in Fig. 3 (where 8 represents the image of a).

The use of the asymptotic representation requires that the paths of integration
in the x-plane be bounded away from the turning points. This can be accomplished
by requiring the corresponding paths in the z-plane to lie outside disks about the
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FIG. 2

FG. 3

images of the turning points. The additional restriction that Re z be nonincreasing
along the paths then induces shadow regions, nonadmissible regions, as indicated
by the cross-hatched areas in Fig. 4. Let J+l be the point indicated in Fig. 4,
and let X+ be the corresponding preimage in the x-plane. The desired region
D+ is then the preimage of the unshaded portion of and is shown in Fig. 5.

We note that part of the upper cut is included in the region D + 1. By our con-
struction any point x e D + can be connected to X + e D + by a smooth curve 7x
lying in D + such that [exp (_x 22A(z) d’c)l is bounded as s moves from X + to x
along 7x. In a similar fashion we can construct 2m- 1 more regions D_ and
D+_tzk_,k 2,..., m, satisfying assertion (iii) of Lemma 1.2. We denote by
X+(zk- 1) the point in O+(zk_ 1) corresponding to X+ in D+ 1.
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a X
/I

FIG. 4

X/

FIG. 5

We now define the successive approximations v(x, 2) by

,(x, )=- 0,

v, +l(x, 2) F’v.(x, 2), n= 1,2,...

F). is the analogue in the region D +(2k-1) of Ff in (3.4). By a procedure similar to
that employed in the last section we can show that the successive approximations
vk,(x, 2) converge uniformly. This gives m functions, denoted v + 2k- 1)(x, 2), analytic
on O+{zt 1) $2. Setting

U + (2k -1)(X, ) 1)k +
p’(x)

4 p(x)
t- h(x, 2) + 2A(x)v+ (2k- 1)(X,
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and

y+(,_(x,2) exp u/(,_(s,2)ds
2k-1

for x e D+(2k- 1) with b2k- 1/2[a2 + a2- 11 and the path of integration lying in
D/(2k-1), we can satisfy conditions (i) and (ii) of Lemma 1.2. An analogous
construction yields

The functions Y___2k-l(x, 2) are solutions of the linear differential equation
(1.1), which possesses no first derivative term. Consequently the Wronskian
determinant W of Y+2-1) and Y-(2-1) will be a function of 2 only. Setting
X bzk_ we have that

W(2) U_(2k_ 1)(b2k_ 1, /) U+(2k- 1)(b2- 1, /)"

Using the asymptotic behavior given by Lemma 1.2 we have

Since

we have

p’(b2_ 1)
+ o(11)-1

4 p(bzk_ 1)

p’(b2_ 1)
/ O(ll-1),

4 p(b2k- 1) 3

A(b2,- +) A(b2k- --)

(- 1)+ lix/lp(b2-1)1,

W(Z) 22iw/Ip(b2_ 1)1 + o(I,Zl-

Consequently if Re Z is sufficiently large, we have

() 0,

and hence,

Y+(2k_l)(x,Z) and y_(2_l)(X,Z)
are linearly independent. This completes the proof of Lemma 1.2.

$. Proof of the theorem. Since the differential equation (1.1) is linear and
y+(2k_x)(X,Z) and y_(2_x)(X,Z)are linearly independent, we know there exist
constants, the connection coefficients, depending on 2 such that

Yo C- y + + C- y_ 1,

+(2k- 3) _[._ C-(2k- 3)
Y+(2k-1) C+(2k 1)Y+(2k-3) +(2k 1)Y-(2k-3),

(5.1) Y (2k 1) C+12k- 3) _qt._ C-I2k- 3)
2k- 1)Y+(2k- 3) 2k 1)Y-(2k 3)

Y2m C+(2m )y + -(2m- 1)y_2m +(2m- 1) ’2m (2m- 1),

YEm C2+mly+ + Cmly-1,
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where the 2 dependence of the C’s and the (x, 2) dependence of the y’s has been
suppressed.

When yo(x, 2) and yzm(X, y) are linearly dependent we shall have a solution to
the problem (1.1), (1.2). We have linear dependence for those values of 2, the eigen-
values, for which

+1 + C- 2mY+l -]-- C-12mY-1
0.(5.2)

Cly ly C+1

C lyl + C ly’_ C22Y1 + C2y

By Lemma 1.2, equation (5.2) is equivalent to

(5.3)
C1 Cgl

0.

From the set of equations (5.1) we can obtain

Y2m (Y+(2m- 1), Y-(era- C;},2m-
+(2m- 1))(Y+(2m-3),Y-(2m-3)),,
2,n

-(2m- 1)
2m

+2m-

-(2m-
2m

2m
(, ,

_
r c_,,,_

2m

where the are 2 x 2 matrices of connection coecients.
Consequently, (5.3) can be written as

(m-

(5.4 (-cg , cr rm c_,_ 0.
2m

By Cramer’s rule we may solve the system (5.1) for the C’s in terms of the appropri-
ate Wronskians of the y’s. Let

b gaj + a+ )

forj 1,.-., 2m- 1,

bo Xo, b2m-- X2m,

k l/l/+ k,

r/(k) [-22x//p(b_2)+ h-(b2_2,2)- h(b2-2,2)],

I(j, k, +_ U_(2k 1)(S /) MS,
b2k
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and let #(2) be a generic term for a quantity which is asymptotically zero. Thus

(ri(k) + #(2)) exp [l(k, k, +) + l(k, k 1, -)]

(-rl(k) + #(2)) exp [l(k, k, +) + l(k, k 1, +)]

(r/(k) + #(2))exp [l(k, k, -) + l(k, k 1, -)] 1.
(- q(k) + #(2)) exp [l(k, k, -) + l(k, k 1, +)]

We can rewrite this last equation in the form

Tk wfkl_3
exp (l(k, k 1, -))

0

(r/(k) + #(2)) exp (l(k, k, +))
(r/(k) + #(2)) exp (l(k, k, +))

o
exp (l(k, k 1, +))

(r/(k) + #(2))exp (l(k, k,

(r/(k) + #(2))exp (l(k, k,

Using (5.5) in (5.4) we obtain

W;IW; W-"I_ 3[r/(2)+ #(2)] [r/(m)+ #(2)](-C0-1 C 1)

{5.6)

exp [I(2, 1, -)] 0

0 exp [I(2, 1, +)]

exp El{m, m, +)]

0(2) exp [l(m, m, +)]

0(2) exp El{m, m, -)]

0(2) exp El{m, m, -)

+(2" 1)\
2,.

(-’-{2,.- 1)
0,

where tp(2)= + #(2).
We can compute C0-1 C-1 ,2"r+{2"- 1) and ,2,,("-(2,.- 1) from the appropriate

Wronskians in a similar manner to obtain the equation

W - 2 W;1 W2-ml_l [q(1) + #(2)] [rl(m + 1) +
(5.7) (exp [I(1,1, +)], [1 + #(2)] exp [I(1, 1, -)])

exp [l(m + 1, m, 1)]

[- + #(2)] exp [l(m + 1, m, -)]

We note that if 121 is sufficiently large, then

W 2WI W2_ [(1) -31- #(/) Er/(m q- 1) q- #{)1 O.

{1, [- + #(2)] exp dl)

{5.8)

Thus, after rearrangement, (5.7) becomes

[- + #(2)] exp d2t
+#(2) [-1 +#(2)]expd2

+ [- + #(2)] exp d"
+ #(2) + [-1 + #(2)] exp

where

=0,

d" + l{k, k,-)- l{k, k, +)- l{k + 1, k,-) + l{k + 1, k, +).
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If we perform the indicated matrix multiplication, we obtain

[(1 + #(2)) + (- + #(2))exp dl]
(5.9)

[(1 + #(2)) + (-1 + #(2))exp d,,] 0.

Equation (5.9) can be rewritten in the form

(5.10) 1 expdl] [1 expdm] #(2).

Equation (5.10) will be satisfied if

(5.11) exp dk #(2)

for k 1,..., m. Equation (5.11) implies

(5.12) dk -2rcli + #(2), an integer,

for k 1,..., m. If we write d in terms of integrals, we obtain

(--1)k+ 12A(s) +- hk(S 2) -Jr- 2A(s). Uj,k(S 2) ds -2cli + #(2),
= j,k

4 p(s)

FIG. 6

where the paths of integration aj, are shown in Fig. 6, and where

However,

Uj,R(S ,) l)(_ 1)J(2k 1)(S, ,).

I(- 1)k+ 12A(s)l ds -22i Ip(s)l Ms,
J-- j,k ’a2k

-lP’(’---))"=

and formally,

i [/,(s,2)+ 2A(s)v,,,(s,2)] ds
j= ,

{[(- 1) +2A(s)] -"P,(s)} ds,
=1

(x) 0,
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where Fk is a contour contained in D+t2k_. 1) (J D-12k-1) which encloses only the
transition points x azk_ and x azk in a counterclockwise sense.

Hence,

22i x//Ip(s)l ds
’a2k

+ 2 [(_ 1) +12A(s)] -"P(s) ds 21rci
n=l

provided 12] is sufficiently large and 2 e S2 Thus, as --, + oo we have that the
large positive eigenvalues 2,l of the problem (1.1), (1.2) satisfy the formal equations

22,i ds +
a2k

[(- 1) + 12,lA(S)] -"P,(s) ds 21rci.
n=l

We note that the existence of eigenvalues for 12[ sufficiently large is guaranteed by
Rouch6’s theorem. Equation (5.13) can be rewritten as

(5.14)
2k, v/Ip(x)l dx

a2k

[(- l) + 12k,lA(X)]- nPn(X dx.
n=l

If the 2(/.) as given by the theorem satisfy (formally) (5.14), then

2,
(l 1/2)rc + g ll-n O(I-N-1)

a2k

as/-, +oo for N 1,2,
Let 2 be such an eigenvalue as found above and let y be the corresponding

solution of(1.1). If we multiply (1.1) by yand integrate from c to + oo, we obtain

+

YY" 22 yZp O.

Integrating the first term by parts we obtain

,*+oo

y,2 22 yZp O.

Since y’ O, + y2p =/= 0 and 22 is real. From the distribution of eigenvalues given
by formula (5.13) it follows that the eigenvalues of large magnitude obtained above
are real.

This proves the theorem.



566 LAURENCE WEINBERG

Acknowledgments. The author wishes to thank Professors W. A. Harris, Jr.
and Professor Y. Sibuya for their invaluable help and encouragement in the
preparation of this paper, and also the referee for his helpful suggestions.

REFERENCES

[1] G. D. BIRKHOFF, Quantum mechanics and asymptotic series, Bull. Amer. Math. Soc., 39 (1933), pp.
681-700.

[2] M.A. EVGRAFOV AND M. V. FEDORYUK, Asymptotic behavior as 2 Do ofthe solution ofthe equation
w’(z) p(z, 2)w(z) 0 in the complex z-plane, Uspekhi Mat. Nauk, 21 (1966), pp. 3-50.

3] N. FRJMAN AND P. O. FRMAN, JWKBApproximations, Contributions to the Theory, North Holland,
Amsterdam, 1965.

[4] F. B. HILDEBRAND, Advanced Calculus for Applications, Prentice-Hall, Englewood Cliffs, N.J.,
1964.

[5] J. A. JENKINS, Univalent Functions and Conjbrmal Mapping, Springer, Berlin, 1958.
[6] R. E. LANGER, The asymptotic solutions of ordinary linear differential equations of the second order

with special reference to the Stokes’ phenomenon, Bull. Amer. Math. Soc., 40 (1934), pp. 545-
582.

[7] Y. SmUYA, Subdominant solutions of the dfferential equation y" 22(x a)(x a2)" .(x am)
y 0, Acta Math., 119 (1967), pp. 235--272.

[8] W. WASOW, Asymptotic Expansions for Ordinary Dfferential Equations, John Wiley, New York,
1965.

[9] A. ZWAAN, Intensitiiten im Ca-Funkenspektrum, Thesis, State University of Utrecht, Utrecht, the
Netherlands, 1929.



SlAM J. MATH. ANAL.
Vol. 2, No. 4, November 1971

THE BEHAVIOR AS : +0 OF SOLUTIONS TO eV2w "-w/ty
IN ]y] =< 1 FOR DISCONTINUOUS BOUNDARY DATA*

L. PAMELA COOK AND G. S. S. LUDFORD’

Abstract. The title problem is considered for boundary data w(x, -1) f(x), w(x, 1) g(x).
Here f, g are infinitely differentiable except at x 0, a respectively, where they have right- and left-hand
derivatives of all orders. With g 0 five regions are distinguished: the core 0 < Xo _-< Ix] and the free
layer e-1/21x <= X excluding e-i/2]x] <= Xo, ]y + 1] __< y_ 1, in -1 __< y =< Y < 1; their boundary
layers in :-(1 y) =< Y; and the excluded region e-llx] < X., e-l(1 + y) < y The solution
for f 0 is asymptotically zero everywhere except in the boundary layer, where 0 < xa =< Ix a] is

distinguished from the transition zone e- ]x a] =< x.o. By means of Fourier transforms it is shown
that the method of matched asymptotic expansions gives approximations to all orders in each of the
regions, and that the latter can be extended to overlap. For the excluded region, which gives birth to
the "parabolic" free layer, this contradicts what has previously been supposed. Of particular interest
is the transition zone, which resolves a breakdown in the "hyperbolic" boundary layer. The expansion
in the core is determined independently of the others, but not that in the free layer. As a consequence,
the odd powers of /2 which appear in the free layer are absent in the core. Other assumptions con-
cerning f and g are also considered.

1. Introduction. We propose to study the asymptotic properties, as + 0,
of the solution of the elliptic equation

(la) e
c2w c2w #w

+ cy2] cy=0 on the striplYl < 1,

which satisfies the boundary conditions

(lb) w(x, 1) f(x), w(x, 1) g(x).

The equation arises in magnetohydrodynamics, where e measures the importance
of viscous force relative to the electromagnetic force, and in the theory of plate-
membranes under tension in the y-direction, where e measures the bending stiffness
I6]. In either case the region is bounded, and treatment of the strip is intended to be
a first step in understanding that more complicated situation. Certainly bounded-
ness in the y-direction is the more important feature. For this reason we have not
mentioned ordinary hydrodynamics, where the equation arises in Oseen’s approxi-
mation: the region there is unbounded in the y-direction and the questions are of
quite different character.

The present type of problem has been considered with varying degrees of
generality by several authors. The classic paper on the subject is by Eckhaus and
de Jager [3]. Certain aspects have been followed up by Mauss [7]-[ 0] and Grasman
[5] as well as by Eckhaus himself [2]. But nobody has faced the question we shall
treat: proving that the formal method of matched asymptotic expansions is
correct to all orders, where we are especially interested in discontinuities in f, g,
or their derivatives.
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The proof consists in deriving these asymptotic expansions directly from the
exact solution, which is expressed in terms of the Green’s function. Difficulty
arises when this Green’s function is written as the infinite sum of Bessel functions,
corresponding to the fundamental solution and images in the two boundaries
(see end of 3). Although it is easily seen that all but the first few Bessel functions
are asymptotically zero, it is difficult to see how the remaining ones should be
manipulated to yield the various asymptotic expansions. However, when the
Bessel functions are replaced by their Fourier integrals, the terms in the expansions
are obtained simply from the Taylor series (in e) of the corresponding transforms,
and the validity of the expansions is established by estimating remainders. In short,
we take Fourier transforms from the start and find, as is often the case, that it is
relatively easy to deal with the transform of the Green’s function.

Some care is still required to ensure that inverses exist and remainders are
estimated correctly. Since there are enough of these questions to deal with, we shall
ignore the more trivial ones such as whether an integral can be differentiated. In
other words, a formal step will only receive attention if it is in fact not valid.

2. The method of matched asymptotic expansions. The solution is assumed
to have an asymptotic expansion2

(2) w w(x, y)ek.
k=0

] a x

FIG.

Substitution in the boundary value problem (1) then yields the recurrence relation

w,_ : :
(3a) +--8y

for the coefficient functions (assuming that the derivatives are O(1)). At each stage
a first order equation has to be solved, so that only one boundary condition can be

See, for example, ], 11].
The superscripts I, H, etc. correspond to the regions in Fig. 1.
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satisfied; for reasons that will be clear later, this must be

f(x), k=0,
(3b) w/(x’ 1)

0, k-C0,

and not the one at y 1. There is no difficulty in calculating as many terms as
desired, but the very first term

wg(x, y) f(x)

shows that the asymptotic expansion cannot be uniformly valid. The boundary
condition at y is in general violated, and a discontinuity (implying that the
x-derivative is not O(1)) occurs across any vertical line through a point of discon-
tinuity of f. Note that these two types of breakdown are different:the first occurs
however smooth f and g are at the value of x considered; the second is a direct
consequence of a discontinuity in f.

For simplicity we shall assume that f has a single discontinuity at x 0. Then,
recognizing that the solution must have rapid changes across x 0, we introduce
the new coordinate

(4) X ,- 1/2X

so as to make (632/63X2) 2/X2 explicitly comparable to c?/cy in the original
equation (1 a). The solution is now assumed to have the asymptotic expansion

(5) w Z
k=0

which leads to the recurrence relation

II(6a) X2 y2Wk_2
and the boundary condition

X
(6b) wII(X, 1) f(k)(_ 0)( when X 0

for the coefficient functions. Here f()( 0) are right and left kth derivatives of f at
x 0. Once more only one boundary condition can be satisfied, and it must be the
one at the lower boundary. However, because of the singularity at X 0, y 1,
the w are not determined to within certain singular solutions of the homo-
geneous diffusion equation. Leaving aside this question for the moment, we see
that in practice only a few terms can be calculated since at each stage an inhomo-
geneous diffusion equation must be solved; though, in principle, all terms can be
determined. Note how half-integer powers are induced by the boundary values
f(x). No such terms arise for g(x), which is associated with there being no equivalent
to region II.

The expansion (5) cannot be valid near X 0, y 1, as is easily seen for the
special case

f(+_O)= _+1, f’(+_O)=O, f"(+_O)=O.
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The functions

X
wi11 0 wI2I )5/2 expwI=erf 2(y+ 1) 1/2 8rcl/Z(y+ 4(y+ 1)

satisfy all conditions, and w becomes unbounded as the discontinuity in f is
approached along any path X/(y + 1) 1/2 const. :/: 0. This is hardly surprising
since we are attempting to approximate the solution of the elliptic equation (la)
near a singularity in its boundary data by means of the corresponding singular
solutions of parabolic equations.

To take proper account of the rapid changes near the discontinuity we intro-
duce the coordinates

(7) X, E- 1/2X, y, e- 1(1 + y)
-1 2 2so as to make the neglected term e(c2/cy2) e (c /cy,) explicitly comparable to

2/X2 i/y F,-1((2/(X2 /y,). The asymptotic expansion

(8) W 2 II,’v[,A,, y,)k
k=O

then leads to the full equation

2 2 6
(9a) 2(? , @, cy, WIkI* 0

for each of the coefficient functions, and the boundary conditions

(9b) wU*tX, ,, O) fo,)( +_ O)-k-(.x* when X, O.

The solution at each stage is not completely determinate. However, there is only
one solution which does not grow exponentially as y, oe, and this must be
selected to ensure matching.

It is then through this matching that the indeterminacy in region II (noted
above) is resolved. In particular, one finds that the homogeneous diffusion solution

4x/ (y + 1)3/2 exp -4(y + 1)

must be added to wI2I. It is interesting to note that this choice satisfies the principle
of minimum singularity" as y the original w becomes a multiple of 6’(X)
and the added term just cancels this behavior.

We now consider the violated boundary condition. It is convenient to treat
the part of the solution due to g separately and to consider g 0 first. The antici-
pated rapid change in the solution as y --, suggests the new coordinate

(0) r -(
so that e(cZ/Oy2) e-1(c2/cY2) is explicitly comparable to /cy
in (la). The asymptotic expansion

(ll) w WkU,,tX, Y)e
k=O
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then leads to the recurrence relation
2

__
WikI

2
III(12a) - -t- OX2 Wk- 2

and the boundary condition

(lZb) wIII(x, O) 0

for the coefficient functions. This time the functions are not uniquely determined
since at each stage an integration constant is introduced. The N constants in the
truncation of the series (11) after N terms are obtained by the matching principle.
Y is replaced by e-1(1 y) in the truncated series, which is then expanded to
O(et). Similarly y is replaced by e Y in the M-term truncation of the series (2),
which is then expanded to O(eN). The results must be identical under the trans-
formation (10).

It is now clear why the boundary condition (3b) had to be satisfied:the
matching procedure would fail at y 1. With Y ,-1(1 + y), the operator in
the recurrence relation (12a)is replaced by 2/y2 t?/t?Y, so that the function er

appears giving terms which cannot be matched since they are of exponential order
in e for fixed y.

Near x 0 we must also introduce the coordinate X and write

k=0

The recurrence relation is now

(14a) + t?x2W 2

with the boundary condition
(14b) Wkv(X, O) O.

Once again there is an integration constant at each stage which is determined by
matching with the expansion (5).

Finally we consider the part of the solution due to g. Except near y it will
be asymptotically zero, as is seen by setting f _= 0 above. Near y we again
use the coordinate (10), the expansion (11), and the recurrence relation (12a); but
instead of the boundary condition (12b), we take

g(x) for k 0,
(12c) WIklI(x O)

0 fork # O.

The integration constant at each stage is determined by matching with zero. Note
that WIkII(x, Y) 0 for k odd in other words, the odd powers of e are induced by the
solution away from y 1. The first coefficient function is clearly

WIoII(x, Y)= g(x)e -Y

so that a discontinuity occurs across any vertical line extending down a distance
O(e) from a point of discontinuity of g.
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For simplicity we shall assume that g has a single discontinuity at x a.
Then, introducing

(15) x, e (x a),

so as to make e(c2/c3x2) e-(c32/c3x2,) explicitly comparable to e-(c32/c3Y2

c/c g), we set

(16) w m,, y)
k--O

The corresponding recurrence relation is

(17a)
(2 i2

-75.2 + +x,
with the boundary condition

w,"* 0

(17b) WkIII,,[,X,, O) g(k)(a _+ O)(x,/k!) for x, 0,

where g(k)(a 0) are right and left kth derivatives of g at x a. At each state we
must select the (unique) solution which vanishes as Y --, oe, in order to match with
zero.

These then are the results obtained by the method of matched asymptotic
expansions, and the object of the present paper is to show that they are uniformly
valid representations of the exact solution to all orders in e. To this end it is
necessary to place certain conditions on f, g and to make more precise the regions
of validity.

The conditions:

(18a)

(18b)

f is infinitely differentiable for x - 0 and f(k)(_+0) exist for all k;

g is infinitely differentiable for x - a and g(k)(a _+ 0) exist for all k;

are implicitly assumed in using the method. For example, i, IIIx
wktwk involves any

given derivative of f(g) for k sufficiently large. The further conditions

(18c) If(k)(x)l dx, Ig(k)(x)[ dx < m for all k

are then a technicality" the derivatives must now die out sufficiently rapidly at -_4-_
but the data there has no asymptotic influence at any finite point.

The regions of validity for the f-expansions are"

(a) I" xo__<[x[, -l__<y_<y < 1;

(b) II" IXI <= X -1 <= y <= Y <

(c) II," IX,I =< X,o, 0__<y, =<y,;
(d) III" Xo Ixl, 0 Y Yoo;

(e) IV" IXl _-< X, 0 __< Y__< Yo,

excluding IX] =< Xo,
y+ 1 =<Y-l;
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T
X

(c)

FiG. 2
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(d)

)X

Y

-->X

(f)

FIG. 2 (continued)

For the g-expansions we have

(d) III" x Ix al, 0 Y Y;

(f) III," Ix,I x,, o <__ Y Y.
The lettering corresponds to the parts of Fig. 2.
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Here Xo, Yl, Xoo, Xo, y-1, X,(R), Y, Yoo, x,, x,o are in the first instance
fixed positive numbers; but we shall show that the regions can be extended to

XO ,1/2-6, Yl 1-6, Xo ,f,-1/2 +6, Xo ,1/4-6, Y 1/2-6

X, =e-l+a, Y, =(2-6)e-1, Yoo =e-+a, x,,=el-a, x, =e-l+a,

if weaker asymptotic approximations are allowed. Here 6 > 0 is arbitrarily small;
and, in the case of g, the Yoo can in fact be arbitrarily large. Adjacent regions now
overlap.

Note that Xo, y_ do not reach the scale of the inner region II, while X,,
Y, go beyond the scale of region II. Extension is therefore not necessarily a. guide
to the new scale.

Because the solution is governed by the inhomogeneous diffusion equation
(6a) in the region II, Eckhaus and de Jager [3] have called the latter a parabolic
layer. Note that there is no difficulty in applying the method ofmatched asymptotic
expansions to the origin of this layer, namely the region II, (cf. Grasman [5]). For
similar reasons we may call the region III a hyperbolic layer and IV a hyperbolic
intersection region. The transition zone III,, and in particular its essential
difference from the singular region II,, has been overlooked in the literature.

3. The exact solution. Taking the Fourier transform

(7.) e-’"( dx

of the differential equation (la) and using the boundary condition (lb) we find

( y) e(y+ 1)/(2e)Ie_ -r(y+ 1)

1--e-
(19)

f() e’y-1
er(Y 1) e r(y+ 3)

i e -4

where

r v/1 + 422/(2).

The exact solution of our boundary value problem is then the inverse

w(x, y) e’’(, y)d.

We are concerned with the asymptotic properties of this solution and will use
the abbreviation a.e.s, for "asymptotically exponentially small." Any function
which is uniformly a.e.s, in a region can be omitted. Thus e-4r is a.e.s, uniformly in {
and so will lead to functions which can be ignored throughout the strip. We may
therefore write

e(y+ 1)/(2e)[g-r(y+ 1) er(y-3)]f + e(y-1)/(2e)[gr(y-1) e-(y+ )]({).
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The solution may be further simplified by separating regions near y from the
others. Thus in regions I, II, II,,

(19’a) exp ee- r (y+ 1) f

since the remaining terms are uniformly a.e.s., provided y approaches more
slowly than e tends to zero. In regions III, III., IV,

{exp[(-r)(2-eY)]-exp[.2-Y2e r(2+eY}f
(19’b)

+exp +r eY ,
the remaining terms being uniformly a.e.s., provided Yoo tends to infinity more
slowly than e- .

The brackets multiplying f and in the Fourier transform (19) of the exact
solution come from the Green’s function, and in order to see the separate effects
of the Bessel functions mentioned in the Introduction, their common denominator
should be expanded as a series of exponentials. The first term in the f-bracket
then gives rise to

exp y+ 1)2e
exp [-r(y + 4k + 1)], k 0, 1,2, 3,...,

where the second factor is the transform of the normal derivative at the lower
boundary of a Bessel function representing the (equal) effects of the fundamental
solution and the images at y + 4k and -(y + 4k + 2). Similarly the second term
yields

-exp exp[-r(2-y+4k+ 1)], k=0 2 3

representing the (equal) effects of images at 2 y + 4k and y 4k 4. Together
these account for the fundamental solution and all images in y + 1, at 2l
+ (- !) y, 0, _-_-_+ 1, _+ 2, Similarly the bracket multiplying leads to

y-l)exp
2e

exp[-r(2-y+4k- 1)] and

y-l)exp
2e

exp [- r(y + 4k + 4 1)],

where the second factors are derived from the same Bessel functions, this time the
normal derivative at the upper boundary being taken. The pairings 2 y + 4k,
y 4k and y + 4k + 4, -(y + 4k + 2) are different because the boundary is, but
the same points are involved.

Only the fundamental solution and its image in the lower boundary contribute
to the simplified form (19’a). In addition to these, only the image of the fundamental
solutions in the upper boundary plus its further image in the lower boundary
contribute to the f-term in (19’b). (Note that y and 2 y approach each other as
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y 1.) The -term has only the fundamental solution and its image in the upper
boundary.

4. The core region/. Here we have the representation (19’a), which may be
written

(20) ff Kf, where K(, y; e) exp [(1/(2) r)(y + 1)].

K is in fact the transform of the Green’s function of the original equation (1 a) for
the half-plane y => l, so that it satisfies

c
e 2 K K’( -l’e)=(21) c?-

as can easily be seen directly.
Consider now the Taylor expansion,

(22)

where

k
K’(, y;) K’"(, y;0)F + ,.(, y;),

k=0

im(, y;e) i(m)(, y;te,)--
m
m!’ 0<t< 1,

to any order m. The series apparently leads to the first m terms of the expansion (2)
with coefficient functions which are the inverses off(k)/k !. However these inverses
do not exist (in the ordinary sense) since iCk) is O(2k) for large and, in order to
obtain ones which do, we replace f with a function F such that

(23)
F-=f forxo/2 <__Ix[,

F C and IFtk)(x)[ dx < for all k.

The construction and properties of F are given in the Appendix. Since it has
integrable derivatives of all orders, its transform is o( -N) for every N and the
inverses mentioned above exist for every k.

We may therefore write

where

(24a)

m-1

w.. Wlkek + Rm*F + K*(f F),
k=0

/(k)( y; O)/V() eiCx dWk 27tk!

(24b) R * f 2rcm!
(m)(, y; te)f() ex d,

(24c) K * (f F) K(, y e)[f() F()] ezx d.

We shall now show that" (i) the w satisfy the recurrence relation (3a) and the
boundary conditions (3b); and that, uniformly in the region I (with x0, y fixed),
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(ii) R,,, * F O(em) for every m and (iii) K * (f- F) is a.e.s. The validity of the
expansion (2) will thereby be established.

(i) By substituting the expansion (22) into (21) we find

a
K.(,y.O) k = K-’( f.o) u( - o)

c3y 0, kg=0.

From these it is easily seen that the integrals (24a) satisfy the recurrence relation
and boundary conditions.

(ii) Since/’)(, y;e) is the sum of terms of the form

-2/32(y + 1) 1/3’(1 + 4/3:))-:/2(1 + (1 + 4/3:#2)1/2)-3(y + 1)#Zexp
+ +

where 0{1,0{2, 0{3, J, 7 are nonnegative integers with 7 -< m, there exists a constant
C,, such that

when/3 is bounded. It follows that

(25) IR * F[ <
2rcm!

(1 + 2)mlff()l d 0(/3m)

since F is o( -u) for every N.
(iii) From the convolution theorem and the definition (24c) we may write

Xo/2 K (N/’/(x- x’)2 qt_ (y ql_ 1)2/(2/3))K * (f F)
y+1 e{y +1)/2e)

|2rt/3 -,,o/2 v/(x x’)2 + (y + 1)2
(26)

[f{x’) F(x’)] dx’,

where K is the modified Bessel function. Since the integration variable x’ is always
bounded away from x when the latter lies in region/, we deduce from the exponen-
tial behavior of K for large values of its argument that K, (f- F) is a.e.s.
uniformly in the region I.

There remains the question of extending the region of validity by accepting
a weaker asymptotic approximation. The limitation

(27) (1 Yl)=/31-6
is accepted in using the simplified form (19’a) and no further condition is imposed
by the analysis of the present section. Hence we may concentrate on Xo, and the
problem is to determine the asymptotic behavior of R,, F and K * (f F) when

x0 =/3 with to>0.

R,, * F requires a more careful estimate of F, which can be obtained from

F() (i)-(2m+ I) F(2m+ 1)(x)e -i’‘ dx.
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Since

F(2m+ 1)(XoX x-(2m+ a)F,.(x Xo),

where Fm is bounded as Xo - 0 (see Appendix), it follows that

F Xo(i) -(2m+1) F,,,(X;xo)e -ix dx

is bounded by xoA,,, -(2m+ 2) as [l --’ av. Here A,, depends on x0 but, being bounded
as x0

--, 0, it may be replaced by a constant. By changing 2 into (1 + 2) and the
constant A,, appropriately, we then have a bound for all , which can be used in the
estimate (25) to give

ACx

_
(x + )I * Vl < 2m a O-2)).

Hence asymptotic approximation on a weaker scale is obtained provided

K * (f F) remains a.e.s, for such an x0.

5. The free layer II. The last limitation suggests introducing the coordinate
(4) to describe the solution near x 0. Correspondingly the transform variable
is changed to

q el/2
so that (with tildes denoting the new transforms)

where

(28) L(q, y;e) exp s (y

The kernel L satisfies

x//1 4- 4er/2
and s

2e

(29)

(30)

where

+ r. -L, L(r/, 1;e) 1.

As before, the Taylor expansion

k=0

will be needed. Simultaneous expansion off and inversion of the coefficients of
successive powers of e then apparently lead to the first m terms of the series (5).
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However this involves divergent integrals, which may be avoided by using the
convolution theorem to invert before expanding f With

O]XkSk/2 gin
f(gl/zX) E f(k)( + q_ f(m)(tel/2x)xm

k=O k!

we find

where

(31a)

(31b)

forX 0,

m-1

W 2 WIk/2 -- Sm*f +
k=0

(31c) n-l fTm 8m/2 E L(J)(x X’, y; O)f(m- 2J)(ts1/2X’)X’(m- 2j) dX’,
J!(rn 2j)!

with

[m+lI {(m + 1)/2
(31’) n

2 m/2

f_2s(X) f(k-2j)(q_O)

for rn odd,
for rn even,

forX 0,

and may vary from function to function. We shall now show that" (i) the W[
satisfy the recurrence relation (6a) and the boundary conditions (6b); and that
(ii) Sm * f and Tm are O(d"/2), for every m, uniformly in the region II (with
Xo, Xoo, y- and Y fixed). Proof of matching with the//,-expansion will how-
ever be postponed to 6. Expansion (5) will then have been validated.

(i) Substitution of the expansion (30) into the equations (29) and inversion
show that

OX2 y L()(X, y;O) -1)(X,

a(X), k 0,L()(X, 1;0)
O, k - O.

The sum of integrals (31a) is now seen to satisfy the recurrence relation and
boundary conditions.

(ii) We need only prove that each of the integrals (3 lb), (3 c) is bounded in
the region II whenever e is bounded. But some care is needed, as is easily seen for
Sm * f from the terms

(32) (1 + 4r/2)-/2[1 + (1 + 4erl)i/2]-(y + 1)’r/2’ exp[(- s)(y + 1)-I
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which form ,u)(r/, y; e,) for j 4= 0, where e, fl, 7, 6 are positive integers with
e + fl > 3 and 4 =< 6 __< 2j. At y no help is obtained from the exponential,
and the corresponding inversion integral is divergent for all x.

Nevertheless, the integral has a limit as y 1 if X 4= 0, so we shall manipu-
late it until this limit is exhibited when y is set equal to 1. The first step is to write
the corresponding term in L)(X, y;e,) in the form

and integrate on X’ by parts 26 times. Because of the discontinuities in fand its
derivatives at X 0, the integrated terms will be multiples of

(33a)
ga-(t*+ 1)/2(y + 1)y (1 4- 4gr/2)-/2[1 + (1 + 4g//2)1/2-] -//

exp [( s’)(y + 1)](it/)" ei"x drl, where o __< , < 2a ;
the remaining integral is a multiple of

(33b)
ga(y 4- 1)y f(26)(g,1/2X,)dX, (l 4- 4gr/2) -a/2

1 + (1 + 4e,r/2)l/2] -e exp [( s’)(y + 1)] ei"(x-x’) dq.

Here M{2 denotes M2 with e, replaced by te. The integral in (33a) is bounded for all
X, e when y is bounded away from 1 but it is still divergent for y 1. Con-
vergence at y -1 for X positive can be ensured by bending the ends of the
integration path upwards in the complex q-plane, so that they asymptote at an
angle to the real axis. The integral is then seen to be convergent for y and
bounded for all y, when X is bounded away from zero. Deform downwards for
X negative. In short, the terms (33a) are uniformly bounded in the region II. In
bounding the integral in (33b) we note that the q-integral is bounded by a multiple
of e- 1/2, as can be seen by using tl/2gl/2q for integration variable and remembering
e + fl > 1. The absolute integrability of f(2a) then ensures the contribution (33b)
to be bounded in region II (in fact O(ea- 1)) since 6 > 1.

The treatment of (3 c) is similar. Each integral (including./= 0 now) involves
the sum of terms of the form (32) with e 0, on each of which integration by parts
is performed 26 times. In place of the expression (33a) we now have

(34a)

gv/2(y 4- 1) exp [-- qZ(y 4- 1)] (irl)" e’’x

Ngv/2(y 4- 1)-1/2-
a" [-Xe 1cX

exp
y+l

where v is a nonnegative integer, which is clearly uniformly bounded in the region
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II. The expression (33b) is likewise replaced by

(34b)

where

026
.(X’)

63X, 2a[f(m- 2J)(tgl/2X’)X’(m- 2j)]

is bounded by a power of X’. It follows that the integral is uniformly bounded in
the region II.

Extension of the region upwards to

1-61-yl=e

is valid, as in 4. Sideways, the limitation

1/2 +a

arises from the integrals (34b). For X e they behave like ea-("-2J), of which
the worst is e -m. From (31c) we then see that must be less than 1/2.

Extension towards the point X 0, y -1 is limited by the exponent in
the integrals (33a), which for points near X0 e, y_ e*with , 2 > 0 becomes

2q2

e ie.+ (1 + 4eq2) 1/2

Both terms have negative real parts (after deformation), one of which may be
prevented from vanishing in the limit e--+ 0 by the transformation r/= e-K:
when 2 => 2 or r/= e-2/2 when 2 =< 2. The terms (33a) are then of order
ga-(.+ 1)/2 times e -("+ 1)K or e -"+ 1)2/2 SO that the worst is of order e -4" or e -22n.
From (3 b) we then see that 2 can be arbitrarily large provided

<1/4,
while c can be arbitrarily large provided

It is noteworthy that the region II can only be extended down to half the scale
of II,: extension is not a reliable guide to the new scale.

6. The singular region H,. The limitations on the extension of region II
suggest that the coordinates (7) are needed to describe the solution near X 0,
y -1. The transform variable is likewise changed to

so that (with hats denoting the new transforms)
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where

/,(r/,, y,) exp [(1/2 s,)y,] and s, w/i + 4r/,/2.
The kernel ,, which is now independent of e, satisfies

aye, ay, r/ L, 0, L,(q,,0) 1;

and, in place of a second boundary condition, it does not grow exponentially as

No expansion of the kernel is involved this time, but it is again necessary to
invert by convolution before expanding f to avoid divergent integrals. We find

m-1

w w*tX )e +L**,,Y, f(m),
k=O

where

(36a) w1, f (X, ctx, X’k X’=.I L, X,, Y,lJkt ,! , d ,,

(36b) L, * f’) 3_ L,(X, X,, y,)f"(teX’,)X2" dX,.m
There is no difficulty in showing that" (i) the wt* satisfy the equation (9a), the
boundary conditions (9b), and the matching conditions noted after them; and
that (ii) L, * fm) o(em) uniformly in the region II, (with X,, y, fixed). The
validity of the expansion (8) is thereby established.

(i) Substitute the integrals (36a) directly into the equation and boundary
conditions to show that they satisfy them by virtue of the equations (35). The
series formed from them matches that formed from the integrals (31a) by virtue
of the matching of L, and .

(ii) The integral in L, * f{=) is actually

2
(m)y, er*/2 KI(((X* ’)X;)2 + Y,) X,f dX,

which is seen to be bounded in II, when e is bounded.
Extending the region of validity to

X, =e-K, Y, =e- with,2>0

requires an estimation of the last integral for such values of X,, y,. On inter-
changing X, X and X and noting that fm) is bounded, we see that there
remains

(37)

Y,
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where

2

The terms in the series are clearly of order e-(,,-s)%-sx/2 e-""+s(-x/2), there
being no singularities in the ),,-functions at y, 0. The worst term is of order

e-" for tc __> 2/2 and e -’x/ for re__< 2/2;

in either case we must have

to<l, 2<2

if the remainder (36b) is to be asymptotically small (on a weaker scale).
Thus the expansion gives an approximation even in the extended free layer

itself. In fact, since its accuracy in the region II is the same as that of expansion (5),
it must then be identical and this is easily checked. Note that values of 2 greater
than are not of interest here since we have already accepted the limitation (27).

7. The boundary layer III" g =_ O. We must now use the representation (19’b)
with , 0, which will be written

where

I(1) J I(2 e Y)
r(2 + e y)l(,Y;)=exp -r (2-eY) -exp

2

Clearly,

but there is no second boundary condition. Instead we shall show that ; matches
the K of definition (20) to all orders.

First note that there is no contribution from exp [(2 eY)/(2e) r(2 + e Y)]"
with Y (1 y)/e. and __< y __< Y l, it is a.e.s, uniformly for { real. Accordingly
we must show that K exp [(1/(2e) r)(y + 1)] exp [(1/(2e) r)(2
satisfies the matching principle. While it would be difficult to believe otherwise,
a formal proof is as follows. K" has the expansion (22) for lYl _-< for every m.
Moreover, since K(k)({, y; 0) is a polynomial in (y + 1) of degree k (with coefficients
depending on {2--see 4(ii)), it certainly has an inner expansion (in Y). Hence,
according to Fraenkel’s Theorem [4], the matching principle holds to all orders.

We now introduce the Taylor expansion

gk
(39) (, Y; e)- (k)(, y; 0). + m((, Y; e),

k=O

where

mY; te.)--
m!
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The inverse of J7k) does not exist, as may be expected from the similar difficulty
in the core region since there is matching. As in 4 term-by-term inversion must
be done after F, the smoothed version (23) off, has been introduced; so that

where

m-1

y III
Wk " -It- mW

k=0

*F +,*(f- F),

k)(, Y; 0)ff() eiCx d(40a) w/’II
2rck!

(40b) ’m * F
2rcm!

(m)(, y; te)F()eix d,

(40c) ,;U * (f F) U(, Y; e)[f() f()] eiCx d(.

It remains to be shown that (i) the wu satisfy the recurrence relation (12a), the
boundary conditions (12b), and the matching conditions mentioned after them;
and that (ii) m * F O(d") for every m and (iii) U * (f- F) is a.e.s., both
uniformly in the region III (with x0, Y fixed). In other words, the validity of
the expansion (1 l) will be established. The proof is similar to that in region I ( 4).

(i) By substituting the expansion (39) into the equations (38), we find

+ :(, g; 0 ( I,_-(, g; 01, (, 0; 01 0

for all k. Hence the integrals (40a) satisfy the recurrence relation and boundary
conditions. The fact that the series formed from them matches the series formed
from the integrals (24a) follows from the matching of and R as proved above.

(ii) (,o(, y; )is the sum of terms of the form

(41)

times

exp I
(eY)’(1 + 4e22)-2/2(1 + x/i + 4e22)-3Y2

where 0{1, 0{2, 0{3, fl, 7 are nonnegative integers with fl =< m 7 and 7 _-< m. Hence
,m) can be bounded as in 4(ii), so that the smoothness of F ensures m * F
is O(d").

(iii) The inverse of U is

exp [(2 e Y)/(2e)] { 2 e Y
2e, N//X2 + (2 y)2

K

2+eY

v/x2 + (2 + g y)2
v/xe + (2 + e

K1 2e
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so that the convolution argument in 3(iii) shows 0X * (f- F) to be a.e.s, uni-
formly in region III.

Extending the region of validity by setting

Xo=ek, Yon=e- withx, 2>0

follows the same lines as for region I (see end of 4). Because of the occurrence
of Y in the terms (41) making up the derivatives of each of the terms in ,, * F
must be bounded separately using different estimates of F. Anticipating that 2 is
not greater than (so that eY is bounded), we see that the worst terms are those
containing ym-,2,; and if the estimate of F obtained from Ft2e+ 1) is used (cf.
end of 3), their contribution to m * F is seen to be at most O(g’nxZY-).
Letting 7 range from 0 to m now shows that we must have

<1/2 and 2<1.

It is easily checked that (f F) remains a.e.s, for such Xo, Y.
8. The intersection IV of the layers" g 0. To describe the solution near

x 0 we once more introduce the coordinate (4) and the transform variable of 5.
Then

where

2’(/,g;e)=exp -s (2-eg)

(s is given by the formula (28).) We have

(42)

s(2 + e Y)|
Y

exp
2e _1

5(rt, 0; e) 0;

and in place of a second boundary condition, the matching of L. with the L of
definition (28) to all orders (as will now be shown).

The argument is similar to that in 6. The term exp [(2 e Y)/(2e) s(2 + e Y)]
can be neglected" with Y (1 y)/e and -1 < y =< Y l, it is a.e.s, uniformly for
r/ real. We need only show that exp [(1/(2e) s)(y + 1)] exp [(1/(2e) s)
(2- :Y)I satisfies the matching principle. But has the expansion (30) for

lY] < and every m, while /k)(r/, y;0) has an inner (Y) expansion to all orders.
Fraenkel’s Theorem therefore ensures that the matching principle holds to all
orders.

Once again a Taylor expansion

k
(43) fr(r/, Y; e) ff’(k)(r/, y;0) + 9"m(r/, y;e),

k=0

where

7)m(r/’ y ,) f(m)(r/, y te)e,m/m!,

will be needed. Then, if as before ( 5) divergent integrals are avoided by inverting
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through the convolution theorem before expanding f, we obtain

m-1

W E wV(X’ Y)e’k/2 + rn * f + -m,
k=0

where

(44a) wv
[k/21

/=o,j!(k- 2.j)!
’)(X X’, Y; O)f_ 2j(X’)X’(k- 2j) dX’,

and the definitions (31’) still hold. It remains to be shown that (i) the wtv satisfy
the recurrence relation (14a), the boundary conditions (14b), and the matching
conditions mentioned after them; and that (ii) 5 fand m are o(em/2), for every
m, uniformly in the region IV (with X o fixed). In this case the validity of the
expansion (13) is established. The proof is similar to that in region II ( 5).

(i) On substituting the expansion (43) into (42) and inverting, we find

2 2Q(k- 1)

y + -) ’’)(x, Y; O) -k axe(X, Y; 0), 5aO’)(X, O; O) 0

for all k. Hence the sums of integrals (44a) satisfy the recurrence relation and
boundary conditions. Moreover, the series formed from them matches the series
formed from the integrals (3 a) by virtue of the matching of and L, which is
ensured by the matching of LT and proved above.

(ii) We have to show that each of the integrals (44b), (44c) is bounded in the
region IV for e sufficiently small; this turns out to be more straightforward than
in 5. As there, we must look at the individual terms in L)(17, Y; e). They are

(45)

times

(Y)"(1 + 4e172)-2/2(1 + x//1 + 4e172)-3Y172

217;(2 -e Y) -] [ --4172exp or exp
1+ V1 4----2J 14- w/1 4- 4e172

where 0{1, 0{2, 0{3, , 7 are nonnegative integers with

(1 + w/1 4- 4172)---l
(45’) fl=<7 and fl+y__<2j.

The exponential factors ensure that the inverse of any such term is bounded
for all X provided Y is bounded and, for the first factor, e is sufficiently small to
give a negative exponent. An immediate estimate of the integral in 5 * fis there-
fore O(g-1/2), but this can be improved by expanding (") once more to give

C’(")(X X’, Y; O)f(g,1/2X’) dX’
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plus a remainder which is now O(1/2). SO we are left with this last integral, which
can be treated along with the integrals (44c).

For e 0 the nonzero terms (45) have the inverses

(- 1) Ya c32[- exp (- xz/8)]/c3X2

times or e- Y, so that we are concerned with integrals of the form

(46) Y exp [- X’/8](X X’) dX’,

where
2,

(X) X2,[f(m-2j)(tg,1/2X’)X’(m-2j)], j 0, 1, "", n or m/2.

Note that X’ and X- X’ have been interchanged, and that the limitations for
j m/2 are fl < 7, fl + 7 < 2n (and not m). Clearly these integrals are bounded
if X, Y and e are.

Extension of the region to

X =-, Yo =e- with,2>0

affects these results in two ways. Anticipating that 2 is not greater than 1, so that
e Y is bounded, we see that the critical factor in the terms (45) is Ye, which at
worst changes the bound on their inverses to O(e-xJ). The contribution to 5 * f
(corresponding to the remainder above) is then O[:"+ 1/2-2(n+ 1)] SO that for

2<1

a weaker asymptotic approximation is attained as soon as n is larger than
(2 1/2)/(1 + 2).

The same change occurs in each of the integrals (46), but in addition the
powers of X which arise from expanding the powers of (X- X’) will provide
at worst O(g,-x’(m-2j-2)’)), where to’ 1/2 or tc accordingly as m 2j 27, if we
anticipate x < 1/2. Thus the integrals (46) for a givenj : m/2 are at worst O(e-q),
where q max I2/ + tc’(m- 2j- 27)] on the triangle (45’). But for e 0 the
nonzero terms (45) have 7 > J, so that for fixed j the maximum value of the
bracket is tc’m + (2- 4tc’)i, attained for /3 =7 =J. Hence q 2m/4 or tom

according as x % 2/4, and we must have

(No further restriction arises for j m/2.)

9. The boundary layer III: f O. Outside the boundary layer the part of the
solution due to g is uniformly a.e.s., as has already been noted in writing down the
representation (19’a). Inside the boundary layer the representation (19’b) gives

0, where o(, Y; e2) exp + r (eY)

(47) + #o e22.o, o(, 0; e2) 1.

Clearly,



SOLUTIONS TO ;V2w w/y 589

Once again there is no second boundary condition, but instead ego is seen to match
the zero function in y.

The Taylor expansion of the kernel in e2 is

2k
(48) o(, Y; e2)= (o(, Y;O). + om(, Y; e2),

k=0

where

o,,(, Y; e2) (0m)(, Y; tez)ez"/m!
and derivatives are taken with respect to 82. Inversion term-by-term can only be
carried out after a smoothed version of g has been introduced (cf. 4, 7). With

G g for Xo/2 <= Ix al,

G e C and ak)(X)l dX < o

(constructed in the Appendix), we may write

where

(49a)

(49b)

(49c)

for all k

m-1
III 2k

W2k e + Om * G + 2Uo * (g- G),W
k=0

We shall show that (i) thew2kllI satisfy the recurrence relation (12a), the bound-
ary conditions (12c), and the matching conditions mentioned after them; and
that (ii) o,, * G O(:2m) for every m and (iii),ff (g G) is a.e.s., both uniformly
in the region III (with Xo, Y fixed). The expansion (11), containing only even
powers of e, will then have been proved valid. The steps are similar to but simpler
than those forf in 7.

(i) According to equations (47), the coefficient functions in the expansion (48)
satisfy

+ (, ;o) (, g; o),

fork=0,
)(,0;0)=

0 fork0.

It follows that the integrals (49a) satisfy the recurrence relation and boundary
conditions. Matching with the zero function outside the boundary layer is ensured
by the matching of0 with it.
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(ii) The derivative f(m)({, y;g2) is the sum of terms

(50) (1 + 4ez{z)-/ZYe{Zmexp [-(1 + w/1 + 4ez{z)Y/2],
where e and fl =< m are nonnegative integers. Hence it can be bounded as in 4 (ii),
so that the smoothness of G ensures NOra * G is o(em).

(iii) In convolution form

f+(o/) K(w/(x x,)2 + e2 Y/(2e))Y -I</2oct", (g- G)=- e [ -t--2 Eg(x’)- G(x’)] dx’
"a-(xo/2, /X + E2Y2

which is seen to be a.e.s, uniformly in the region llI.
Extension of the region to

x,=e, Yo =e- with ,2>0

uses a simple version of the argument at the end of 7. Because of the exponential,
the terms (50) are worst when Y is finite, and then they contribute at most
O(e2,,,x- 2,) to ’0,, * G. Hence

but 2 is arbitrary. In fact the two parts of the extended region may be joined across
x x# for any value of Y which tends to infinity algebraically in i/e. No further
restriction comes from #d * (g G), which remains a.e.s.

Note that the excluded region does not shrink down to a point, but only to
the line x x, in the boundary layer. Even though the regions II, and III, have
the same asymptotic dimensions, the character of the solution in them is quite
different.

10. The transition zone III,. The solution near the vertical line x a in the
boundary layer through the discontinuity in g is described by means of the
coordinate (15) and the corresponding transform variable

The different notation X,, y, and x,, Y is designed to emphasize the different
nature of the regions II, and III,: the former resolves a breakdown in a parabolic
layer where two coordinates are involved; the latter resolves a breakdown in a
hyperbolic layer where only one coordinate is involved.

We must now consider (using hats again for the transform)

where

Clearly,

(51)

.,({,, Y)= exp [(-1/2 + r,)Y] and r, /(1 + 4{2,)/2.

(2 ( 2),<_, 0-- +- ,
and, in place of a second boundary condition, , is seen to match with the zero
function in y.
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As in region II, no expansion is involved, but inversion by convolution is
necessary before expanding g. We find

rn-1

w WIkI1*’/,X,, y);k + f, * gtm),
k=0

where

(52a) Wk/,,, oo (,(x, ,kY)gk(X,)X, dx,k! x,,

(52b) , , g(m 2/, X,m!

with

x,, Y)g(m)(a + tex,)x, dx,,

(52’) gtk)(X,) gtk)(a 0) for x, 0.

The expansion (16) will therefore be established if we show that (i) the w/,"* satisfy
(17a), the boundary conditions (17b) and the matching conditions noted after
them; and that (ii),, * gtm)= o(em) uniformly in the region III, (with
fixed).

(i) Substitute the integrals (52a) directly into the equation and boundary
conditions to show that they satisfy them by virtue of (5 !). The series formed from
them matches the zero function in y because , does.

(ii) The integral in , * gtm) is actually

Ye -Y/2

f K,(x//(x,- x,)2 + y2/2)
2rc %//(x,- X)2 1_ y2

gtm)(a + tex’*)x’*m dx,

which is bounded in III, so long as e is bounded.
That the region can be extended to

x,o =e-, Yoo =e-k, with c, 2>0,

is seen from the corresponding treatment of II, ( 6). The expression (37) is re-
placed by

e- Y 2 Cs X,]m-sgts+ 1)/2 eY/2K(l_s)/2(y/2
s=O

The extra exponential factor results from the change ey*/2 to e- Y/2, which in turn is
traceable to the kernel having M1, in place of M2,. It suppresses the powers of
Y so that Yoo plays no role. Thus

and any 2

will do.
In fact, for any Y which tends to infinity algebraically in 1/e every remainder

is a.e.s, and the expansion asymptotes zero. In particular, this holds in the core,
where e Y is constant.
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11. Concluding remarks. There are two variations of the basic conditions (18)
onfand g which are of considerable importance. First the condition (18a) may be
strengthened to"

(53) f(k) is continuous at x 0 for k __< ko.

The question then is at what stage the free layer must be introduced. Similarly the
condition (18b) may be strengthened. On the other hand, the condition (18a) may
be weakened to"

f(k) (_+ 0) exist for k __< ko,

while still insisting that

fork =< ko +

remains from condition (18c), though nothing is said about later derivatives. The
question then is the order to which the various asymptotic expansions are valid.
Clearly a similar question arises for g. We shall consider these points in turn.

There is no need to introduce the free shear layer until the expansion in region
I fails to be valid near x 0, i.e., so long as F can be avoided. We must therefore
determine the largest integer m for which the integral in the remainder (24b)can
still be bounded when F is replaced byf. But by analogy with the bound (25),fmust
be small compared to -(2,+ 1) as - oe, while the condition (53) ensures thatf
is at worst of order -(+ 1). Hence

maxm [(ko 1)/2].

Obviously the expansion in region III is also valid to this order near x 0.
Similar arguments apply to g.

When only a finite number of left- and right-derivatives offexist at x 0, the
expansions fail first in the free layer and its intersection with the boundary layer.
In fact, they never fail outside if we still require

+ If()(x)l dx < for all k;

see, for example, the bounding (25).
In region I1 all derivatives up to f(26-1)(_+_0) are used in estimating the re-

mainder as well as J’Foo [f(z)(x’)] dx’< oo; see 5(ii). Since 6 < 2j and j < n
we must have 4n < k0 + so that

max rn 2[(ko + 1)/4].

This applies also in region IV, and no further restriction arises in region 1I,.
Similar arguments apply to g.

Note that there is no difficulty in calculating the coefficient functions (31a)
much further, namely up to k ko corresponding to

maxrn= ko + 1.
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However we can only prove the approximation is O(etk+ 1)/1). For example, if
ko 3 the four coefficient functions Woz, wII, wI2, w’ can be calculated, but the
resulting approximation is only known to be O(e);wt2 and w are useless.

Appendix. The construction of F(x), the smoothed version off introduced
in 4, will be based on the C-function

e- 1/x

o(x)=
0

Consider

forx > 0,
forx < 0.

-(x) (’ 1/2)( x’) ax (x’ )( x’)

where the common integrand vanishes for x’ < 1/2 and x’ > 1. Clearly r is C and
takes the values

Now set

<[0 forx<1/2,
forx > 1.

F(x) [(2X/Xo) + ( 2X/Xo)]f(x)

then F has the properties (23), the last by virtue of j’_oo I./((x)l dx < oo for all k.
(In fact, it is zero for Ixl _-< x0/4.)

As Xo -, 0 the most singular contributions to F(2rn+ 1) come from letting all
2m + derivatives fall on the functions r(+2x/x0). Thus the worst terms in
F(zm+l)(XoX are (+2/xo)Z"+r(z"+1)(+_2x)f(x), so that it can be written
x (2"+ )Fm(X; Xo), where F,, is bounded as x0 -+ 0. This property is used at the
end of 4.

Similarly the smoothed version of g used in 9 is

G(x) [r(2(x- a)lxa)+ r(2(a- x)/xa)}g(x).
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THE SUMMATION OF SERIES*

M. LAWRENCE GLASSER"

Abstract. A number of formulas are presented for representing a variety of infinite series in terms
ofrapidly convergent definite integrals. Several new explicit summations are obtained by these methods.

Physics and chemistry abound with slowly convergent infinite series. The
purpose of this paper is to supplement an earlier paper of a similar title by A. D.
Wheelon [2] with a variety of methods for treating a large number of types of
infinite series. The methods themselves are undoubtedly not new but no attempt
has been made to search the mathematical literature for their sources. Likewise,
our intention has been to be heuristic and the detailed conditions under which
the various procedures are valid are not given in detail. However, in applications
these are usually self-evident or can be found by testing the convergence of the
integrals and sums in question. As an example of how our considerations may be
useful consider the simple one-dimensional phase modulated coulomb sum which
might occur in the study of a one-dimensional lattice or a long polymer chain:

eikls=
I=-oo 11-- X]

We have taken the lattice constant or monomer spacing as unity and by periodicity
there is no loss in generality by taking 0 < x < 1. By direct summation it would
take (depending on k) as many as 100,000 terms to give S accurately to several
decimal places. By the use of classical methods, such as the Ewald procedure for
calculating Madelung energies, this can be reduced to as few as 50 terms. However,
by (3) and (4) of this paper we find quite simply

S
(cos k e-t)

x d0 cosh cos k
sinh (xt)

cosh (xt) dt + sin k
cosh cos k

dr.

One of these integrals can be evaluated exactly and the remaining one has a smooth
exponentially decaying integrand and a value which is given to ten places by
seven-point Gaussian quadrature for k 0 (mod 2re) and all 0 < x < 1.

We begin by considering Fourier series. A number of methods for summing
these have been summarized by McFadden [1] but all of these are suitable for a
restricted class of summands and are much more complicated than the very
simple procedure presented here. We start from the expansion

(1) (e ei,)-1 e-i, eit e-,, 0 < < 2rr x > 0
k=l
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Next let the Laplace transform of the real function f(x) be F(k); then by multi-
plying (1) through by f(x) and integrating from 0 to oo, we find

(2) eiktF(k) eit (e eit) :[’(X) dx.
k=l

Taking the real and imaginary parts of (2), we obtain

lfo (cost- e -x)
(3) F(k) cos kt

cosh x -c-o- f(x) dx,
k=l

(o f(x)dx
(4) F(k) sin kt sin

k: Jo cosh x cos

Equations (3) and (4) give the interesting relation between corresponding sine
and cosine series:

(5) fo e-f(x) dx
F(k) cos kt cot 2 F(k) sin kt - cosh x cosk=l k=l

As an example, let F(k) k-1 In k; then f(x) -In (Tx), where 7 is Euler’s
constant. The integral which occurs on the right-hand side of (4) is tabulated

fo n csc (t/2)-]In (Tx)
dx (n t)csc ln (2n7) + n csc ln

L ]-/--)3
(6)

cosh x cos

and we obtain Kummer’s series

(7) =1 k-llnksinkt=-(t- n) ln(2nT)+ln n-iF2 sin

As a second example, take f(x) tanh x. Then, since

tanh x
dx In sin2(8)

cosh x cos
-sec (2 t),

(9) e-x tanh x dx -,0[(1/4)(k + 2)] p(k/4)} k-1,

we have

0<t<n.

(10) {O[(1/4)(k + 2)] ,(k/4)} sin kt n tan ln (2 sin2 t).
k-1

This is one of a large number of new closed form summations that can be obtained
by inspecting a table of Laplace transforms.

By using Parseval’s theorem for the Fourier transform in L(0, ), equation
(4) can be written in the form

o(11) . F(k) sin kt t)Xq)c(x dx,
sinh

k= sinh nx

All integrals referred to as tabulated have been checked independently by the author.
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where (pc(X)is the Fourier cosine transform off(x)"

/oo F(iu)
(12) (pc(x) Re V(ix) + . x2 uU du.

For example, if F(k) k-1, then (p(x) (/2)6(x) (Dirac delta function) and we
obtain the well-known series k-1 sin kt 1/2( t), 0 < < 2. Equations (3)
and (4) easily reproduce all the Fourier series listed in standard compilations.

Next we note that (3) and (4) can be adapted to the summation of other
sin (z sin t)function series. For example, if both sides of (4) are multiplied by c

and integrated with respect to from 0 to , we find

(13)

F(k)Jk(Z dx dtf(x)
sin sin (z sin t)

k odd cosh x cos

f] sin (zt)c-1 dx cosh xf(x)
2 + sinh2

As an example, for F(k) k-1, f(x) and we find

tdt

rCHo(z(14) k 1Jk(z -odd

If we put 0, c in (3), we obtain

___f(x)dx, (_ 1)kF(k f(x)(15) F(k)
e ex+k=l k=l

--dx.

The first of these transformations was noted by Wheelon [2. The second can also
be used to sum a class of transformed series as follows. Let

cos (xy)F(x) dx.

Then, since

+ 2 (- 1)"cos ny lim
sinh e

,--1 -o cosh + cos y
2 lim

e2-o + 2(1 + cos y)

2rc6 2 cos 6[y -(2k + 1)rc],

we have

(16) (-1)kF(k)= 1/2-F(O)- rc 2 g(krc),
odd

or

(17) g(k)= -- g(y)dy e----kodd 7 +
where f(x) is the inverse Laplace transform of the cosine transform of g(y). For
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example, let g(y) (y2 + a2) 1. Then f(x) (rc/2a)15(x a), and we find

a
(18)

(krc)2 + a2 4a
tanh .

k odd

As an example of the first transformation in (15), we note the Laplace transform
pair

(19) sin [a(1 e-X)] a-F(k)U+ (2a, 0),

where U+ (x, y) is Lommel’s function. Thus, we immediately obtain

(20) a-F(k)U+ (2a, 0) Si (a);
k=l

that is, we have summed the double series

(21) Z Z (-- 1)ma2m+
r()

k= m=O F(2m + k + 2)- Si (a).

One more interesting series comes from the Laplace transform pair

(22) (1 e-X)"/za,[a(1 e-X)/2]. F(k)(2/a)j +u(a)"
This gives, by using the first formula in (15),

( r(lOzJ+.(/z J.(x/z)x"- x.

Thus, for we have the interesting sum

(24) 2 F(k)zJ+(2/z) z[1 Jo(2/z)].
k=l

These procedures may be viewed in reverse to evaluate certain definite
integrals in terms of infinite series. As an example, by using (15), we find

sin2 ax
(25)

e 5 i dx 2a
k[kZ + (2ae)]k=l

Series such as that in (25) are easily summed in terms of the digamma function
O(z), and we have

(26) ff sin2 ax
dx -[7 + Re O(2ia)]

ex-

a simple formula which does not appear to be listed anywhere. The integrals
sin2" ax(e 1)- dx can be obtained similarly.
By using general properties of the Laplace transform, various other trans-

formation formulas can be derived. For example, if F(k). .f(x), then
k- F(u)du. . y- f(y)dy. Therefore

:1

F(u) du f(x) In (1 e-)x dx.
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Similarly,

Fig(k)] dx dy
h(x, y)f(y)
e

where h(x, y) is the inverse Laplace transform of exp {- yg(k)}. For example,

(28)

E F(kl/3) y3/2 dy 1/312(y/3)3/2x x/2]f(y)(eX l) -1
k-= -4 (el/U2

9n
l)- du dz 22/3f(z2/3)K1/3

2
uz

(29)
k=l 2x/

dx Y dY
e

e
xy2/4xf

and

xy- if(y)
+ f(Y)(Y).(30) Z V(log k) dx dy

,:, y)(e 1)

In many cases, at least one of the integrals can be performed explicitly and the
second converges rapidly.

Finally, convenient transformation formulas can also be obtained by using
other integral transforms. For example, from the expansion

kakxk(31) (- 1) e-,
k=0

by multiplying both sides by f(x) and integrating from 0, to , we have

ak

(32) (-1)M(k + 1)= F(k),
k=0

where M(k) and F(k) are the Mellin and Laplace transforms off(x), respectively.
Alternatively,

ak c+i
)vF() F(s)aC(- s) s 0n a),(33) (-1
a:

._
k=0

where 0(p)is the inverse Laplace transform of F(s)F(-s).
Finally we have

c+i M(s)(k + a) ds,(34) f(k + a) -fii c_
so if the allowed range of c in (34) includes 1, we have

fc+i M(s)(s, a) ds, c > 1,(35) k=O f(k + a) i.,c_ioo
where (s, a) is the generalized Riemann zeta function. (s, a) has only one simple
pole s with unit residue, so the integral on the right-hand side of (35)can
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generally be evaluated by residues. As an example we consider a series which
occurs in the theory of the diamagnetism of an electron gas"

(36) S= (| /.?)3/2,
k=l

where n is the largest integer less than or equal to 1Ix. Here we have f(k)
0(1- kx)(1- kx)3/2 and a 1, where O(x) denotes the unit step function.

By (35) we have ((s, I) (s))

(37) S F(5/2)(+ F(s)(s)
ds c >

2zi c_io F(5/2 +s)
x

The integrand has simple poles at s 1, 0, 1, 3, Where x > we can close
the contour to the right and S 0 as expected. For x < by closing to the left we
find the asymptotic representation

(38) S 5- 4 8 F(2n + 1)F(7/2- 2n)

where we have used the values ’(0) -1/2-, (1 2n) (- 1)"B,/2n and the B, are
Bernoulli numbers. Equation (38) is valuable for studying (36) at small x.
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UNCERTAINTY INEQUALITIES FOR HANKEL TRANSFORMS*

PATRICK C. BOWIE"

and

Abstract. In this paper an uncertainty inequality for Hankel transforms is obtained.
Let > 0 be fixed. We set

dlt,,(x) c x2" dx, c 2 1/2F(v + 1/2),

,v(X) CvX 1/2Jv 1/2(x),
where Jr_ 1/2(x) is a Bessel function of the first kind of order 1/2. We define

f (t" v)= f(X)Jv(xt)dlav(x).

A probability frequency function with respect to d/v is defined as a nonnegative function in

L(0, ) with norm one, and the generalized variance of a probability frequency function F(x) is
defined by

V[F] x2F(x) dial(x).

Let f(x) belong to L2(0, o) with norm one. By Parseval’s equality ]f(x)l and If(x v)l can be
considered as probability frequency functions. The uncertainty inequality

V[If(x)12]V[If’(x" v)2] > (12 q- 1/2)2

is proved, and the constant (v + 1/2)2 is shown to be the best possible.

1. Introduction. Forf L2( ct, )with fll and g(y) oof(x)e- 2rixy dx,
Weyl [12] has shown that

where

and

V[ fl2]V[g 2] > 1/(16rc2),

V[F] (x m)ZF(x) dx

m xF(x) dx.

In this paper an analogous inequality will be established for Hankel trans-
forms. Let v > 0 be fixed but arbitrary. We set

dltv(x) c7 1xZv dx,

where c 2 /2F(v + 1/2). We define LP(0, ), =< p < , as the Banach space
of those real measurable functions on (0, ) for which

fl[p, If(x)l p

* Received by the editors March 31, 1970, and in final revised form April 2, 1971.

" Department of Mathematics, Clemson University, Clemson, South Carolina 29631.
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is finite. We write Lp. Let J,(x) be the function defined by

J(x) cx-+ 1/:j_

where J_ 1/:(x) is a Bessel function of the first kind of order (v 1/2). For f(x) L
we define the Hankel transform f A(t; v) of f(x) by

f (t; v)= f(x)J(xt) d#(x), 0 <__ < .
Unless there is confusion about the order v, we write f^(t).

DEFINITION 1.1. We say a function F(x) on (0, ) is a probability frequency
function with respect to d/ if"

(a) F(x) > 0

and

for 0<x<oe

(b) F(x)eL with IIF 1, 1.

For the remainder of this paper the following assumptions are made for all
functions"

(11

and

f(x) L2

(2) f 2, 1.

By Parseval’s equality (see Guy [5]) these functions will satisfy

(3) f 112, 1.

Hence, If(x)l 2 and If^(x)l 2 can be considered as probability frequency functions
with respect to d/.

Next we define the function D(x, y, z) by
2(3v-5/2)F(v _q_ 1/2)2

D(x, y, z) (xyz)l 2vm(x, y, z)2V- 2,
F(v)l/2

where A(x, y, z) is the area of a triangle whose sides are x, y, z if there is such a
triangle and otherwise D(x, y, z) is zero.

For any locally integrable function f(x) we define the associated function

f(x, y) by

f(x, y) f(s)O(x, y, s)dktv(s), 0 < x, y <

For a fixed y, 0 < y < oe, the operator Tr defined by Tr[f(x)] f(x, y)is a
"translation operator." This motivates the following definition.

DFFINITION 1.2. The generalized second moment about the point c, V[F, c],
of a frequency function F with respect to d/ is defined by

g(x, c)F(x) dt(x),
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where g(t) 2 and 0 < c < oo. Referring to Cholewinski and Haimo 3, p.8] we
have that

V[F, c] (x2 + c2)F(x)dtv(x)

x2F(x) dlzv(x) + c2

F as
DEFINITION 1.3. We define the generalized variance of a frequency function

v[v]

Note that V[F, O] V[F].
It is now agreed to drop the ’with respect to d"

functions and generalized variances.
when referring to frequency

Functions in these spaces appear in a natural way in n-dimensional Euclidean
space. Let F(Xl, ..., x,) be a radial function in n-space; that is, there is a function

Fo on I0, oo) such that F(xl,..., x,)= Fo(r), where r (x21 + x. + + x,2).
Suppose Fo(r L 1(0, oo) with norm one. It is clear that the mean of F in n-space is
zero. Furthermore if one looks at the "absolute variance" of F in n-space, that is,

(xk yk)2F(xl, Xn) dxl

then by changing to spherical coordinates, we have

dxn,

(Xk yk)ZF(x1, Xn) dxa
k=l

2(2rc)+ 1/2 r2Fo(r) d/(r) + r,

where 2v n and ry is the Euclidean distance of y from the origin. Observe
the correspondence of this to the generalized variance.

2. An uncertainty inequality. This section turns to the task of proving the
uncertainty inequality for Hankel transforms,

v[Ifl=]V[If’l =] >_ (v + 1/2)2,
that is, that the generalized variances of [f12 and If A[ 2

and

are not both small.
We first prove an intermediate result concerning dfA(x)/dx.
THEOREM 2.1. Iff L2 (’1 L2+ 1, then fA(x) is absolutely continuous on (0, )

am(x) [f(O] = am(O.

Proof Suppose first that in addition f e L f-I L+ 1. Then

f (x) f(t)Jv(xt) dp(t)



604 PATRICK C. BOWIE

converges absolutely and defines f (x) as a continuous function on (0, oo). We
have

d ,(z)cc;+’z&(Z) -zJ+ ,

and since tJv+ l(t)e L(O, oo), we have

dxf (x) tf(t)[xtJv+ l(xt)cc+11] d#(t)

which can be rewritten as

(4) -x -1 f’(x) f(t)J+ l(xt)dl+ 1(0.

By Parseval’s formula for v + 1,

X- 2 d 2

-xf’(x)
which is the same as

d]v+ l(X) If(t)] 2 d/zv+ 1(0

f’(x) dl(x) [tf(t)] 2 dt2(t).

Suppose now that f6 L2 ffl L2+1 but not that f6 L f] L+l. Choose f,(t)
such that f,(t) L2 L2+1 L L+ and such that

[If fn[[2, - O, [[f fnll2,v+ 0

as n ---, oo. It follows easily from (4) that

(5)

x

xf[(x" v + 1) dx x f.(t)Jv+ l(xt) dllv+ l(t) dx

X --X -1 f2(x, v dx

f2(x2 v) f2(xx v).

By Parseval’s equality we have that

f’(x; ) f(x; ) ,, I]f(x) f.(x)l,, 0,

f’(x; + ) f(x; + ),,+, lf(x) f.(x)ll:,,+, 0

Taking the limit as n in (5), we have that

f^(x2;v) f (xl ;v)= xf (x; v + 1)dx, a.e.

So f’(x; v) (suitably redefined on a set of measure zero) is absolutely continuous



UNCERTAINTY INEQUALITIES FOR HANKEL TRANSFORMS 605

(and hence continuous) on [a, b] for all 0 < a < b < oo, and thus

mX-
d
-x f (x)= fA(x; v + 1) a.e.

As before, applying Parseval’s equality for v + 1, we have our result.
THEOREM 2.2. Let f ll2, 1. Then

V[lfl2]Vv[If^l 2] >= (v + 1/2)2.

Proof We may assume that V[If[ 2] and V[If’[ 2] are both finite, since
otherwise there is nothing to prove. Hence, fL+ andfL+ . It follows
from Theorem 2.1 that df (x)/dx L. We have

d
[x2v+xf(x)2] (2v + l)x2vf(x)2 + 2{xV[xf(x)]} {x d *(x)}d f

which implies that d[x f’(x)2]/dx L(O, ). Consequently the limits

lim x2+f’(x)2 and lim x2+f’(x)2

xO

exist. Since f’ L, both limits must be zero.
Let

I(a, b) xf (x) f(x) d(x).

Integrating by parts, we obtain

I(a, b) -[xf"(x)cx + (v + ) f" (t) dg(t),

and using the limit relations above, we have

(o, ( + f(0 m(0 + .
By Schwarz’s inequality and Theorem 2.1,

(o, [xf(x m(x f(x

[^(X)]2 d(x) [tf(t)] 2 dt2(t),

and the proof is complete.
It is clear that equality occurs in Theorem 2.2 if and only if equality occurs

in our application of Schwarz’s inequality. Since necessary and sufficient condi-
tions for equality in Schwarz’s inequality are well known, one can easily find
all the extremal functions. An example of such a function is

v/2 + 1/4

F(x t) e -x2/(4t), t>0.
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ALMOST EVERYWHERE CONVERGENCE OF FOURIER SERIES
ON THE RING OF INTEGERS OF A LOCAL FIELD*

R. A. HUNT? AND M. H. TAIBLESON

Abstract. It is shown that the partial sums of the Fourier series of LP())-functions (p > 1) con-
verge almost everywhere (a.e.), where is the ring of integers in a local field K. This includes the
case where K is a p-adic number field as well as the case where 3 is the Walsh-Paley or dyadic
group 2‘. The techniques are essentially those used by Carleson [2] in establishing the a.e. convergence
of trigonometric Fourier series for L2(-n, n)-functions as modified by Hunt [4] to obtain this same
result for LP( n, n)-functions, p > 1. The necessary modifications for the local field setting are made
in the context of the Sally-Taibleson [7] development of harmonic analysis on local fields and by
use of Taibleson’s multiplier theorem [11]. These same results for 2‘0 have already been obtained by
Billiard (L2(2‘0)) [1] and by Sj61in (LP(2’), p > 1) [8]. Many advantages (in particular the non-
Archimidean nature of the valuation) of the local field case over the trigonometric case have been
utilized. Consequently many purely technical elements of the trigonometric case have disappeared
and one is left only with elements of the proof which bear on the central idea. For this reason the
proof given can be used to obtain a clearer understanding of the proof for trigonometric Fourier series.
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1. Introduction and statement of results. Let K be a totally disconnected,
locally compact, nondiscrete, complete field. The locally compact, nondiscrete,
complete fields have been completely characterized and are either connected (the
real and complex number fields) or are totally disconnected. The totally discon-
nected fields can be of characteristic zero or have finite characteristic. Those of
finite characteristic are a field of formal Laurent series over a finite field. Those of
characteristic zero are a p-adic number field or a finite algebraic extension of
such a field.

Various aspects of harmonic analysis on such "local fields" K have been
studied in [7], 3], 5], [6], 9], 10], 11] and [12]. In this paper we shall study
Fourier series of functions defined on the ring of integers of a local field K.

We briefly present some notation which will allow us to state our results:
Let 9 denote the ring of integers in K and consider f L1(), dx), where dx

denotes normalized Haar measure on ) ( dx 1). Snf(x will denote the nth

* Received by the editors December 12, 1970.- Department of Mathematics, Purdue University, Lafayette, Indiana 47907. The work of this
author was supported in part by the National Science Foundation under Grant GP-18831.

: Department of Mathematics, Washington University, St. Louis, Missouri 63130. The work of
this author was supported in part by the U.S. Army Research Office (Durham) under Contract
DA-31-124-ARO(D)-58.
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608 R. A. HUNT AND M. H. TAIBLESON

partial sum of the Fourier series off with respect to a suitably ordered complete
set of characters on 3. Let Mf(x)= sup,[S,f(x)l. Ilfllp will denote the usual
LP-norm on LP(), dx), <= p <= oo, and we write IEI E dx for E a measurable
subset of 3. Recall that

logt, t> 1,
log +

0, otherwise.

In terms of this notation our results are the following theorems.
THEOREM 1. Iff Lp, 1 < p < , then there is a constant Ap > 0, independent

off such that IIMfllp _-< Zpllfllv.
THEOREM 2. Iff 6 L, y > O, then there are constants B1, B2 > O, independent

off and y, such that [{x6 3: Mf(x) > Y}I =< B exp {-B2Y/llflloo }.
THZORFM 3. fj’ If(x)l {log + lY(X)I} e dx < oc, then there is a constant C > 0

independent off such that IIMfll =< CJ’ If(x)l {log + If(x)l} 2 dx + C.
THZOZM 4. lflf(x)l log + If(x)l log + log + If(x)l dx < , then Snf(x --. f(x)

(n o) jbr a.e. x
DEFINITION. f is said to be a specialfunction iff gIv, where lv is the charac-

teristic function of a measurable subset F of 3, and g is a measurable function
with values in (1/2, ].

BASIC RESULT. Suppose < p < o, y > O, and f is a special jhnction
on . (For p 2, f can be an arbitrary function in L2.) Then there is a

(1.1)
constant C > O, independent off and y, Cp <= Cp2/(p 1) (C an absolute
depending only on K), such that

I{x 3: Mr(x)> y}l 1/ < Cpy-lllfllp.
In 2 we obtain Theorems 1-4 as a consequence of the Basic Result, (1.1).

We note that it is sufficient to establish the Basic Result for characteristic functions
(see Hunt [4] and Sj61in [8]). E. M. Stein suggested the use of special functions as
technically and intuitively advantageous. These advantages are seen, in particular,
in the derivation of Theorems 2-4. For Theorem we use only the fiact that the
Basic Result holds for characteristic functions; which are, of course, special
functions. It should be noted that the proofs (given the Basic Result) of Theorems
2-3 in 2 are purely measure theoretic and hold on any finite measure space.

In 3 we collect notation and preliminary results needed for the proof of the
Basic Result. This includes a brief review of properties of K, 3, characters on 3,
the ordering of the characters, and properties of the Dirichlet kernel.

Section 4 contains the proof of our Basic Result. The proof is essentially
Hunt’s Lp variant of Carleson’s original proof of the a.e. convergence of the
partial sums of the Fourier series of functions in Lz( -, ). (See Carleson [2]
and Hunt [4].) Modifications necessary to obtain local field results depend on
Sally and Taibleson’s development of harmonic analysis on local fields [7] and
Taibleson’s multiplier theorem 11].

In this paper we have utilized many advantages of the local field case over
the trigonometric case. Consequently many purely technical elements of the
trigonometric case have disappeared and we are left with only elements of the
proof which bear on the central idea. Because of this, the present proof provides
a clearer understanding of the trigonometric proof.
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It is worthwhile to note that local field results include the case where 3 is
the Walsh-Paley group 2’. 2 can be identified with the additive group of the
ring of integers in the 2-series field; i.e., the field of formal Laurent series over
GF(2). In this case 3 can be represented as the interval [0, 1] and the characters
on 3 are just the familiar Walsh functions, and the properties listed in 3 can be
verified without any special knowledge of local fields.

Billard [13 has obtained the a.e. convergence of Walsh-Fourier series of
L2-functions by modifying Carleson’s original proof. Theorems 1-4 for Walsh-
Fourier series were proved by Sj61in [8] by modifying the basic result of Hunt’s
L variant of Carleson’s proof.

2. Reduction to the Basic Result. Given only that the Basic Result, (1.1),
holds for characteristic functions, Theorems 1-3 are proved in Hunt 4] and
Theorem 4 in Sj61in [8]. In this section we restrict ourselves to the proofs of
Theorems 2-4, and we exploit the technical advantages of using special functions.
The intuitive advantage follows from the fact that any function can be written as
a countable sum of multiples of such special functions, and that the Basic Result
implies that, restricted to any multiple of a special function f, the map f---, Mf is
of weak-type (p, p) for < p < .

Proofof Theorem 2. We may assume thatf is nonnegative and bounded by 1.
(If necessary, replace f with fill f . If f 0, there is nothing to prove.) We
need to show that there exist B1, B2 > 0, independent off(llfll 1) and y > 0
such that

I{x e 3: Mf(x) > Y}I B1 exp (-B2y).

Write f k__l f, where

f(x), x eFk= {xe)" 2 -’ < f(x) <= 2 -+1},
tO,

I{x 3" Mf(x) > y}[ __< I{x e 3" Mf(x) > 2-y}l
k=l

<= {Cpy-1}P =1 2kp IA(x)l dx

for each p, < p < oe. But,

=1
IL(x)l dx <= , [22 -k+]plFl

k=l

<= 2p IFI 211 2.
k=l

Hence, there is a constant A > 0, independent of y and p, such that

I{xe 3: Mf(x) > Y}I =< APY-t’(P2/(P 1))p.
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Set p y/eA. Then
e2 exp (-(1/eA)y), y/eA 2,

I{xe 3" Mf(x) > y}[ < t <e2exp(-(1/eA)y), O<y/eA <__2.

e2 B2 1/eA.Our result holds with B1
Proof of Theorem 3. We may assume thatf __> 0 and writef =o fk, where

{ {fo(x)
f(x), O <= f(x) N 2, f(x), 2k < f(x) <= 2

0, otherwise,
J;’

0, otherwise, k >__ 1.

Let 2k(y ]{X O" Mfk(x > y}[, k 0, 1,2, Since foe L2, the Basic Result
implies that

Mfo(X) dx 2o(y) dy
0

<= + Cy- 2 J;(x)12 dx dy

__< + 4c c,
where C > 0 is independent off.

Set LIIc,/ __> 1. Then

Mrs(x) dx (y) dy + (y) dy

where C > 0 is independent off.
The argument continues exactly as in Zygmund [14, vol. II, p. 120]. This

completes the proof.
Proof of Theorem 4. Let

J(f) fr l/(x)l {log + l/(x)l log + log + If(x)l -t- } dx.

Since . If(x)[ log + [f(x)l log + log + [f(x)l dx < implies J(f) < , and
such functions can be approximated in the "J-norm" by functions with every-
where convergent Fourier series, our result will follow from

(2.1)
I{xe " Mf(x) > Cl[J(f)]’/5}[ <_ C2[J(f)] ’/,

0 < J(f) < 1/2, for C, C2 > 0 independent off and J(f),

by the usual argument. (The density of a "nice" class of functions in the space of
functionsf such that J(f) < is shown by standard arguments. One such argu-
ment is given in the Appendix.)

p Cp3

fk J’kp__
Cp P----- (p__ 1)2 P’
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We may assume f > 0 and let f fo + k--4 J,, where

f(x), O <__f(x) < 8,
fo(x)

0, otherwise,

and

f(x), xeFk= {x?’2k-l__<f(x)<
f(x)

O, XCFk, k >= 4.

Throughout, we let C > 0 be constants independent of f, not necessarily the
same in each instance.

Since f0 e L2, our Basic Result yields

I{x6 ,’Mfo(x) > [J(f)]I/5}l <= C[J(f)] -2Is f I/o(x)l 2 dx

<= C[J(f)]-z/sJ(f) <_ C[J(f)]3/ <= C[J(f)] /5.

Thus; it will suffice to prove our result for =4fk. We use the following
estimate of Sj61in [8]. For each k >__ 4 and 0 < y __< 1/2 choose p + (log y- 12k)- 1.
Since Cp =< C(p 1)- for p near and 1 < p < 1 + (log 32)-1, we obtain that
Cp <__ C log (y- 2k). Since fk e Lp for all k, we have

(2.2)

[{x e ’Mfk(x) > y}[ =< C,y -p Je [f(x)[ p dx

<= [c(2ky -1 log (2ky 1))]1 +(log 2kY 1)-llFkl

<= C2ky -1 log (2ky )lVkl
Ck2klFkl(log y-)y-, 0 < y < 1/2,

To prove (2.1) for o= 4 fk we shall need a modified L estimate. This requires
the identification of certain exceptional sets Pk where the functions Mf are too
large. In particular, we let p [j(f)]2/5, Pk {Xe ’mfk(X)> p} and P

k=4Pk
From (2.2) we obtain"

IPl Ck2klFlp -1 log (l/p).

Thus,

IPI IPI c k2 /9
-1 log(l/p)

k=4 k=4

<= CJ(f)[J(f)] -2/5 log [1/J(f)] <= C[J(f)] 1/5.

Thus, we may disregard the set P.
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Let

2k(Y) I{X e ’Mfk(X)> y}[.

Mfk(x) dx <= 2k(Y) dy 2k(Y) dy + 2(y) dy
pk-2

CIFkl log (2ky (2ky dy + l dy
k-2

p2

CIFkl2k log (l/y) dy/y + pk -2
dp2-kk-2

CIF12k log k log (l/p) pk -2.

Hence,

M
p 4

fk

From this we obtain

(x) dx <
=4 ~Pk

Mfk(X dx <__ C{log (1/p)J(f) + p}.

< Cp-x/Z[log (1/p)J(f) + p]

C[log(1/p)p2 + pl]2]

<= Cp x/2 C[J(f)] 1/5.

This completes the proof of Theorem 4.

3. Notation and preliminary results. We shall list here properties of totally
disconnected, locally compact, nondiscrete, complete fields K. The facts noted
here can be found in the introduction to [7] or follow immediately from facts
listed there. Most of these properties are well known, and proofs can be found in
[7], [3-1 or [13].

Let K be fixed and let dx be a Haar measure on K /, the additive group of K.
There is a natural (non-Archimedian) norm on K such that d(zx) Izldx, Ix / yl
=< max [Ixl, lyl], and Ix + Yl max [Ixl, lyl] if Ixl 4: lyl.

The ring of integers of K is 3 {x g’lxl =< 1), the maximal compact
subring of K. We assume that dx is normalized so the measure of is 1. (11

fz dx 1). {x K’lxl < 1} is the unique maximal ideal in O. is principal
and 3/ GF(q), where q pr, p prime, r >= 1.

We fix p a generator of . Then 101 q-a, and for all x K, either Ixl 0
(if x 0) or if x # 0, Ixl q for some integer k. Hence if x - 0, x pkx’, where
k Z and x’ (3" 3 are unique. (O* is the ring of units in K*, the multipli-
cative group of K.)

For each integer k set k {X g’lxl <= q-k). The members of the collection
{ k}kZ are called the fractional ideals of K. For all k they are subgroups and form a
natural neighborhood base at the zero element of K. For k >= 0 they are subrings
of K. Cosets of the k in K are called spheres and are denoted by co. If 09 x + k,
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then Icol q-k and we say that co has center x and radius q-k. Thus the measure
and radius of a sphere are equal. We shall deal principally with spheres co
and in special circumstances with certain spheres in -1. It is important to note
that if co, N are any two spheres then either co f-I N , co ( or N c co. It
follows that any point of co is its center.

Let Z be a fixed nontrivial, continuous, unitary character on K /. Then Z is
constant (and equal to 1) on some k and nonconstant on k- 1. Then every other
continuous unitary character (henceforth, simply "character") on K is of the form
7.u(x) 7.(ux). Normalizing, we may assume 7 is equal to 1 on and is nonconstant
on - 1. The map u gu from K / onto/ / is a topological isomorphism, and we
identify/ / with K / under this isomorphism.

There is a simple picture which permits a reduction so that harmonic analysis
on 3 can be studied in terms of harmonic analysis on K. Namely, take functions on
3 and extend them to K by setting them equal to zero on K 3. The Fourier
transform of such a function (supported on 3) is constant on cosets of 3 in K, and
these constants are the Fourier coefficients off as a function on 3 with respect to a
complete set of characters on 3. That is, there is a natural correspondence between
characters on 3 and cosets of 3 in K+. This correspondence is established by
showing that every character on 3 is the restriction to 3 of a character on K, and
that two characters g,, g have the same restriction to 3 if and only if u v
that is, if and only if they are in the same coset of in K +.

We now select a sequence of coset representatives {i(n)}2=o of 3 in K + such
that if ), is the restriction of)t,) to 3, then {),},__ 0 will be a complete set of charac-
ters on

Note that GF(q) GF(ff) can be written as an r-dimensional vector space
GF(p) with basis {o, 1,’", -1}, where o 1. Let {flo,fll,’", fl-l} be
coset representatives of in 3 such that flk corresponds to k, k 0, 1, ..., r
(from the isomorphism GF(q) - 3/3(3). For 0 _<_ n < q, n can be uniquely repre-
sented as n ao + alp + a2p

2 + + a_lp-1, O <= ak < P. We set i(n)
P-l(aoflo + alfl + + a_ lfl-1), where p is the generator of 3 that was

fixed above. For n __> 0 write n co + clq + + Ckqk, 0 <__ C < q, and set
i(n) i(co)+ p-li(cl)+ + p-ki(Ck). It follows that i(n)= 0 if and only if
n 0 and i(n)l qk if and only ifqk-1 <= n < qk, k 1,2,....

We now set Z,(x) )i(,)(x) z(i(n)x) for x e 3. It follows that Z0(x) and
if qk- n < qk, then Z, is constant on spheres of radius q-k, k >= 1.

(3.1)

(3.2)

If n lq + s, 0 <= s < q, a nonnegative integer, then

Z, ZqvZ.

If 0 <= s < q, then Z is constant on spheres of radius less than or equal
to q ,v 0,1,2,

For co any sphere in of radius q- (so co x + ) and n a nonnegative
integer we define n[co] to be the largest integer in nq- . Note that n n[co]lcol- + s,
0__<s <lco1-1.

In view of (3.1), (3.2) we have

{ 1 /f n[co] m[co],
(3.3)
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and

(3.4)
{]co[ 1/2jnlo 1}= 0 is a complete orthonormal set on co, and if co contains

the origin, it is a complete set of characters on co.

Iff L1(o9, dx), co c 3, we define the "Fourier coefficients" off on co by

Cn(CO;f) -[ f(t))nl,ol-,(t) dt, n 0,1,2,...

Plancherel’s formula on co gives

(3.5) Ic(co;f)121col If(x)l 2 dx.
n=O

If fe L LI(), the nth partial sum of the Fourier coefficients of f over 3
can be written as S.f(x)= f(t)D.(x- t)dt, where the Dirichlet kernel D.(t)
.-1 Zk(t) n > 1, Do(t O. O*.(t) the modified Dirichlet kernel is defined by0

D, nDn
Note. In the classical treatment of Fourier series, ordinary partial sums are

studied in terms of modified partial sums, and these are reduced to the study of the
conjugate transform. The same program is carried out here, but it is necessary to
introduce a distinct "conjugate transform" for each n.

For co c , co x + k define co* x + - 1. Thus 3" - 1. We extend
f to 3-1 by setting f(x)= 0 for x -1 , and extend the characters ),
similarly. Note that for each co* there are exactly q spheres with * co*, and
that Ico*l qlcol.

For each co c 3 there is a unique sequence of spheres {coj}J--o such that 3
coo, co coJ, and coj co-l, J 0, 1, ..., J 1. This fact allows inductive

definitions on co which are based on knowledge of spheres where ( co*. Note
*l q-+that for the sequence {coj}, I%1 q-J, Icoj

Suppose co* c -1. We define

(3.6)

(3.7)

S*.f(x co*) fo,* f(t).,(t)D*, (x t) dt, n >= O, x co*.

[S*.f(x co*)[ f(t)D.(x t) dt n >= O, x co*.

If co is any sphere and x q co, then D*,(x t) is constant as varies

over co.

Proof This immediately reduces to D*,(x + y)= D*,(x)if lyl < Ixl, which is
contained in Taibleson [11, Theorem 4].

Define C.(o9" ;f) max {Ic.(;f)l"

(3.8)
/fn[co] m[co], then

[S*.f(x; co*)[ =< [S*mf(X co*)[ + qC.tol(co* ;f).
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Proof

f(t)D,(x t)dt fo,,f(t)D,,(x t) dt

(t)[Dn(x- t)- Dm(x- t)] dt

t091-1-2
<_- E
55" m* 0 fcof(t)Z,t,llo, l- +(x t) dt

Illc.t<(;/)l
&* 09* 0

q(Icol -a 1)llC.to(co* ;f qC,t091(co*;f).

The result follows immediately from (3.6).
Remark. On occasion, co* is given explicitly, but co is not, while we still wish to

define n[co. In this case, choose any N such that (* co* and define n[co n[N].
The following theorem on the maximal modified partial sums on a sphere co*

is essential to our Basic Result.

(3.9)

Suppose g L(co*, dx) and Ilg oo.,, is the essential supremum of g on
co*. For x co* define

sup [" g(t)D*, (x t) dtT*, g(x co*)
x* 09* J09. *

Let y > O. Then there is a constant A > O, independent ofg, co* and y such that

I{x co*’T*,g(x; co) > Y}I < el/2 exp Ay/llg

Proof See Taibleson [1 1, Corollary 43 for a proof.

(4.2)

4. Proof of the Basic Result.

4.1. Reduction to the Basic Lemma.

BASIC LEMMA. Fix y, p and N with y > 0, 1 < p < , and N a positive
integer. Let f be a function supported on which is a special function if
p :/: 2 but is any function in L2 if p 2.

Let L L(p)= [2p2/(p- 1)] + 1, where [. is the greatest integer
function.

Then there are a set E E(y,p,N,f) 33 and a constant C > 0
independent ofy, p, N, f such that

IEI < Cy- f If(x)l dx,

and x 3 E, 0 <__ n < qN, implies

IS.+ lf(X)l CLy.
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Suppose we establish (4.1), the Basic Lemma. Since the estimate of IE] does
not depend on N, (4.1) implies the Basic Result, (1.1), with Cp CL(p). From (4.2)
we see that (1.1) would follow.

4.2. Development of assertions. The main idea of the proof of (4.1) is to reduce
S,,+lf(x) to an integral over a sphere co* with Io*1 2-/

implies n[co] 0 and (3.8) gives a good estimate of the integral S*,f(x; co*).
The reduction is carried out in a finite number of steps by a careful construc-

tion of partitions of certain spheres co* into subspheres, the partitions depending
on certain integers nlco] and the size of C,o(co* ;f). Together with each partition
we need an estimate of the size of certain differences, [S*,f(x;
&* co*. These estimates also depend on the size of C,(co* ;f).

To illustrate the main idea of the proof without becoming involved in several
side constructions we shall give a proof of (4.1) (in 4.3) that depends on various
assertions. These assertions will be starred, and in 4.4 we return to these assertions
and complete the proof by "removing the stars."

Several parts of the proof depend on the size of various coefficients C,(co* f).
To control the size of the coefficients we define a set S* )* such that

and

IS*I =< qy-Pf V(x)l p dx,

(4.4*) co* S* = C,(co*;f) < y for all n O, 1,2,....

For each positive integer k we shall define a collection G’ of pairs (n]co], co*)
which satisfy

(4.5*) (n]co],co*) G’ = n]co] is a nonnegative integer, co*tic S*, co*c *,
]co,] > q- u + 1, and C,ol(co* f) < q- k + ly.

For each pair (nlco], co*)e G’ we define a partition f D(nlco], co*, k) of co*
into a finite union of mutually disjoint spheres (5".

A sphere (5" c co* is an element of f if

(4.6) C,,1((5, ;f < q-k+ y for all (5" such that (* (_5" co*,

and
-N+I(4.7) Ic*[ q

or

],] > q-U+1 and C,,,l((*;f) _>_ q-k+ly.

Note that (4.5) implies that each of the q spheres N* such that (N*)* co*
satisfies (4.6) and that IN*I > q-U+ 1. It follows that fl is well-defined and N* e f
(* co*.

The partition D(n]co], co*, k) defined above when (nlcol, co*) G’ will be
used to define a subset q/* q/*(n]co], co*, k) of co* such that

(4.8*)
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and"
Ifx co* *, x (o* c co*, and co* (o* is a union of spheres in gl,

then there is a fixed constant Co > such that

[S*,f(x; co*) S*,f(x; c5")[ < CoLkq-k+ ly.

To use the estimate (4.9) we need to avoid points x which are in the set

U U *(nlcol, co*, k) U*.
k (nlol,co*)eGl

To estimate the measure of this set we shall show that

(4.10") Ic0*l _-< qSkr-ky-p | be(x)l ax, k 1,2,

Combining (4.8) and (4.10) we obtain

(4.11)
k= (nll,*)6

Note. It is essential that the estimate in (4.11) (and hence in (4.10)) be independ-
ent of the integer N. This clearly restricts the number of pairs which belong to G.
In particular, G will not contain all pairs (nll, *) which satisfy (4.5).

In the proof we shall need to partition certain spheres m* with respect to
certain integers n[m] even though (nll, *) may not be one of our selected pairs
(i.e., be in G for any k). This is possible because of the following two assertions.

If * S*, * *, ]*] > q-X+ x, and C,[(w* ;f) q-ky, then
(4.12") there exists (, *, ) such that [] n[w],

*) G, and Cn[a(* ;f) < q-+: for all * such that * * *.

In the special case when * * we have

(4.3.) q-y c,(a*;f) < q-+ly, . s* (n,a*)e6.

We now show how (4.12) is used.

Suppose n[o], *, and k are as in (4.12) and (, *, ) are chosen as in that
result. Let (11, *, ), and w*(x) denote the sphere in that contains

x, where x is any fixed point in *. Then"
(4.14) (a) o*(x) *,

(b) 0N n< qU0 < qU,
(c) x e * *(IN], N*, ) implies

]Sf(x w*)l < q-+2Y + 2CoLq-k + y + ISf(x w*(x))l

Proof Since (]NI, N*)e G, is defined.
There are two possibilities since m*(x) * . Namely, m*(x) m* or

m* o*(x). But if * w*(x), then (4.7) and the last condition of (4.12) gives a

contradiction.
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If 0 __< n < qN, notice that [co] n[co] and Icol q-N+ 1o Thus Icol- qN-e,
#> 1, n[co]__<q- landso

fi < fiUco]lcol - + [col-1 < (q 1)qS-e + qS-e q.
The estimate of S*f(x;co*) is obtained in two parts.
First, since fi[co] n[co], (3.8) and the last condition of (4.12) imply that

[S*,f(x co*) <= qCntol(co* f) + [S,f(x co*)

<= q-r, + 2y
Let f be a partition of a sphere co* into a finite union of mutually disjoint

spheres; let (* be an element of the partition and (5* be a sphere such that
N* c (5* c co*. Then co* (5* is a union of elements of f. This follows since
each sphere in f is either disjoint from (5* or is contained in it, since otherwise
(5* would be properly contained in a sphere of the partition which is impossible
given the fact that N* c (5*.

Apply this observation to co*(x) c co* c N*, and we have that (* co* is
a union of spheres in f. It follows from (4.9) that if x e co* *(1(1, (*, k),

ISf(x co*) Sf(x co*(x))l _-< [Sf(x *) S’f(x co*)l

+ IN,f(x; *) Sf(x; co*(x))l

< 2CoLfcq-+
If we combine the estimates, (c) follows and the proof of (4.14) is complete.

4.3. Proof of the Basic Lemma. We can now assemble a proof of (4.1) based
on the assertions above.

The exceptional set E is S* U U*. From (4.3) and (4.11) we have IEI
CPy-P If(x)l p dx, where C suP1 <p<oo (1 4- q)l/p 4- q, which meets the

requirements of (4.1).
Fix x e 3 E, 0 __< n < qS, and consider S,+lf(x). We may assume that

c,(;f) :/: 0. (Otherwise, S,+f(x)= S,f(x), and so on. Eventually some
%( f) -Y: 0, <re<n, and we may use S,,+lf=S,+lf or S,+lf--0,
O<=mNn.)

From (4.4), C,(?*;f)< y (else, *= E) and so there exists an integer
ko __> such that

q-,Oy <__ C,()* ;f) Ic,();f)] < q-kO+ y.
Statement (4.13) implies (n, ?*)e Gk*o, so the partition f0 f(n, *, k0) is

defined.
Let co denote the sphere in fo that contains x. From (4.9) we have

INn+f(x)l _-< [c(C;f)l / IS*f(x;
(0)

< q-o+ly + CoLkoq-,O+y + ]S*f(x;
Note that co *. If

we continue with a typical step.
According to (4.7), Ico]’ > q-S+1 implies Cno,(co]’;f)_-> q-’y for some

k, =< k < ko. Apply (4.12) to obtain (, (, 1). Let co denote the sphere in
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f(ffllNll, N, 1) which contains x. Then (4.14) implies

IS*,f(x;oT)l <-_ q-kl+2y + 2CoL,q-,+ly + ISnf(x;o)l,
(1) , 0N <qU <1 <ko

If I1 q-U + 1, we stop. If I1 > q-U + a, we repeat the step above (J 1)-
times (J N N) to obtain

, +2y]S f(x )1 < q- + 2CoLjy + ISf(x + 1)1

* 0 < < qU, 1 < j < j 1"(2 +,
j 2, 3, J, IY+ 1 Q-N+I XG +1.

Then j[ma + ] 0 so (3.8), (4.4), and the fact that Saf 0 imply

(J + 1) IsLf(x;+ 1)[ qCo(m+x ;f) < qy.

Combining the estimates (0), (1), (2), ..., (J), (J + 1) we obtain

IS.+af(x)l q-+2 + 2CoL kq-k+l + q y.
=1 =1

This completes the proof of (4.1) except for the verification of the starred
assertions, (4.3), (4.4), (4.5), (4.8), (4.9), (4.10), (4.12) and (4.13).

4.4. Proof of assertions.

Proof of (4.3) and (4.4). Let S be the union of all spheres co 0 which satisfy

(4.15) f If(x)l dx >= ylogl.

Using the fact that if co and 092 are two spheres, then either they are disjoint,
or one contains the other we see that S can be written as a countable union of
disjoint spheres which satisfy (4.15). Thus

(4.16) ISI <- y-P J If(x)l p dx.

f [lf 1 lip

(4.17) co S Ic.(co;f)l __< - If(x)l dx If(x)l p dx

as follows from (4.15).
Let S* Us*. From (4.16) we have

(4.3)

(4.4)

IS*l qlSI qy-P J If(x)l p dx.

If co* S*, then ( S for each N such that (* co*. Hence, from (4.17),

co*S*C,(co*;f)<y for all n O, 1, 2,

This proves (4.3) and (4.4).
Proof of (4.5), (4.12) and (4.13). The selection of pairs for the collection

is related to the construction of certain polynomials Pk(X; CO).
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Fix the positive integer k. Define Pk(X; )*)= 0. The definition of Pk(X; 09)
is inductive. We fix 09 3 such that I091 _-> q-U + 1, and assume Pk(X; 09*) is defined.
(Recall that any 09 is reached by a unique chain {09j}=0 such that 090 *,
09j 09, and 09j coj_ 1, J 1, 2, ..., J.)

Let Gk(09) {(n, 09):1c,(09;f Pk(’; 09"))1 _--> q-ky}, and let

Pk(X 09) pk(x 09*) + C,(09;f Pk(’; 09"))2,1,ol-,(X).
(n,o)eG,(o))

We note that for 09 ,
(4.18) (n, 09) Gk(09) Ic,(09 f Pk(’; 09"))1 >_-- q-ky,

and

(4.19) 1Cm(09; f Pk(’; 09))1 < q-ky for all (m, 09).

We may write

Pk(X 09) c.’1o’1(09’ f Pk(" (09’)*))X.,(x).
o’ (n’lto’l,o’)eGk(o’)

From this representation we see:

Ifpk(X 09) contains a term cz,,, then there exists 09’ such that 09 c 09’ 3
(4.20)

and (n’[09’1,09’)e Gk(09’).

Let

G {(nlcol, co*)’lcol q-U+ 1, (nlcol, co)e Gg(co), co* S*, C,io1(09" ;f) < q-k+ ly}.

(4.5) The conditions of (4.5") are now met.

(4.13) The conditions of (4.13") are also met.

We now establish a lemma needed to prove (4.12).

cO’If 1Cm(09 f) > q-ky, then there exist n’, such that 09 09’ ,
(4.21)

n’[09] m, and (n’109’1,09’)e Gk(09’).

Proof This follows from (4.20) if pk(x; 09) contains a term cz,, with n’[09] m.
Ifpk(x; 09) contains no such term, then %(09; Pk(’; 09)) 0 and so 1%(09; f Pk(’; 09))1

1%(09;f)1 _>- q-kY, which contradicts (4.19).

If 09* S*, 09* 0", I09"1 > q-N+ 1, and C,toq(09*’f), => q-y, then

(4.12)
there exists (,N*,k) such that fi[o] n[o], * N*, N k k,
(ll, *) G and Cnt(&* ;f) < q- + y for all * with * * *.

Proof Let Z denote the collection of triples (n’, m’, k’) such that"
(i) k’ k,

(ii) m* (m’)* *,
(iii) n’[m] n[m],
(iv) (n’lo’l, ’)e 6(’).

From (4.21) we see that there exists (n’,m’,k)e Z so that Z is not empty. Let
(, N, k) be an element of Z with k minimal. It only remains to check the last
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condition of (4.12), for together with co* S*, [co’[ > q-N+1 and the conditions
of Z we obtain that (11, *) G’.

Suppose there exists 5" = co* with C,te](cb*;f) >__ q-/ ly. Since * S*
this coefficient is less than y, and so (k 1) 1. We apply (4.21) with
(k- 1), and obtain n, such that & c ’ , n’[&] fi[], and (n’[’, ’)
G Gk_ 1(’).

We have k- < k k. Note also that ’ and * = * implies
(’)* = *. Further n’[] [], I1 I1 implies n’[] hill. Since h]
we haqe that n’] n[]. It follows that (n’,’,- 1)Z since (n’l’l,’)
6_ 1(’).

This contradicts the minimality of . The proof of (4.12) is complete.
Proof of (4.10). We need an estimate of

N-1

j= 0 (n,)eG()

When we multiply this by q we get the required estimate. Set a,()
c,(;f Pk(’; *)). From Plancherel’s formula, (3.5), we obtain

f If(x)-p(x; )l 2 dx
I

If(x)- Pk(X; *)- an()ZnqN_ l(X)[ 2 dx
[Ol =q- d (n,)Gk()

If(x) p(x; *)12 dx Z la.()121l
Iml =q-

f If(x)- Pk(X; )[2 dx
=q- d (n,)eGk()

Il=q-S+

The first term on the right is similar to the term on the left. We repeat the
argument N times to obtain

Hence,

f If(x) Pk(X;co)l 2 dx
Io1=

N-1

If(x)l 2 dx
0 (n,co)sGk(.)

Iol--’/-J

la,,(o)121l.

N-1

j= 0 (n,og)Gk(.
la.(o9)121ool If(x)l = dx.

From (4.18), [a,(co)[ q-ky. Hence,

(4.22)
N-1

0
Icol < q2ky-2 fe if(x)l 2 dx.
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We note that L(2)= 9, so that for p 2 we require an estimate with the
factor qS.k.9.9-k q44k. From (4.22) we obtain the factor qZk + 1. Since 2k + < 44k
for k _> the estimate (4.10) for p 2 is established.

The proof for Lp, p 4: 2, f a special function, requires an additional observa-
tion.

(4.23) If Gk(09 contains a pair (n, 09) with 09 S, then y-2 <= qkLy-p, where

L L(p) is defined in (4.2).

Proof. If (n, 09) e Gk(09), there is a pair (m, 09’) with 09’ 09 and ICm(09’ ;f)l _>-- q-ky.
TO see this, suppose 1c,,(09’;f)[ < q-ky for all (m, 09’) such that 09’: 09. Then

pk(X; 09*) = 0. Then (n, 09) Gk(09 implies 1c,(09 ;f)[ [c,(09;f Pk(’; 09")1 q-ky.
Fix such a pair (m, 09’). In the case 1 < p < 2, and f is a special function, then

(4.1 5) and 09’ S imply

q-ky [Cm(09, f)[ If(x)l dx

<2p_ fol If(x)l p dx < 2p- lyp qyp.

This yields yl-p < qk+ 1. That yp-2 < qkl follows easily from the fact that
(k + 1)(2 p)/(p 1) =< 2p2k/(p 1) for k 1,2,3,....

In the case p > 2 andfis a special function, we have

q-ky < 1C,,(09’ ;f)l ]- If(x)l dx 1.

This yields y <= qk, and then yp-2 <= qkL follows from the estimate p 2 __< L(p)
if p > 2. This completes the proof of (4.23).

We proceed with the proof of (4.10). If G’ is empty, our estimate is trivially
true. If G’ is not empty, then for some 09, some (n, 09) Gk(09 with 09 S. Using
(4.22) and (4.23) we have

I0"1 q2k+ ly-2 f if(x)12 dx

<= q2k+ +kLy-p fe if(x)l 2 dx.

Recall that p 4:2 and that f is a special function. Thus,
-< 2P If(x)l pdx. Since q >= 2, k => and L >= 2p, p > 1, we obtain

2PqZk+ l+kL < qSkL-k

which gives

io9, <= qSkL-ky-p | if(x)lp dx.
(4.10) (,,*)r,

j’ If(x)l 2 dx

This completes the proof of (4.10).
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Proof of (4.8) and (4.9). For each (nlco, co*) G’ we construct the partition
f2 f2(n col, co*, k) of co*. We define g on co* by

f(4.24) g(t) -l f(z)2,(z) dz, e , n.

For g we have the estimate

Ig(t)l Ic,t(;f)l C,tl(*;f).
From (4.6) we have that

(4.25) g ,* < q-+ y

which follows since * properly contains , and * *.
The function g is used to obtain the following estimate.

(4.26)

Suppose x co*, oF* c co* is such that co* (o* is a union of mutually
disjoint spheres in fL x (o*. Then

IS*f(x; co*) S*,j(x; cb*)l < T*g(x),

where the operator T*, is defined in (3.9).

[S*.j’(x co*) S*.f(x cb*)[ | f(t)2,(t)D*, (x t) dt

f g(t)D*,(x t) dt

+ fo,, [f(t)2,(t) g(t)]D(x t)at.

m* * is a union of disjoint spheres {m’} such that x m’, and each m’ .
From (3.7) we see that D(x t) is constant on each m’, and from the definition
of g we see that

[f(t)z,(t) g(t)] dt O.

Thus the second integral on the right is zero and the inequality follows.
Let A > 0 be the constant of (3.9) (which depends only on K), and let Co

be a positive number such that ACo ( + 5 log q). For each (hill, *)6 G let

* *(nll, *, k) {x *" Tg(x) > CoLkq-+

From (3.9) and (4.25) we have

]*l el/2 exp {-ACoLkq-+xy/ g ,,}l*]
(4.8)

e ’/2 exp{ ACoLk}]* q- L],].

(4.9) Statement (4.26) and the definition of* clearly imply (4.9).

This completes the proof of (4.9) and (4.8).
We have now established all of the "starred" assertions and the proof is

complete.
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Appendix. Orlicz spaces. Let K be a local field as in 3, 3 the ring of integers
in K, and suppose q is the integer such that 3/ GF(q) (where is the maximal
ideal of 3) and {Zv}=o are the characters on 3. A function on 3 of the form

":0 cvzv is called a polynomial.
Clearly if g is a polynomial, then S,g g for all/ >= n + 1. Our claim, in

the proof of Theorem 4, that the "nice" functions are dense in the class of functions
such that J(f) < oo is now shown by establishing the following theorem.

THEOREM A. Let be a nonnegative-valued, convex, nondecreasing function on
[0, oo) such that do(O)= O. Suppose f is a measurable function on YO such that

fe dp(I f(x)l) dx < oo. Then

f (1/4[Sq.f(x) f(x)])dx 0 as n o.

Proof The proof follows from the argument in Zygmund [14, vol. I, (5.14),
p. 146] as soon as we show thatf Oq.(x) dx 1 and Oq.(x) > 0 for all x

That the integral is follows from the fact that {;v}Y=0 is an orthonormal
sequence on

To see that D.(x) > 0 we extend Dq. to a function on K by setting it equal
to zero outside of 3. From the arguments in Sally and Taibleson [7, 2] we see
that Dq, ’qn_

--o ;,)(I)o, where (I) is the characteristic function of 3. We com-
pute the Fourier transform (Zi(vO) and it is the characteristic function of the
sphere i(v) + 3. From the choice of the {i(v)} it follows that (Dq.)^ (I)_, and
so D. q"O, >= O.

COROLLARY. If f is a measurable function on such that J(f) < oo, then
J([So,f f]) 0 as n .

Proof. Let (I)(s) s + s log +s log + s log +s, s > 0, and zero otherwise. The
theorem implies J(1/4(So,f f)) -- 0 as n . But satisfies the condition" there
exists a C > 0 such that q)(2x) __< C(x) for all x > 0. This shows that J((Sq,,f f))
0asn .
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